1
|
Zhang K, Zhu YW, Tang AQ, Zhou ZT, Yang YL, Liu ZH, Li Y, Liang XY, Feng ZF, Wang J, Jiang T, Jiang QY, Wu DD. Role of 3-mercaptopyruvate sulfurtransferase in cancer: Molecular mechanisms and therapeutic perspectives. Transl Oncol 2025; 52:102272. [PMID: 39813769 PMCID: PMC11783123 DOI: 10.1016/j.tranon.2025.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/10/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
The occurrence and development of tumor is mediated by a wide range of complex mechanisms. Subsequent to nitric oxide and carbon monoxide, hydrogen sulfide (H2S) holds the distinction of being the third identified gasotransmitter. Alternation of H2S level has been widely demonstrated to induce an array of disturbances in important cancer cell signaling pathways. As a result, the effects of H2S-catalyzing enzymes in cancers also attract widspread attention. 3-mercaptopyruvate sulfurtransferase (3-MST) is privileged to be one of them. In fact, 3-MST is overexpressed in many tumors including human colon cancer, lung adenocarcinoma, and bladder urothelial carcinoma. But it is also lowly expressed in hepatocellular carcinoma. In this review, we focus on the generation of endogenous H2S and polysulfides, facilitated by 3-MST. Additionally, we delve deeply into the potential role of 3-MST in tumorigenesis and development. The impact of 3-MST inhibition on the development of tumors and its potential for tumor therapy are also highlighted.
Collapse
Affiliation(s)
- Ka Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ze-Tao Zhou
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hui Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yan Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China
| | - Jun Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Tong Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Relouw S, Dugbartey GJ, McLeod P, Knier NN, Santiesteban FM, Foster PJ, Cadieux-Pitre HA, Hague NM, Caine J, Belletti K, Major S, O'Neil C, Gabril MY, Moussa M, Huynh MJ, Haeryfar SMM, Sener A. Pharmacological Inhibition of Endogenous Hydrogen Sulfide Production Slows Bladder Cancer Progression in an Intravesical Murine Model. Pharmaceuticals (Basel) 2024; 17:1212. [PMID: 39338373 PMCID: PMC11435360 DOI: 10.3390/ph17091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Present bladder cancer therapies have relatively limited therapeutic impact and account for one of the highest lifetime treatment costs per patient. Therefore, there is an urgent need to explore novel and optimized treatment strategies. The present study investigated the effects of inhibiting endogenous hydrogen sulfide (H2S) production on bladder cell viability and in vivo tumor progression. We targeted the H2S-producing enzyme, cystathionine γ-lyase, in 5637 cells using propargylglycine (H2S inhibitor) and performed cytofluorimetric analysis to evaluate cell viability. We then tested the efficacy of propargylglycine alone or in combination with gemcitabine (conventional chemotherapy) in an intravesical murine model of bladder cancer. Magnetic resonance imaging and immunohistochemical staining for cell proliferation, apoptosis, immune-cell infiltration, and neovascularization were performed to evaluate tumor response. Compared to control conditions or cohorts, propargylglycine administration significantly attenuated bladder cancer cell viability in vitro (p < 0.0001) and tumor growth (p < 0.002) and invasion in vivo. Furthermore, propargylglycine enhanced the anti-cancer effects of gemcitabine, resulting in tumor regression (p < 0.0001). Moreover, propargylglycine induced cleaved PARP-1-activated apoptosis (p < 0.05), as well as intratumoral CD8+ T cell (p < 0.05) and F4/80+ macrophage (p < 0.002) infiltration. Propargylglycine also reduced intratumoral neovascularization (p < 0.0001) and cell proliferation (p < 0.0002). Importantly, the pro-apoptotic and anti-neovascularization effects of gemcitabine were enhanced by propargylglycine co-administration. Our findings suggest that inhibition of endogenous H2S production can be protective against bladder cancer by enhancing the chemotherapeutic action of gemcitabine and may be a novel pharmacological target and approach for improved bladder cancer diagnosis and treatments in the future.
