1
|
Spaziani M, Carlomagno F, Tenuta M, Sesti F, Angelini F, Bonaventura I, Ferrari D, Tarantino C, Fiore M, Petrella C, Tarani L, Gianfrilli D, Pozza C. Extra-Gonadal and Non-Canonical Effects of FSH in Males. Pharmaceuticals (Basel) 2023; 16:813. [PMID: 37375761 PMCID: PMC10300833 DOI: 10.3390/ph16060813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Recombinant follicle-stimulating hormone (FSH) is commonly used for the treatment of female infertility and is increasingly being used in males as well, as recommended by notable guidelines. FSH is composed of an α subunit, shared with other hormones, and a β subunit, which confers specificity of biological action by interacting with its surface receptor (FSHR), predominantly located in granulosa and Sertoli cells. However, FSHRs also exist in extra-gonadal tissues, indicating potential effects beyond male fertility. Emerging evidence suggests that FSH may have extra-gonadal effects, including on bone metabolism, where it appears to stimulate bone resorption by binding to specific receptors on osteoclasts. Additionally, higher FSH levels have been associated with worse metabolic and cardiovascular outcomes, suggesting a possible impact on the cardiovascular system. FSH has also been implicated in immune response modulation, as FSHRs are expressed on immune cells and may influence inflammatory response. Furthermore, there is growing interest in the role of FSH in prostate cancer progression. This paper aims to provide a comprehensive analysis of the literature on the extra-gonadal effects of FSH in men, with a focus on the often-conflicting results reported in this field. Despite the contradictory findings, the potential for future development in this area is substantial, and further research is needed to elucidate the mechanisms underlying these effects and their clinical implications.
Collapse
Affiliation(s)
- Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Carlomagno
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Angelini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Ilaria Bonaventura
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Davide Ferrari
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Chiara Tarantino
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
2
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|
3
|
Anderson RC, Newton CL, Anderson RA, Millar RP. Gonadotropins and Their Analogs: Current and Potential Clinical Applications. Endocr Rev 2018; 39:911-937. [PMID: 29982442 DOI: 10.1210/er.2018-00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
The gonadotropin receptors LH receptor and FSH receptor play a central role in governing reproductive competency/fertility. Gonadotropin hormone analogs have been used clinically for decades in assisted reproductive therapies and in the treatment of various infertility disorders. Though these treatments are effective, the clinical protocols demand multiple injections, and the hormone preparations can lack uniformity and stability. The past two decades have seen a drive to develop chimeric and modified peptide analogs with more desirable pharmacokinetic profiles, with some displaying clinical efficacy, such as corifollitropin alfa, which is now in clinical use. More recently, low-molecular-weight, orally active molecules with activity at gonadotropin receptors have been developed. Some have excellent characteristics in animals and in human studies but have not reached the market-largely as a result of acquisitions by large pharma. Nonetheless, such molecules have the potential to mitigate risks currently associated with gonadotropin-based fertility treatments, such as ovarian hyperstimulation syndrome and the demands of injection-based therapies. There is also scope for novel use beyond the current remit of gonadotropin analogs in fertility treatments, including application as novel contraceptives; in the treatment of polycystic ovary syndrome; in the restoration of function to inactivating mutations of gonadotropin receptors; in the treatment of ovarian and prostate cancers; and in the prevention of bone loss and weight gain in postmenopausal women. Here we review the properties and clinical application of current gonadotropin preparations and their analogs, as well as the development of novel orally active, small-molecule nonpeptide analogs.
