1
|
Duquesne I, Abou Chakra M, Hage L, Pinar U, Loriot Y. Liquid biopsies for detection, surveillance, and prognosis of urothelial cancer: a future standard? Expert Rev Anticancer Ther 2023; 23:995-1007. [PMID: 37542214 DOI: 10.1080/14737140.2023.2245144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Liquid biopsies are used for the detection of tumor-specific elements in body fluid. Their application in prognosis and diagnosis of muscle/non-muscle invasive bladder cancer (MIBC/NMIBC) or upper tract urothelial cancer (UTUC) remains poorly known and rarely mentioned in clinical guidelines. AREAS COVERED Herein, we provide an overview of current data regarding the use of liquid biopsies in urothelial tumors. EXPERT OPINION Studies that were included analyzed liquid biopsies using the detection of circulating tumor cells (CTCs), deoxyribonucleic acid (DNA), ribonucleic acid (RNA), exosomes, or metabolomics. The sensitivity of blood CTC detection in patients with localized cancer was 35% and raised to 50% in patients with metastatic cancer. In NMIBC patients, blood CTC was associated with poor prognosis, whereas discrepancies were seen in MIBC patients. Circulating plasma DNA presented a superior sensitivity to urine and was a good indicator for diagnosis, follow-up, and oncological outcome. In urine, specific bladder cancer (BC) microRNA had an overall sensitivity of 85% and a specificity of 86% in the diagnosis of urothelial cancer. These results are in favor of the use of liquid biopsies as biomarkers for in urothelial cancer management.
Collapse
Affiliation(s)
- Igor Duquesne
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Mohamad Abou Chakra
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Lory Hage
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Ugo Pinar
- Department of Urology, Pitie Salpetriere Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Sorbonne, Paris, France
| | - Yohann Loriot
- Department of Cancer Medicine, Gustave Roussy Institute, Cancer Campus, Grand Paris, Universite Paris-Sud, Villejuif, France
| |
Collapse
|
2
|
Xue K, Luo B, Li X, Deng W, Zeng C, Zuo C. Consistency evaluation of lung adenocarcinoma tissue and circulating tumor cells related gene mutation detection based on multi-site immunomagnetic beads. J Biomater Appl 2022; 36:1700-1711. [PMID: 35029523 DOI: 10.1177/08853282211065861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was designed to investigate the feasibility of genetic testing using circulating tumor cells (CTCs) instead of tumor tissues in lung adenocarcinoma to break through its limitation. Separation system for epithelial cell adhesion molecule (EpCAM), epidermal growth factor receptor (EGFR), and Vimentin expressing CTCs was constructed and used to capture CTCs in the blood samples of 57 patients with lung adenocarcinoma. Genetic mutations of genes involved in targeted therapies were detected by next-generation sequencing (NGS) in tissues from these patients. Blood CTC samples with the gene mutations identified by tissue-NGS were selected and corresponding gene mutations were detected by Sanger sequencing. The specificity of the CTC separation system was 95.48% and the sensitivity was 90.85%. The average number of CTCs in the blood of patients with lung adenocarcinoma was 12.47/7.5 mL. Comparison of the tissue-NGS with the CTC-Sanger sequencing showed that the consistencies of genetic mutations of EGFR (n = 24), KRAS (n = 9), TP53 (n = 19), BRAF (n = 1), ERBB2 (n = 2), and PIK3CA (n = 3) were 92.31%, 75.00%, 86.36%, 50.00%, 66.67%, and 75.00%, with an overall consistency of 84.06%. The CTC separation system established in this study shows high specificity and sensitivity. CTCs can be used as a suitable alternative to tumor tissues that are difficult to obtain in clinical practice and overcome the difficulties in tumor tissue collection, which is of significance in guiding clinical medication and individualized treatment with significant clinical application value in terms of genetic testing for targeted therapies in tumor treatment.