Collapse
Affiliation(s)
- Sydney Relouw
- Department of Microbiology & Immunology, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, Western University, London Health Sciences Center, London, ON N6A 5A5, Canada
| | - George J Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, Western University, London Health Sciences Center, London, ON N6A 5A5, Canada
- Department of Surgery, Western University, London, ON N6A 5C1, Canada
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG43, Ghana
- Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra P.O. Box CT9828, Ghana
| | - Patrick McLeod
- Matthew Mailing Center for Translational Transplant Studies, Western University, London Health Sciences Center, London, ON N6A 5A5, Canada
| | - Natasha N Knier
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
| | | | - Paula J Foster
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
| | | | - Nicole M Hague
- Department of Animal Care & Veterinary Services, Western University, London, ON N6A 5C1, Canada
| | - Jenna Caine
- Department of Animal Care & Veterinary Services, Western University, London, ON N6A 5C1, Canada
| | - Kaitlin Belletti
- Department of Animal Care & Veterinary Services, Western University, London, ON N6A 5C1, Canada
| | - Sally Major
- Matthew Mailing Center for Translational Transplant Studies, Western University, London Health Sciences Center, London, ON N6A 5A5, Canada
- Department of Animal Care & Veterinary Services, Western University, London, ON N6A 5C1, Canada
| | - Caroline O'Neil
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Manal Y Gabril
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Madeleine Moussa
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Melissa J Huynh
- Department of Surgery, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology & Immunology, Western University, London, ON N6A 5C1, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Department of Medicine, Division of Clinical Immunology & Allergy, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, Western University, London, ON N6A 5C1, Canada
| | - Alp Sener
- Department of Microbiology & Immunology, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, Western University, London Health Sciences Center, London, ON N6A 5A5, Canada
- Department of Surgery, Western University, London, ON N6A 5C1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
3
|
Zhang CJ, Wang Y, Jin YQ, Zhu YW, Zhu SG, Wang QM, Jing MR, Zhang YX, Cai CB, Feng ZF, Ji XY, Wu DD. Recent advances in the role of hydrogen sulfide in age-related diseases. Exp Cell Res 2024; 441:114172. [PMID: 39053869 DOI: 10.1016/j.yexcr.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.
Collapse
Affiliation(s)
- Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
4
|
Liu F, Wei L, Zheng B, Su X, Ju J, Liu G, Liu Q. Value of exhaled hydrogen sulfide in early diagnosis of esophagogastric junction adenocarcinoma. Oncol Lett 2024; 28:321. [PMID: 38807679 PMCID: PMC11130606 DOI: 10.3892/ol.2024.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024] Open
Abstract
Esophagogastric junction adenocarcinoma (EJA) has increased in recent years, and it exhibits a poor prognosis and a short survival period for patients. Hydrogen sulfide (H2S) plays an important role in the pathogenesis of cancer and has been studied as a diagnostic factor in some tumor diseases. However, few studies have explored the diagnostic value of H2S for EJA. In the present study, a total of 56 patients with early-stage EJA were enrolled while 57 healthy individuals were selected as the healthy control group. Clinical features were recorded, and exhaled H2S and blood samples were collected from both groups. Exhaled H2S and serum interleukin-8 (IL-8) expression levels were detected in both groups. The correlation between exhaled H2S and serum IL-8 levels was analyzed using Pearson's correlation method. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of exhaled H2S combined with IL-8 detection in EJA. The results showed that patients with EJA exhaled more H2S than healthy individuals. In addition, exhaled H2S was positively correlated with increased IL-8 expression. The ROC curve revealed that the exhaled H2S test had an acceptable diagnostic effect and could be used to diagnose EJA. The increase in H2S exhaled by patients with EJA indicated that H2S may be related to the occurrence and development of EJA; however, the in vivo mechanism needs to be further explored. Collectively, it was determined in the present study that exhaled H2S was significantly higher in patients with early-stage EJA than in healthy controls and combined diagnosis with patient serum IL-8 could improve diagnostic accuracy, which has potential diagnostic value for early diagnosis and screening of EJA.