Collapse
Affiliation(s)
- Ross C Anderson
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Claire L Newton
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P Millar
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Liang Z, Lu Z, Zhang Y, Shang D, Li R, Liu L, Zhao Z, Zhang P, Lin Q, Feng C, Zhang Y, Liu P, Tu Z, Liu H. Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy. Curr Cancer Drug Targets 2018; 19:449-467. [PMID: 30306870 DOI: 10.2174/1568009618666181010091246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 01/02/2023]
Abstract
Ovarian cancer is a leading cause of death worldwide from gynecological malignancies, mainly because there are few early symptoms and the disease is generally diagnosed at an advanced stage. In addition, despite the effectiveness of cytoreductive surgery for ovarian cancer and the high response rates to chemotherapy, survival has improved little over the last 20 years. The management of patients with ovarian cancer also remains similar despite studies showing striking differences and heterogeneity among different subtypes. It is therefore clear that novel targeted therapeutics are urgently needed to improve clinical outcomes for ovarian cancer. To that end, several membrane receptors associated with pivotal cellular processes and often aberrantly overexpressed in ovarian cancer cells have emerged as potential targets for receptor-mediated therapeutic strategies including specific agents and multifunctional delivery systems based on ligand-receptor binding. This review focuses on the profiles and potentials of such strategies proposed for ovarian cancer treatment and imaging.
Collapse
Affiliation(s)
- Zhiquan Liang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yafei Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhicong Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Chung HH, Lee JC, Minn I. Follicle-stimulating hormone receptor in gynecological cancers. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Anderson RC, Newton CL, Millar RP. Small Molecule Follicle-Stimulating Hormone Receptor Agonists and Antagonists. Front Endocrinol (Lausanne) 2018; 9:757. [PMID: 30728807 PMCID: PMC6352558 DOI: 10.3389/fendo.2018.00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) has been targeted therapeutically for decades, due to its pivotal role in reproduction. To date, only purified and recombinant/biosimilar FSH have been used to target FSHR in assisted reproduction, with the exception of corifollitropin alfa; a modified gonadotropin in which the FSH beta subunit is joined to the C-terminal peptide of the human choriogonadotropin beta subunit, to extend serum half-life. Assisted reproduction protocols usually entail the trauma of multiple injections of FSH to initiate and promote folliculogenesis, which has prompted the development of a number of orally-available low molecular weight (LMW) chemical scaffolds targeting the FSHR. Furthermore, the recently documented roles of the FSHR in diverse extragonadal tissues, including cancer, fat metabolism, and bone density regulation, has highlighted the potential utility of LMW modulators of FSHR activity. Despite these chemical scaffolds encompassing a spectrum of in vitro and in vivo activities and pharmacological profiles, none have yet reached the clinic. In this review we discuss the major chemical classes of LMW molecules targeting the FSHR, and document their activity profiles and current status of development, in addition to discussing potential clinical applications.
Collapse
Affiliation(s)
- Ross C. Anderson
- Centre for Neuroendocrinology, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Ross C. Anderson
| | - Claire L. Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Robert P. Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Porcaro AB, Siracusano S, de Luyk N, Corsi P, Sebben M, Tafuri A, Processali T, Inverardi D, Cacciamani G, Mattevi D, Cerruto MA, Brunelli M, Ghimenton C, Monaco C, Artibani W. Simultaneous Measurements of Follicle Stimulating Hormone and Total Testosterone and Associations in Clinically Localized Prostate Cancer. Curr Urol 2017; 10:174-181. [PMID: 29234259 PMCID: PMC5704728 DOI: 10.1159/000447177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To evaluate the potential relations of simultaneous measurements of basal levels of follicle stimulating hormone (FSH) and total testosterone (TT) in clinically localized prostate cancer (PCa). MATERIALS AND METHODS The study included 126 patients who had simultaneous measurements of prostate specific antigen (PSA), FSH, and TT before undergoing radical prostatectomy for clinically localized PCa. Correlations and independent associations between clinical and pathological factors were investigated by statistical methods. RESULTS The tumor volume (TV) was directly correlated to PSA and TT which was inversely related to FSH. Moreover, it was independently associated with both PSA and TT. In a multivariate linear regression model, FSH and TV were simultaneous independent factors associated with TT, and the association was inverse in the former and direct in the latter. In the patient population, the subset with FSH levels above the third quartile was related to lower median levels of TT that were associated with high grade cancer showing a lower TV. In localized PCa, basal levels of TT were associated with tumor parameters and inversely related to FSH levels, and the subset FSH levels above the third quartile were related to lower TT levels that were associated with high grade cancers showing a lower tumor load. CONCLUSION Preoperative TT was associated with tumor parameters and inversely related to FSH levels. Patient with increased FSH levels was related to lower levels of TT, which was associated with high grade cancer.