Collapse
Affiliation(s)
- Keying Xue
- 519885Xiamen Medical College Affiliated Second Hospital, Xiamen, China
| | - Bingqing Luo
- 519885Xiamen Medical College Affiliated Second Hospital, Xiamen, China
| | - Xiaoqing Li
- 519885Xiamen Medical College Affiliated Second Hospital, Xiamen, China
| | - Weixian Deng
- 519885Xiamen Medical College Affiliated Second Hospital, Xiamen, China
| | - Chunyan Zeng
- 519885Xiamen Medical College Affiliated Second Hospital, Xiamen, China
| | - Cuiyun Zuo
- 519885Xiamen Medical College Affiliated Second Hospital, Xiamen, China
| |
Collapse
|
3
|
Morelli MB, Amantini C, Rossi de Vermandois JA, Gubbiotti M, Giannantoni A, Mearini E, Maggi F, Nabissi M, Marinelli O, Santoni M, Cimadamore A, Montironi R, Santoni G. Correlation between High PD-L1 and EMT/Invasive Genes Expression and Reduced Recurrence-Free Survival in Blood-Circulating Tumor Cells from Patients with Non-Muscle-Invasive Bladder Cancer. Cancers (Basel) 2021; 13:cancers13235989. [PMID: 34885101 PMCID: PMC8656875 DOI: 10.3390/cancers13235989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND PD-L1 represents a crucial immune checkpoint molecule in the tumor microenvironment, identified as a key target for cancer immunotherapy. A correlation between PD-L1 and EMT-related genes expression in various human cancers has been suggested. METHODS By ScreenCell filtration, digital droplet PCR and confocal microscopy analysis, we aimed to investigate the expression of PD-L1 and EMT/invasive genes (TWIST1, ZEB1, VIMENTIN, TIMP2) in circulating tumor cells (CTCs) collected from the blood of non-muscle-invasive bladder cancer (NMIBC) patients, assessing the prognostic value of these biomarkers in the disease. Welchs' test and Mann-Whitney U test, correlation index, Kaplan-Meier, Univariate and Multivariate Cox hazard proportional analysis were used. RESULTS Higher PD-L1, TIMP2 and VIM mRNA levels were found in pT1 compared to pTa NMIBC. As evaluated by Kaplan-Meier and Univariate and Multivariate Cox analysis, enhancement of PD-L1, TWIST1 and TIMP2 expression reduces the recurrent free survival in NMIBC patients. CONCLUSIONS High PD-L1, TWIST1 and TIMP2 mRNAs mark the recurrent-NMIBC patients and by reducing the RFS represent negative prognostic biomarkers in these patients.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, 62032 Camerino, Italy; (F.M.); (M.N.); (O.M.)
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | | | | | - Antonella Giannantoni
- Department of Medical and Surgical Sciences, University of Siena, 53100 Siena, Italy;
- Neurosciences, Functional and Surgical Urology Unit, Santa Maria alle Scotte Hospital, 53100 Siena, Italy
| | - Ettore Mearini
- Urologic and Andrologic Clinics, University of Perugia, 05100 Perugia, Italy; (J.A.R.d.V.); (E.M.)
| | - Federica Maggi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, 62032 Camerino, Italy; (F.M.); (M.N.); (O.M.)
- Department of Molecular Medicine, University Sapienza, 00185 Rome, Italy
| | - Massimo Nabissi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, 62032 Camerino, Italy; (F.M.); (M.N.); (O.M.)
| | - Oliviero Marinelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, 62032 Camerino, Italy; (F.M.); (M.N.); (O.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Department of Biomedical Sciences and Public Health School of Medicine, Polytechnic University of Marche Region, Umberto I Hospitals, 60121 Ancona, Italy;
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical and Molecular Sciences, Polytechnic University of Marche Region, 60126 Ancona, Italy;
| | - Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, 62032 Camerino, Italy; (F.M.); (M.N.); (O.M.)