Collapse
Affiliation(s)
- Fang Liu
- Department of Hospital Quality and Control, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Lai Wei
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Bosheng Zheng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Xin Su
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Jianmei Ju
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Guangjie Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Qingyi Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| |
Collapse
|
5
|
Dawoud A, Youness RA, Nafea H, Manie T, Bourquin C, Szabo C, Abdel-Kader RM, Gad MZ. Pan-inhibition of the three H 2S synthesizing enzymes restrains tumor progression and immunosuppression in breast cancer. Cancer Cell Int 2024; 24:136. [PMID: 38627665 PMCID: PMC11020979 DOI: 10.1186/s12935-024-03317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a significant endogenous mediator that has been implicated in the progression of various forms of cancer including breast cancer (BC). Cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) are the three principal mammalian enzymes responsible for H2S production. Overexpression of CBS, CSE and 3MST was found to be associated with poor prognosis of BC patients. Moreover, H2S was linked to an immune-suppressive tumor microenvironment in BC. Recently it was observed that BC cells, in response to single or dual inhibition of H2S synthesizing enzymes, develop an escape mechanism by overexpressing alternative sources of H2S generation. Thus, the aim of this work is to escape the H2S compensatory mechanism by pan repressing the three enzymes using microRNAs (miRNAs) and to investigate their impact on the oncogenic and immunogenic profile of BC cells. METHODS BC female patients (n = 25) were recruited. In-silico analysis was used to identify miRNAs targeting CBS, CSE, and 3MST. MDA-MB-231 cells were cultured and transfected using oligonucleotides. Total RNA was extracted using Biazol, reverse transcribed and quantified using qRT-PCR. H2S levels were measured using AzMc assay. BC hallmarks were assessed using trans-well migration, wound healing, MTT, and colony forming assays. RESULTS miR-193a and miR-548c were validated by eight different bioinformatics software to simultaneously target CBS, CSE and 3MST. MiR-193a and miR-548c were significantly downregulated in BC tissues compared to their non-cancerous counterparts. Ectopic expression of miR-193a and miR-548c in MDA-MB-231 TNBC cells resulted in a marked repression of CBS, CSE, and 3MST transcript and protein levels, a significant decrease in H2S levels, reduction in cellular viability, inhibition of migration and colony forming ability, repression of immune-suppressor proteins GAL3 GAL9, and CD155 and upregulation of the immunostimulatory MICA and MICB proteins. CONCLUSION This study sheds the light onto miR-193a and miR-548c as potential pan-repressors of the H2S synthesizing enzymes. and identifies them as novel tumor suppressor and immunomodulatory miRNAs in TNBC.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Tamer Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Reham M Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed Z Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
| |
Collapse
|
6
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
7
|
Hipólito A, Mendes C, Martins F, Lemos I, Francisco I, Cunha F, Almodôvar T, Albuquerque C, Gonçalves LG, Bonifácio VDB, Vicente JB, Serpa J. H 2S-Synthesizing Enzymes Are Putative Determinants in Lung Cancer Management toward Personalized Medicine. Antioxidants (Basel) 2023; 13:51. [PMID: 38247476 PMCID: PMC10812562 DOI: 10.3390/antiox13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Lung cancer is a lethal disease with no truly efficient therapeutic management despite the progresses, and metabolic profiling can be a way of stratifying patients who may benefit from new therapies. The present study is dedicated to profiling cysteine metabolic pathways in NSCLC cell lines and tumor samples. This was carried out by analyzing hydrogen sulfide (H2S) and ATP levels, examining mRNA and protein expression patterns of cysteine catabolic enzymes and transporters, and conducting metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. Selenium-chrysin (SeChry) was tested as a therapeutic alternative with the aim of having an effect on cysteine catabolism and showed promising results. NSCLC cell lines presented different cysteine metabolic patterns, with A549 and H292 presenting a higher reliance on cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) to maintain H2S levels, while the PC-9 cell line presented an adaptive behavior based on the use of mercaptopyruvate sulfurtransferase (MST) and cysteine dioxygenase (CDO1), both contributing to the role of cysteine as a pyruvate source. The analyses of human lung tumor samples corroborated this variability in profiles, meaning that the expression of certain genes may be informative in defining prognosis and new targets. Heterogeneity points out individual profiles, and the identification of new targets among metabolic players is a step forward in cancer management toward personalized medicine.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Cindy Mendes
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Filipa Martins
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Isabel Lemos
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Inês Francisco
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Fernando Cunha
- Pathology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Teresa Almodôvar
- Pneumology Department, The Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal;
| | - Cristina Albuquerque
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| | - Luís G. Gonçalves
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Vasco D. B. Bonifácio
- IBB-Institute for Bioengineering and Biosciences, Associate Laboratory i4HB-Institute for Health and Bioeconomy, IST-Lisbon University, 1049-001 Lisbon, Portugal;
- Bioengineering Department, IST-Lisbon University, 1049-001 Lisbon, Portugal
| | - João B. Vicente
- Institute of Chemical and Biological Technology António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (L.G.G.); (J.B.V.)