Collapse
Affiliation(s)
- Antonio B. Porcaro
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Salvatore Siracusano
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Nicolò de Luyk
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Paolo Corsi
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marco Sebben
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessandro Tafuri
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Tania Processali
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Davide Inverardi
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giovanni Cacciamani
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Daniele Mattevi
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Maria A. Cerruto
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Brunelli
- Department of Pathology, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Claudio Ghimenton
- Department of Pathology, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Carmelo Monaco
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Walter Artibani
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
8
|
Urzua U, Chacon C, Lizama L, Sarmiento S, Villalobos P, Kroxato B, Marcelain K, Gonzalez MJ. Parity History Determines a Systemic Inflammatory Response to Spread of Ovarian Cancer in Naturally Aged Mice. Aging Dis 2017; 8:546-557. [PMID: 28966800 PMCID: PMC5614320 DOI: 10.14336/ad.2017.0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Aging intersects with reproductive senescence in women by promoting a systemic low-grade chronic inflammation that predisposes women to several diseases including ovarian cancer (OC). OC risk at menopause is significantly modified by parity records during prior fertile life. To date, the combined effects of age and parity on the systemic inflammation markers that are particularly relevant to OC initiation and progression at menopause remain largely unknown. Herein, we profiled a panel of circulating cytokines in multiparous versus virgin C57BL/6 female mice at peri-estropausal age and investigated how cytokine levels were modulated by intraperitoneal tumor induction in a syngeneic immunocompetent OC mouse model. Serum FSH, LH and TSH levels increased with age in both groups while prolactin (PRL) was lower in multiparous respect to virgin mice, a finding previously observed in parous women. Serum CCL2, IL-10, IL-5, IL-4, TNF-α, IL1-β and IL-12p70 levels increased with age irrespective of parity status, but were specifically reduced following OC tumor induction only in multiparous mice. Animals developed hemorrhagic ascites and tumor implants in the omental fat band and other intraperitoneal organs by 12 weeks after induction, with multiparous mice showing a significantly extended survival. We conclude that previous parity history counteracts aging-associated systemic inflammation possibly by reducing the immunosuppression that typically allows tumor spread. Results suggest a partial impairment of the M2 shift in tumor-associated macrophages as well as decreased stimulation of regulatory B-cells in aged mice. This long term, tumor-concurrent effect of parity on inflammation markers at menopause would be a contributing factor leading to decreased OC risk.