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| |
Collapse
|
4
|
Liu Y, Li Q, Chen T, Shen T, Zhang X, Song P, Liu L, Liu J, Jiang T, Liang X. Clinical verification of vimentin/EpCAM immunolipid magnetic sorting system in monitoring CTCs in arterial and venous blood of advanced tumor. J Nanobiotechnology 2021; 19:185. [PMID: 34134721 PMCID: PMC8207779 DOI: 10.1186/s12951-021-00929-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are the dominant factor leading to tumor metastasis. This study aims to investigate the effect of disparate sources of CTCs on the treatment and prognosis of patients with advanced tumors by analyzing the number and gene mutations change of CTCs in arterial and venous blood in patients with advanced tumors. RESULTS A CTCs sorting system was constructed based on Vimentin-immunolipid magnetic balls (Vi-IMB) and EpCAM immunolipid magnetic balls (Ep-IMB). Results showed that the prepared Ep-IMB and Vi-IMB had lower cytotoxicity, better specificity and sensitivity. The number of arterial CTCs was higher than that of venous CTCs, with a statistically significant difference (P < 0.05). Moreover, the prognosis of the low positive group of total CTCs in arterial blood and venous blood was higher than that of the high positive group, with a statistical significance (P < 0.05). The genetic testing results showed that the targeted drug gene mutations in tissues, arterial CTCs and venous CTCs showed a complementary trend, indicating that there was heterogeneity among different tumor samples. CONCLUSIONS CTCs in blood can be efficiently captured by the CTCs sorting system based on Vi-LMB/Ep-LMB, and CTCs detection in arterial blood can be utilized to more accurately evaluate the prognosis and predict postoperative progress. It is further confirmed that tumor samples from disparate sources are heterogeneous, providing a reference basis for gene mutation detection before clinical targeted drug treatment, and the detection of CTCs in arterial blood has more potential clinical application value. TRIAL REGISTRATION The Ethics Committee of Putuo Hospital, PTEC-A-2019-18-1. Registered 24 September 2019.
Collapse
Affiliation(s)
- Yan Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Qiuying Li
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Tingsong Chen
- Second department of oncology, The Seventh People's Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, China
| | - Tianhao Shen
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Xufeng Zhang
- Department of Thoracic Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Song
- Huzhou Lieyuan Medical Laboratory Co., Ltd, No. 800, Rujiadian Road, Huzhou, 313009, China
| | - Lantao Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Jianming Liu
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China
| | - Tinghui Jiang
- Department of Interventional Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200333, China.
| | - Xiaofei Liang
- Huzhou Lieyuan Medical Laboratory Co., Ltd, No. 800, Rujiadian Road, Huzhou, 313009, China.
| |
Collapse
|
5
|
de Kruijff IE, Beije N, Martens JWM, de Wit R, Boormans JL, Sleijfer S. Liquid Biopsies to Select Patients for Perioperative Chemotherapy in Muscle-invasive Bladder Cancer: A Systematic Review. Eur Urol Oncol 2021; 4:204-214. [PMID: 32059957 DOI: 10.1016/j.euo.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT Neoadjuvant chemotherapy (NAC) is considered the standard treatment for muscle-invasive bladder cancer (MIBC). However, its overall survival benefit is limited and toxicity is significant; hence, NAC has not been adopted universally. OBJECTIVE To systematically evaluate whether biomarkers can guide the administration of perioperative chemotherapy in MIBC patients. EVIDENCE ACQUISITION A systematic search of the PubMed database was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). In total, 215 papers were screened and 22 were selected to assess the potential clinical value of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) in selecting MIBC patients for perioperative chemotherapy. EVIDENCE SYNTHESIS We found that the presence of one or more CTCs before radical cystectomy, as determined by the CellSearch technique, is a robust marker for poor recurrence-free and overall survival. Consequently, whether NAC can be withheld in patients without the presence of CTCs is a subject of ongoing investigation. Studies investigating various approaches to detect cfDNA showed that cfDNA is present in the blood of MIBC patients, but varying results on its prognostic value have been reported. Successful cfDNA-based approaches are likely to encompass at least a multitude of genes using next-generation sequencing, as there are generally few hotspot somatic mutations in MIBC. CONCLUSIONS Liquid biopsies hold promise in selecting MIBC patients for perioperative chemotherapy, but instead of more proof-of-principle studies, prospective studies investigating true clinical applicability for treatment decision making are urgently needed. PATIENT SUMMARY Liquid biopsies appear to be a promising tool to guide the administration of chemotherapy in patients with muscle-invasive bladder cancer; however, the optimal way to implement these remains to be determined.