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, 1150-069 Lisbon, Portugal; (A.H.); (C.M.); (F.M.); (I.L.)
- Molecular Pathobiology Research Unit, fromThe Portuguese Institute of Oncology (IPOLFG), 1099-023 Lisbon, Portugal; (I.F.); (C.A.)
| |
Collapse
|
8
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Rao SP, Dobariya P, Bellamkonda H, More SS. Role of 3-Mercaptopyruvate Sulfurtransferase (3-MST) in Physiology and Disease. Antioxidants (Basel) 2023; 12:antiox12030603. [PMID: 36978851 PMCID: PMC10045210 DOI: 10.3390/antiox12030603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) plays the important role of producing hydrogen sulfide. Conserved from bacteria to Mammalia, this enzyme is localized in mitochondria as well as the cytoplasm. 3-MST mediates the reaction of 3-mercaptopyruvate with dihydrolipoic acid and thioredoxin to produce hydrogen sulfide. Hydrogen sulfide is also produced through cystathionine beta-synthase and cystathionine gamma-lyase, along with 3-MST, and is known to alleviate a variety of illnesses such as cancer, heart disease, and neurological conditions. The importance of cystathionine beta-synthase and cystathionine gamma-lyase in hydrogen sulfide biogenesis is well-described, but documentation of the 3-MST pathway is limited. This account compiles the current state of knowledge about the role of 3-MST in physiology and pathology. Attempts at targeting the 3-MST pathway for therapeutic benefit are discussed, highlighting the potential of 3-MST as a therapeutic target.
Collapse
|
10
|
Panza E, Bello I, Smimmo M, Brancaleone V, Mitidieri E, Bucci M, Cirino G, Sorrentino R, D Emmanuele di Villa Bianca R. Endogenous and exogenous hydrogen sulfide modulates urothelial bladder carcinoma development in human cell lines. Biomed Pharmacother 2022; 151:113137. [PMID: 35605291 DOI: 10.1016/j.biopha.2022.113137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/25/2022] Open
Abstract
The role of H2S in urothelial carcinoma (UC) is still unclear. Here we have evaluated the expression of H2S producing enzymes as well as the effect of endogenous and exogenous H2S on human bladder UC cells. In human UC cells the expression of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST); is significantly lower as compared to healthy cells. A modulatory role for the H2S pathway is supported by the finding that, the overexpression of CSE or CBS, but not 3-MST, inhibits cell proliferation and promotes apoptosis. A similar effect is obtained by using exogenous H2S. Diallyl trisulfide (DATS), which is a fully characterized H2S donor, inhibits the proliferation of UC cells in a time and concentration-dependent manner as well as promotes apoptosis. Moreover, DATS also induces autophagy, as determined by transcriptomic and western blot analysis. Finally, DATS inhibits mRNA expression levels of canonical markers of epithelial-mesenchymal transition by limiting migration and clonogenic ability of human UC cells in vitro. In conclusion, in urothelial carcinoma, there is an impairment of H2S pathway that involves CSE and CBS- derived hydrogen sulfide. Thus, targeting H2S signaling pathway in urothelial carcinoma could represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - Ivana Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples, Federico II, Italy
| | | |
Collapse
|
11
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
13
|
Molecular Functions of Hydrogen Sulfide in Cancer. PATHOPHYSIOLOGY 2021; 28:437-456. [PMID: 35366284 PMCID: PMC8830448 DOI: 10.3390/pathophysiology28030028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that exerts a multitude of functions in both physiologic and pathophysiologic processes. H2S-synthesizing enzymes are increased in a variety of human malignancies, including colon, prostate, breast, renal, urothelial, ovarian, oral squamous cell, and thyroid cancers. In cancer, H2S promotes tumor growth, cellular and mitochondrial bioenergetics, migration, invasion, angiogenesis, tumor blood flow, metastasis, epithelia–mesenchymal transition, DNA repair, protein sulfhydration, and chemotherapy resistance Additionally, in some malignancies, increased H2S-synthesizing enzyme expression correlates with a worse prognosis and a higher tumor stage. Here we review the role of H2S in cancer, with an emphasis on the molecular mechanisms by which H2S promotes cancer development, progression, dedifferentiation, and metastasis.