Collapse
Affiliation(s)
- Ulises Urzua
- 1Laboratorio de Genómica Aplicada, Facultad de Medicina, Universidad de Chile.,4Programa de Biología Celular y Molecular, ICBM.,5Departamento de Oncología Básica y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Chacon
- 1Laboratorio de Genómica Aplicada, Facultad de Medicina, Universidad de Chile
| | | | - Sebastián Sarmiento
- 1Laboratorio de Genómica Aplicada, Facultad de Medicina, Universidad de Chile
| | - Pía Villalobos
- 1Laboratorio de Genómica Aplicada, Facultad de Medicina, Universidad de Chile
| | - Belén Kroxato
- 1Laboratorio de Genómica Aplicada, Facultad de Medicina, Universidad de Chile
| | - Katherine Marcelain
- 3Programa de Genética Humana, ICBM.,5Departamento de Oncología Básica y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
9
|
Crawford ED, Schally AV, Pinthus JH, Block NL, Rick FG, Garnick MB, Eckel RH, Keane TE, Shore ND, Dahdal DN, Beveridge TJR, Marshall DC. The potential role of follicle-stimulating hormone in the cardiovascular, metabolic, skeletal, and cognitive effects associated with androgen deprivation therapy. Urol Oncol 2017; 35:183-191. [PMID: 28325650 DOI: 10.1016/j.urolonc.2017.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore how follicle-stimulating hormone (FSH) may contribute to cardiovascular, metabolic, skeletal, and cognitive events in men treated for prostate cancer, with various forms of androgen deprivation therapy (ADT). MATERIALS AND METHODS A colloquium of prostate cancer experts was convened in May 2015, to discuss the role of FSH in the development of unwanted effects associated with ADT. Subsequently, a literature review (Medline, PubMed, and relevant congress abstract databases) was performed to further explore and evaluate the collected evidence. RESULTS It has become evident that, in the setting of ADT, FSH can promote the development of atherosclerotic plaque formation, metabolic syndrome, and insulin resistance. Data also suggest that FSH is an important mediator of bone remodeling, particularly bone resorption, and thereby increases the risk for bone fracture. Additional evidence implicates a role for FSH in bone metastasis as well. The influence of FSH on ADT-induced cognitive deficits awaits further elucidation; however, the possibility that FSH may be involved therein cannot be ruled out. CONCLUSIONS The widespread molecular and physiological consequences of FSH system activation in normal and pathological conditions are becoming better understood. Progress in this area has been achieved by the development of additional investigative and clinical measures to better evaluate specific adverse effects. More research is needed on FSH function in the development of cancer as well as its association with cardiovascular, metabolic, musculoskeletal, and cognitive effects in ADT.
Collapse
Affiliation(s)
- E David Crawford
- Department of Urologic Oncology, School of Medicine, University of Colorado, Denver, Denver, CO.
| | - Andrew V Schally
- Endocrine, Polypeptide and Cancer Institute, Miami Veterans Affairs Medical Center, Miami, FL; Department of Pathology, University of Miami School of Medicine, Miami, FL; Department of Medicine, University of Miami School of Medicine, Miami, FL
| | - Jehonathan H Pinthus
- Department of Surgery, Juravinski Cancer Centre, McMaster University, Hamilton, Ontario, Canada
| | - Norman L Block
- Endocrine, Polypeptide and Cancer Institute, Miami Veterans Affairs Medical Center, Miami, FL; Department of Pathology, University of Miami School of Medicine, Miami, FL; Department of Medicine, University of Miami School of Medicine, Miami, FL
| | - Ferenc G Rick
- Endocrine, Polypeptide and Cancer Institute, Miami Veterans Affairs Medical Center, Miami, FL; Department of Urology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Marc B Garnick
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Robert H Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Denver, CO
| | - Thomas E Keane
- Department of Urology, Medical University of South Carolina, Charleston, SC
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC
| | | | | | | |
Collapse
|
10
|
In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 2016; 104:361-71. [PMID: 27490486 DOI: 10.1016/j.biomaterials.2016.07.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022]
Abstract
Angiogenesis, i.e. the formation of neovasculatures, is a critical process during cancer initiation, progression, and metastasis. Targeting of angiogenic markers on the tumor vasculature can result in more efficient delivery of nanomaterials into tumor since no extravasation is required. Herein we demonstrated efficient targeting of breast cancer metastasis in an experimental murine model with nano-graphene oxide (GO), which was conjugated to a monoclonal antibody (mAb) against follicle-stimulating hormone receptor (FSHR). FSHR has been confirmed to be a highly selective tumor vasculature marker, which is abundant in both primary and metastatic tumors. These functionalized GO nano-conjugates had diameters of ∼120 nm based on atomic force microscopy (AFM), TEM, and dynamic laser scattering (DLS) measurement. (64)Cu was incorporated as a radiolabel which enabled the visualization of these GO conjugates by positron emission tomography (PET) imaging. Breast cancer lung metastasis model was established by intravenous injection of