Collapse
Affiliation(s)
- Ingeborg E de Kruijff
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Nick Beije
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Takagi H, Dong L, Kuczler MD, Lombardo K, Hirai M, Amend SR, Pienta KJ. Analysis of the Circulating Tumor Cell Capture Ability of a Slit Filter-Based Method in Comparison to a Selection-Free Method in Multiple Cancer Types. Int J Mol Sci 2020; 21:ijms21239031. [PMID: 33261132 PMCID: PMC7730626 DOI: 10.3390/ijms21239031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Circulating tumor cells (CTCs) are a promising biomarker for cancer liquid biopsy. To evaluate the CTC capture bias and detection capability of the slit filter-based CTC isolation platform (CTC-FIND), we prospectively compared it head to head to a selection-free platform (AccuCyte®-CyteFinder® system). We used the two methods to determine the CTC counts, CTC positive rates, CTC size distributions, and CTC phenotypes in 36 patients with metastatic cancer. Between the two methods, the median CTC counts were not significantly different and the total counts were correlated (r = 0.63, p < 0.0001). The CTC positive rate by CTC-FIND was significantly higher than that by AccuCyte®-CyteFinder® system (91.7% vs. 66.7%, p < 0.05). The median diameter of CTCs collected by CTC-FIND was significantly larger (13.0 μm, range 5.2–52.0 vs. 10.4 μm, range 5.2–44.2, p < 0.0001). The distributions of CTC phenotypes (CK+EpCAM+, CK+EpCAM− or CK−EpCAM+) detected by both methods were similar. These results suggested that CTC-FIND can detect more CTC-positive cases but with a bias toward large size of CTCs.
Collapse
Affiliation(s)
- Hidenori Takagi
- Research and Development Division, ARKRAY, Inc. Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto 602-0008, Japan;
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
- Correspondence: ; Tel.: +81-75-662-8979; Fax: +81-75-431-1202
| | - Liang Dong
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
- Department of Urology and Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai 200025, China
| | - Morgan D. Kuczler
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Kara Lombardo
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc. Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto 602-0008, Japan;
| | - Sarah R. Amend
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| |
Collapse
|
7
|
Wang SG, Zhang B, Li CG, Zhu JQ, Sun BS, Wang CL. Sorting and gene mutation verification of circulating tumor cells of lung cancer with epidermal growth factor receptor peptide lipid magnetic spheres. Thorac Cancer 2020; 11:2887-2895. [PMID: 32856417 PMCID: PMC7529546 DOI: 10.1111/1759-7714.13625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to identify an efficient, simple, and specific method of detecting mutations in the epidermal growth factor receptor (EGFR) gene in isolated lung cancer circulating tumor cells (CTCs) and to improve the ability to obtain tumor tissue clinically. Methods EGFR peptide lipid magnetic spheres (EG‐P‐LMB) were prepared by reverse evaporation, and characterization and cell capture efficiency assessed. The peripheral blood samples of 30 lung cancer patients were isolated and identified with the EG‐P‐LMB using 20 healthy volunteers as controls. Finally, the isolated CTCs were tested for EGFR gene mutations, and the tissue samples selected for comparison. Results The prepared magnetic spheres had a smaller particle size and higher stability according to the particle size potential test. Their morphology was homogeneous by atomic force observation, and the UV test showed that there were peptides on the surface. The separation efficiency of EG‐P‐LMB was greater than 90% in PBS and greater than 80% in the blood simulation system. Compared with the tissue sample results, the positive rate of EGFR gene mutations was 94%. The CTC test results of 27 patients were consistent with the tissue test results of the corresponding patients, and the consistency with the tissue comparison test results was 90% (27/30). Conclusions EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. Key points Significant findings of the study EG‐P‐LMB can effectively capture CTCs in the peripheral blood of patients with lung cancer. CTC detection can accurately identify mutations in the EGFR gene and improve the ability to obtain tumor tissue in clinical practice. What this study adds This study added EGFR peptide lipid magnetic spheres to capture CTCs in the blood. Genetic testing was performed and compared with tissues. It solves the problem of clinically difficult tumor tissue sampling.