Collapse
|
14
|
Nunes SC, Ramos C, Santos I, Mendes C, Silva F, Vicente JB, Pereira SA, Félix A, Gonçalves LG, Serpa J. Cysteine Boosts Fitness Under Hypoxia-Mimicked Conditions in Ovarian Cancer by Metabolic Reprogramming. Front Cell Dev Biol 2021; 9:722412. [PMID: 34458274 PMCID: PMC8386479 DOI: 10.3389/fcell.2021.722412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Among gynecologic malignancies, ovarian cancer is the third most prevalent and the most common cause of death, especially due to diagnosis at an advanced stage together with resistance to therapy. As a solid tumor grows, cancer cells in the microenvironment are exposed to regions of hypoxia, a selective pressure prompting tumor progression and chemoresistance. We have previously shown that cysteine contributes to the adaptation to this hypoxic microenvironment, but the mechanisms by which cysteine protects ovarian cancer cells from hypoxia-induced death are still to be unveiled. Herein, we hypothesized that cysteine contribution relies on cellular metabolism reprogramming and energy production, being cysteine itself a metabolic source. Our results strongly supported a role of xCT symporter in energy production that requires cysteine metabolism instead of hydrogen sulfide (H2S) per se. Cysteine degradation depends on the action of the H2S-synthesizing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and/or 3-mercaptopyruvate sulfurtransferase (MpST; together with cysteine aminotransferase, CAT). In normoxia, CBS and CSE inhibition had a mild impact on cysteine-sustained ATP production, pointing out the relevance of CAT + MpST pathway. However, in hypoxia, the concomitant inhibition of CBS and CSE had a stronger impact on ATP synthesis, thus also supporting a role of their hydrogen sulfide and/or cysteine persulfide-synthesizing activity in this stressful condition. However, the relative contributions of each of these enzymes (CBS/CSE/MpST) on cysteine-derived ATP synthesis under hypoxia remains unclear, due to the lack of specific inhibitors. Strikingly, NMR analysis strongly supported a role of cysteine in the whole cellular metabolism rewiring under hypoxia. Additionally, the use of cysteine to supply biosynthesis and bioenergetics was reinforced, bringing cysteine to the plateau of a main carbon sources in cancer. Collectively, this work supports that sulfur and carbon metabolism reprogramming underlies the adaptation to hypoxic microenvironment promoted by cysteine in ovarian cancer.
Collapse
Affiliation(s)
- Sofia C. Nunes
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Cristiano Ramos
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Inês Santos
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Cindy Mendes
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Fernanda Silva
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia A. Pereira
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
15
|
Wang RH, Chu YH, Lin KT. The Hidden Role of Hydrogen Sulfide Metabolism in Cancer. Int J Mol Sci 2021; 22:ijms22126562. [PMID: 34207284 PMCID: PMC8235762 DOI: 10.3390/ijms22126562] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen Sulfide (H2S), an endogenously produced gasotransmitter, is involved in various important physiological and disease conditions, including vasodilation, stimulation of cellular bioenergetics, anti-inflammation, and pro-angiogenesis. In cancer, aberrant up-regulation of H2S-producing enzymes is frequently observed in different cancer types. The recognition that tumor-derived H2S plays various roles during cancer development reveals opportunities to target H2S-mediated signaling pathways in cancer therapy. In this review, we will focus on the mechanism of H2S-mediated protein persulfidation and the detailed information about the dysregulation of H2S-producing enzymes and metabolism in different cancer types. We will also provide an update on mechanisms of H2S-mediated cancer progression and summarize current options to modulate H2S production for cancer therapy.