click beetle green luciferase-transfected MDA-MB-231 (denoted as cbgLuc-MDA-MB-231) breast cancer cells into female nude mice and the tumor growth was monitored by bioluminescence imaging (BLI). Systematic in vitro and in vivo studies have been performed to investigate the stability, targeting efficacy and specificity, and tissue distribution of GO conjugates. Flow cytometry and fluorescence microscopy examination confirmed the targeting specificity of FSHR-mAb attached GO conjugates against cellular FSHR. More potent and persistent uptake of (64)Cu-NOTA-GO-FSHR-mAb in cbgLuc-MDA-MB-231 nodules inside the lung was witnessed when compared with that of non-targeted GO conjugates ((64)Cu-NOTA-GO). Histology evaluation also confirmed the vasculature accumulation of GO-FSHR-mAb conjugates in tumor at early time points while they were non-specifically captured in liver and spleen. In addition, these GO conjugates can serve as good drug carriers with satisfactory drug loading capacity (e.g. for doxorubicin [DOX], 756 mg/g). Enhanced drug delivery efficiency in cbgLuc-MDA-MB-231 metastatic sites was demonstrated in DOX-loaded GO-FSHR-mAb by fluorescence imaging. This FSHR-targeted, GO-based nanoplatform can serve as a useful tool for early metastasis detection and targeted delivery of therapeutics.
Collapse
|
11
|
Yang R, Liu P, Pan D, Zhang P, Bai Z, Xu Y, Wang L, Yan J, Yan Y, Liu X, Yang M. An Investigation on a Novel Anti-tumor Fusion Peptide of FSH33-53-IIKK. J Cancer 2016; 7:1010-9. [PMID: 27313792 PMCID: PMC4910594 DOI: 10.7150/jca.14425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
A novel fusion peptide FSH33-53-IIKK was designed and expected to combine the follicle stimulating hormone receptor (FSHR) targeting and tumor toxicity. In vitro and in vivo study showed the anti-tumor activity of FSH33-53-IIKK was enhanced compared to that of IIKK only. FSH33-53-IIKK could inhibit the growth of tumor via apoptosis and autophagy pathways. In summary, combining the tumor marker-target peptide and anti-tumor peptide together may be an efficient way to search for better anti-tumor candidates.
Collapse
Affiliation(s)
- Runlin Yang
- 1. Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ping Liu
- 2. School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Donghui Pan
- 1. Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Pengjun Zhang
- 2. School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Zhicheng Bai
- 3. The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yuping Xu
- 1. Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lizhen Wang
- 1. Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Junjie Yan
- 1. Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yongjun Yan
- 4. Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA
| | - Xingdang Liu
- 5. Department of Nuclear Medicine, Hua Shan Hospital, Fudan University, Shanghai 200040, China
| | - Min Yang
- 1. Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.; 2. School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450000, China.; 3. The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
12
|
CZARNECKA ANNAM, NIEDZWIEDZKA MAGDALENA, PORTA CAMILLO, SZCZYLIK CEZARY. Hormone signaling pathways as treatment targets in renal cell cancer (Review). Int J Oncol 2016; 48:2221-35. [DOI: 10.3892/ijo.2016.3460] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
|
13
|
Liu P, Yang R, Pan D, Xu Y, Zhu C, Xu Q, Wang L, Yan J, Li X, Yang M. An investigation on the anti-tumor properties of FSH33-53-Lytic. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-015-4143-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Urbanska K, Stashwick C, Poussin M, Powell DJ. Follicle-Stimulating Hormone Receptor as a Target in the Redirected T-cell Therapy for Cancer. Cancer Immunol Res 2015; 3:1130-7. [PMID: 26112923 DOI: 10.1158/2326-6066.cir-15-0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023]
Abstract
Adoptive transfer of T cells engineered to express chimeric immunoreceptors is an effective strategy to treat hematologic cancers; however, the use of this type of therapy for solid cancers, such as ovarian cancer, remains challenging because a safe and effective immunotherapeutic target has not yet been identified. Here, we constructed and evaluated a novel redirected T-cell-based immunotherapy targeting human follicle-stimulating hormone receptor (FSHR), a highly conserved molecule in vertebrate animals with expression limited to gonadal tissues, ovarian cancer, and cancer-associated vasculature. Receptor ligand-based anti-FSHR immunoreceptors were constructed that contained small binding fragments from the ligand for FSHR, FSH, fused to T-cell transmembrane and T-cell signaling domains. Human T cells transduced to express anti-FSHR immunoreceptors were specifically immunoreactive against FSHR-expressing human and mouse ovarian cancer cell lines in an MHC-nonrestricted manner and mediated effective lysis of FHSR-expressing tumor cells, but not FSHR-deficient targets, in vitro. Similarly, the outgrowth of human ovarian cancer xenografts in immunodeficient mice was significantly inhibited by the adoptive transfer of FSHR-redirected T cells. Our experimental observations show that FSHR is a promising immunotherapeutic target for ovarian cancer and support further exploration of FSHR-targeted immune therapy approaches for patients with cancer.