Collapse
Affiliation(s)
- Sheng-Guang Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Jian-Quan Zhu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Bing-Sheng Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
8
|
Dong L, Zhang Z, Smith K, Kuczler MD, Reyes D, Amend SR, Cho YK, Xue W, Pienta KJ. The combination of size-based separation and selection-free technology provides higher circulating tumour cells detection sensitivity than either method alone in patients with metastatic prostate cancer. BJU Int 2020; 126:191-201. [PMID: 32115854 DOI: 10.1111/bju.15041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To investigate the circulating tumour cells (CTCs) capture abilities of two technologies that are not dependent on cell-surface marker expression: a selection-free platform [AccuCyte® -CyteFinder® system (Rarecyte)] and a size-based platform [fluid-assisted separation technology (FAST)]. In addition, the combination of the two systems to more completely assess CTCs was investigated. PATIENTS AND METHODS In all, 28 patients with metastatic prostate cancer were included. Two 6 mL peripheral blood samples were taken from each patient at the same time-point. The samples were then subjected to the two different technology platforms in parallel. An additional group of samples was acquired by applying the waste chamber material from the FAST-group tests (flow-through that goes through the FAST filter membrane) to the Rarecyte system for the detection any CTCs that were not captured by FAST. RESULTS The three groups had significantly different putative CTC-positive tests, with positive rates of 29% for Rarecyte, 57% for FAST, and 79% for the combination. We also assessed CTC phenotype: 56.6% of the CTCs were cytokeratin (CK)+/epithelial cell adhesion molecule (EpCAM)-, 3.1% were CK-/EpCAM+, and 40.3% were CK+/EPCAM+. The captured CTCs diameter ranged from 5.2 to 16.9 µm. The mean CTC size from the FAST waste chamber was significantly smaller. The diameters for each of the phenotypic groups were significantly different. CONCLUSIONS These data highlight disparities in the positive rates and enumerated CTC numbers detected by the two techniques. Notably, the combination of the two technologies resulted in the highest CTC-capture rates. Smaller CTCs were more likely to be missed by the FAST as they passed through the filter system. Sizes of CTCs varied with different cell surface marker phenotypes.
Collapse
Affiliation(s)
- Liang Dong
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyuan Zhang
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly Smith
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Morgan D Kuczler
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane Reyes
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea.,Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, Korea
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Batth IS, Mitra A, Rood S, Kopetz S, Menter D, Li S. CTC analysis: an update on technological progress. Transl Res 2019; 212:14-25. [PMID: 31348892 PMCID: PMC6755047 DOI: 10.1016/j.trsl.2019.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
There is a growing need for a more accurate, real-time assessment of tumor status and the probability of metastasis, relapse, or response to treatment. Conventional means of assessment include imaging and tissue biopsies that can be highly invasive, may not provide complete information of the disease's heterogeneity, and not ideal for repeat analysis. Therefore, a less-invasive means of acquiring similar information at greater time points is necessary. Liquid biopsies are samples of a patients' peripheral blood and hold potential of addressing these criteria. Ongoing research has revealed that a tumor can release circulating cells, genetic materials (DNA or RNA), and exosomes into circulation. These potential biomarkers can be captured in a liquid biopsy and analyzed to determine disease status. To achieve these goals, numerous technologies have been developed. In this review, we discuss both prominent and newly developed technologies for circulating tumor cell capture and analysis and their clinical impact.
Collapse
Affiliation(s)
- Izhar S Batth
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhisek Mitra
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Scott Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - David Menter
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shulin Li
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
10
|
EpCAM low Circulating Tumor Cells: Gold in the Waste. DISEASE MARKERS 2019; 2019:1718920. [PMID: 31636732 PMCID: PMC6766153 DOI: 10.1155/2019/1718920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
The CellSearch® system which is still considered the gold standard for the enumeration of circulating tumor cells (CTC) utilizes antibodies against the epithelial cell adhesion molecule (EpCAM) for CTC enrichment. Recently, CTC discarded by the CellSearch® system due to their low EpCAM expression have been isolated and analyzed. We here sought to discuss technical and biological issues concerning the isolation and characterization of EpCAMlow CTC, highlighting the enormous potential of this subpopulation discarded by CellSearch®, which might instead reveal an unexpected clinical significance in tumor types where CTC enumeration has never been validated for prognostic and predictive purpose.