Collapse
Affiliation(s)
- Katarzyna Urbanska
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caitlin Stashwick
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathilde Poussin
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Powell
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Hoare D, Skinner TAA, Black A, Robert Siemens D. Serum follicle-stimulating hormone levels predict time to development of castration-resistant prostate cancer. Can Urol Assoc J 2015; 9:122-7. [PMID: 26085869 DOI: 10.5489/cuaj.2545] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Treatment of advancing prostate cancer focuses on blocking the activation of the androgen receptor with resultant prolonged perturbation of the hypothalamic-pituitary-gonadal axis. Androgen deprivation therapy (ADT) is marked, however, by eventual progression to castration- resistant prostate cancer (CRPC). Emerging evidence has postulated that follicle-stimulating hormone (FSH) may lead to proliferative and mutagenic responses of prostate cancer. We investigated the association of serum FSH and time to castration resistance. METHODS This was a single-centre retrospective study assessing serum FSH levels of patients undergoing ADT for advancing prostate cancer. The primary outcome was time of ADT initiation to the development of CRPC. For each patient on treatment and with castrate levels of testosterone, the maximum FSH value between ADT commencement and CRPC was identified and recorded. FSH was analyzed as a continuous and categorical variable. Cox multivariate regression in a step-wise fashion was used to explore the association between FSH levels and time to CRPC. RESULTS From a database of 323 prostate cancer patients actively managed with ADT, 103 men had a documented FSH value while castrate, with 45 men progressing to CRPC. The mean ± standard deviation maximum FSH value of these patients was 6.66 ± 4.22 mIU/mL (range: 1.5-28.1). The mean duration from ADT commencement to CRPC was 3.03 ± 0.34 years (range: 0.36-9.71). Univariate analysis suggested a trend of a negative correlation between FSH values and time to castrate resistance. A FSH value of less than or equal to the lowest tertile (4.8 mIU/mL) was associated with a longer time to CRPC (hazard ratio 0.46; p = 0.006). In the Cox regression analysis, elevated FSH was associated with a shorter duration time to CRPC (p = 0.03). CONCLUSIONS This retrospective, single-centre study would suggest there may be an association between serum FSH levels and time to CRPC for men treated palliatively with ADT for advancing prostate cancer. Further clinical investigation in a larger cohort of men is required to determine any clinical utility of FSH as a biomarker of progression or target for therapy.
Collapse
Affiliation(s)
- Dylan Hoare
- Department of Urology, Centre for Applied Urological Research, Queen's University, Kingston, ON
| | - Thomas A A Skinner
- Department of Urology, Centre for Applied Urological Research, Queen's University, Kingston, ON
| | - Angela Black
- Department of Urology, Centre for Applied Urological Research, Queen's University, Kingston, ON
| | - D Robert Siemens
- Departments of Urology and Oncology, and Division of Cancer Care and Epidemiology, Queen's University Cancer Research Institute, Queen's University, Kingston, ON
| |
Collapse
|
16
|
Abstract
PURPOSE Follicle-stimulating hormone receptor (FSHR) is overexpressed in primary and metastatic tumor. Molecular imaging of FSHR is beneficial for prognosis and therapy of cancer. FSHβ(33-53) (YTRDLVYKDPARPKIQKTCTF), denoted as FSH1, is a FSHR antagonist. In the present study, maleimide-NOTA conjugate of FSH1 (NOTA-MAL-FSH1) was designed and labeled with [(18)F] aluminum fluoride. The resulting tracer, (18)F-Al-NOTA-MAL-FSH1, was preliminarily evaluated in PET imaging of FSHR-positive tumor. PROCEDURES NOTA-MAL-FSH1 was synthesized and radiolabeled with Al(18)F complex. The tumor-targeting potential and pharmacokinetic profile of the (18)F-labeled compound were evaluated in vitro and in vivo using a PC3 human prostate tumor model. RESULTS (18)F-Al-NOTA-MAL-FSH1 can be efficiently produced within 30 min with a non-decay-corrected yield of 48.6 ± 2.1 % and a radiochemical purity of more than 95 %. The specific activity was at least 30 GBq/μmol. The radiotracer was stable in phosphate-buffered saline and human serum for at least 2 h. The IC50 values of displacement (18)F-Al-NOTA-MAL-FSH1 with FSH1 were 252 ± 1.12 nM. The PC3 human prostate tumor xenografts were clearly visible with high contrast after injection of (18)F-Al-NOTA-MAL-FSH1 via microPET. At 30, 60 and 120 min postinjection, the tumor uptakes were 2.98 ± 0.29 % injected dose (ID)/g, 2.53 ± 0.20 %ID/g and 1.36 ± 0.12 %ID/g, respectively. Dynamic PET scanning showed that tumor uptake reached a plateau by about 6 min. Heart peaked earlier and then cleared quickly. Biodistribution studies confirmed that the normal organs except kidney uptakes were all below 1 %ID/g at 1 h p.i. The tumor-to-blood and tumor-to-muscle ratio at 10 min, 0.5, 1, and 2 h after injection were 1.64 ± 0.36, 2.97 ± 0.40, 9.31 ± 1.06, and 13.59 ± 2.33 and 7.05 ± 1.10, 10.10 ± 1.48, 16.17 ± 3.29, and 30.88 ± 4.67, respectively. The tracer was excreted mainly through the renal system, as evidenced by high levels of radioactivity in the kidneys. FSHR-binding specificity was also demonstrated by reduced tumor uptake of (18)F-Al-NOTA-MAL-FSH1 after coinjection with an excess of unlabeled FSH1 peptide. CONCLUSION NOTA-MAL-FSH1 could be labeled rapidly and efficiently with (18)F using one step method. Favorable preclinical data suggest that (18)F-Al-NOTA-MAL-FSH1 may be a suitable radiotracer for the non-invasive visualization of FSHR positive tumor in vivo.