Collapse
|
11
|
Yoshida T, Kates M, Fujita K, Bivalacqua TJ, McConkey DJ. Predictive biomarkers for drug response in bladder cancer. Int J Urol 2019; 26:1044-1053. [DOI: 10.1111/iju.14082] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/07/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Takahiro Yoshida
- Department of Urology The James Buchanan Brady Urological Institute Johns Hopkins School of Medicine BaltimoreMarylandUSA
| | - Max Kates
- Department of Urology The James Buchanan Brady Urological Institute Johns Hopkins School of Medicine BaltimoreMarylandUSA
- The Johns Hopkins Greenberg Bladder Cancer Institute Baltimore Maryland USA
| | - Kazutoshi Fujita
- Department of Urology Osaka University Graduate School of Medicine Suita Osaka Japan
| | - Trinity J Bivalacqua
- Department of Urology The James Buchanan Brady Urological Institute Johns Hopkins School of Medicine BaltimoreMarylandUSA
- The Johns Hopkins Greenberg Bladder Cancer Institute Baltimore Maryland USA
| | - David J McConkey
- Department of Urology The James Buchanan Brady Urological Institute Johns Hopkins School of Medicine BaltimoreMarylandUSA
- The Johns Hopkins Greenberg Bladder Cancer Institute Baltimore Maryland USA
| |
Collapse
|
12
|
Rink M, Schwarzenbach H, Vetterlein MW, Riethdorf S, Soave A. The current role of circulating biomarkers in non-muscle invasive bladder cancer. Transl Androl Urol 2019; 8:61-75. [PMID: 30976570 PMCID: PMC6414344 DOI: 10.21037/tau.2018.11.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) is characterized by its high rate of disease recurrence and relevant disease progression rates. Up to today clinical models are insufficiently predicting outcomes for reliable patient counseling and treatment decision-making. This particularly is a serious problem in patients with high-risk NMIBC who are at high risk for failure of local treatment and thus candidates for early radical cystectomy or even systemic (neoadjuvant) chemotherapy. Next to its clinical variability, bladder cancer is genetically a highly heterogeneous disease. There is an essential need of biomarkers for improving clinical staging, real-time monitoring of disease with or without active treatment, as well as improved outcome prognostication. Liquid biopsies of circulating biomarkers in the blood and urine are promising non-invasive diagnostics that hold the potential facilitating these needs. In this review we report the latest data and evidence on cell-free circulating tumor desoxyribonucleic acid (ctDNA) and circulating tumor cells (CTC) in NMIBC. We summarize their current status in clinical diagnostics, discuss limitations and address future needs.
Collapse
Affiliation(s)
- Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heidi Schwarzenbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte W Vetterlein
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
The current role and future directions of circulating tumor cells and circulating tumor DNA in urothelial carcinoma of the bladder. World J Urol 2018; 37:1785-1799. [DOI: 10.1007/s00345-018-2543-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
|
14
|
Lodewijk I, Dueñas M, Rubio C, Munera-Maravilla E, Segovia C, Bernardini A, Teijeira A, Paramio JM, Suárez-Cabrera C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int J Mol Sci 2018; 19:E2514. [PMID: 30149597 PMCID: PMC6163729 DOI: 10.3390/ijms19092514] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence and recurrence rates, as well as the limited advances in effective disease management. Currently, a combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, emphasizes the urgent need for improvements in BC clinical guidance. Liquid biopsy represents a new non-invasive approach that has been extensively studied over the last decade and holds great promise. Even though its clinical use is still compromised, multiple studies have recently focused on the potential application of biomarkers in liquid biopsies for BC, including circulating tumour cells and DNA, RNAs, proteins and peptides, metabolites and extracellular vesicles. In this review, we summarize the present knowledge on the different types of biomarkers, their potential use in liquid biopsy and clinical applications in BC.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Marta Dueñas
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Carolina Rubio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Ester Munera-Maravilla
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Cristina Segovia
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alejandra Bernardini
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alicia Teijeira
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|