Collapse
|
17
|
Hong H, Yan Y, Shi S, Graves SA, Krasteva LK, Nickles RJ, Yang M, Cai W. PET of follicle-stimulating hormone receptor: broad applicability to cancer imaging. Mol Pharm 2015; 12:403-10. [PMID: 25581441 DOI: 10.1021/mp500766x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective overexpression of follicle-stimulating hormone receptor (FSHR) inside the vascular endothelium of tumors has been confirmed to play critical roles in angiogenesis, tumor invasion, and metastases. The expression level of FSHR correlates strongly with the response of tumors to antiangiogenic therapies. In this study, an immunoPET tracer was developed for imaging of FSHR in different cancer types. A monoclonal antibody (FSHR-mAb) against FSHR was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and used for subsequent (64)Cu-labeling. NOTA-FSHR-mAb preserved FSHR specificity/affinity, confirmed by flow cytometry measurements. (64)Cu-labeling was successfully conducted with decent yields (∼25%) and high specific activity (0.93 GBq/mg). The uptake of (64)Cu-NOTA-FSHR-mAb was 3.6 ± 0.8, 13.2 ± 0.7, and 14.6 ± 0.4 %ID/g in FSHR-positive CAOV-3 tumors at 4, 24, and 48 h postinjection, respectively (n = 3), significantly higher (p < 0.05) than that in FSHR-negative SKOV-3 tumors (2.3 ± 1.2, 8.0 ± 0.9, and 9.1 ± 1.3 %ID/g at 4, 24, and 48 h postinjection, respectively (n = 3)) except at 4 h p.i. FSHR-relevant uptake of (64)Cu-NOTA-FSHR-mAb was also readily observed in other tumor types (e.g., triple-negative breast tumor MDA-MB-231 or prostate tumor PC-3). Histology studies showed universal FSHR expression in microvasculature of these four tumor types and also prominent expression in tumor cells of CAOV-3, PC-3, and MDA-MB-231. Correlations between tumor FSHR level and uptake of (64)Cu-NOTA-FSHR-mAb were witnessed in this study. FSHR-specific uptake of (64)Cu-NOTA-FSHR mAb in different tumors enables its applicability for future cancer theranostic applications and simultaneously establishes FSHR as a promising clinical target for cancer.
Collapse
Affiliation(s)
- Hao Hong
- Department of Radiology, ‡Department of Medical Physics, §Materials Science Program, and ∥Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cahoreau C, Klett D, Combarnous Y. Structure-function relationships of glycoprotein hormones and their subunits' ancestors. Front Endocrinol (Lausanne) 2015; 6:26. [PMID: 25767463 PMCID: PMC4341566 DOI: 10.3389/fendo.2015.00026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/13/2015] [Indexed: 12/22/2022] Open
Abstract
Glycoprotein hormones (GPHs) are the most complex molecules with hormonal activity. They exist only in vertebrates but the genes encoding their subunits' ancestors are found in most vertebrate and invertebrate species although their roles are still unknown. In the present report, we review the available structural and functional data concerning GPHs and their subunits' ancestors.
Collapse
Affiliation(s)
- Claire Cahoreau
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
| | - Danièle Klett
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
| | - Yves Combarnous
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
- *Correspondence: Yves Combarnous, Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly 37380, France e-mail:
| |
Collapse
|
19
|
Abstract
Degarelix is a gonadotrophin-releasing hormone (GnRH) antagonist for the first-line treatment of androgen-dependent advanced prostate cancer. It has a direct mechanism of action that blocks the action of GnRH on the pituitary with no initial surge in gonadotrophin or testosterone levels. Degarelix is the most extensively studied and widely available GnRH antagonist worldwide. Clinical studies have demonstrated similar efficacy to the GnRH agonist leuprolide in achieving testosterone suppression in patients with prostate cancer. However, degarelix produces a faster suppression of testosterone and prostate-specific antigen (PSA), with no testosterone surge or microsurges, thus preventing the risk of clinical flare in advanced disease. Clinical trials have demonstrated that degarelix can offer improved disease control when compared with a GnRH agonist in terms of superior PSA progression-free survival (suggesting that degarelix likely delays progression to castration-resistant disease), and a more significant impact on bone serum alkaline phosphatase and follicle-stimulating hormone. Degarelix is generally well tolerated, with no reports of systemic allergic reactions in any clinical studies. In conclusion, degarelix offers clinicians a rational first-line hormonal monotherapy option for the management of advanced prostate cancer.
Collapse
Affiliation(s)
- Neal D Shore
- Atlantic Urology Clinics, 823 82nd Parkway, Myrtle Beach, SC 29572, USA
| |
Collapse
|