Collapse
Affiliation(s)
- Rong-Hsuan Wang
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (R.-H.W.); (Y.-H.C.)
| | - Yu-Hsin Chu
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (R.-H.W.); (Y.-H.C.)
- Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (R.-H.W.); (Y.-H.C.)
- Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Sogutdelen E, Pacoli K, Juriasingani S, Akbari M, Gabril M, Sener A. Patterns of Expression of H 2S-Producing Enzyme in Human Renal Cell Carcinoma Specimens: Potential Avenue for Future Therapeutics. In Vivo 2021; 34:2775-2781. [PMID: 32871814 DOI: 10.21873/invivo.12102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the most common cancer of the kidney. The most common histotype is clear-cell (cc) RCC. Hydrogen sulfide (H2S) is an angiogenic and anti-apoptotic gasotransmitter that is elevated under pseudohypoxic conditions. H2S is endogenously produced by three enzymes: Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MPST). Seeing as increased expression of these enzymes has been observed in other human cancer types, this study aimed to quantify H2S-producing enzyme expression in human RCC samples and evaluate whether it correlated with clinical outcomes. PATIENTS AND METHODS Eighty-eight human kidney tissue specimens, with healthy and cancerous tissue components, were immunohistochemically stained for CSE, CBS, and MPST. The mean pixel intensity of positively stained areas was quantified. A retrospective analysis was conducted to obtain patient demographics, rates of metastasis/recurrence, and prognostic characteristics. Statistical correlations between enzyme expressions and subsequent patient outcomes were evaluated. RESULTS There was significantly greater expression of CSE, CBS, and MPST in cc-RCC compared to paired healthy tissue (p<0.0001). The difference in expression of CSE in cancerous versus normal tissue was significantly greater than that for CBS and MPST (p<0.0001 and p<0.01, respectively). Enzyme expression patterns in cancerous versus normal tissue did not correlate with nuclear grade, stage, histological type or cancer recurrence/metastasis. CONCLUSION To our knowledge, this is the first report of the differential increase in expression of CSE, CBS, and MPST in human RCC. Although these patterns do not appear to correlate with cancer recurrence, metastasis, size or nuclear grade, their differential increase suggests a potential therapeutic target.
Collapse
Affiliation(s)
- Emrullah Sogutdelen
- Department of Urology, Bolu Abant Izzet Baysal University, Bolu, Turkey.,Matthew Mailing Centre for Translational Transplant Studies, University Hospital, London Health Sciences Centre, London, ON, Canada
| | - Katharine Pacoli
- Matthew Mailing Centre for Translational Transplant Studies, University Hospital, London Health Sciences Centre, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Smriti Juriasingani
- Matthew Mailing Centre for Translational Transplant Studies, University Hospital, London Health Sciences Centre, London, ON, Canada.,Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Masoud Akbari
- Matthew Mailing Centre for Translational Transplant Studies, University Hospital, London Health Sciences Centre, London, ON, Canada
| | - Manal Gabril
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Alp Sener
- Matthew Mailing Centre for Translational Transplant Studies, University Hospital, London Health Sciences Centre, London, ON, Canada .,Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Surgery, Schulich School of Medicine & Dentistry, St. Joseph's Health Care, London, ON, Canada
| |
Collapse
|
17
|
Youness RA, Gad AZ, Sanber K, Ahn YJ, Lee GJ, Khallaf E, Hafez HM, Motaal AA, Ahmed N, Gad MZ. Targeting hydrogen sulphide signaling in breast cancer. J Adv Res 2021; 27:177-190. [PMID: 33318876 PMCID: PMC7728592 DOI: 10.1016/j.jare.2020.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Hydrogen sulphide (H2S) has been established as a key member of the gasotransmitters family that recently showed a pivotal role in various pathological conditions including cancer. OBJECTIVES This study investigated the role of H2S in breast cancer (BC) pathogenesis, on BC immune recognition capacity and the consequence of targeting H2S using non-coding RNAs. METHODS Eighty BC patients have been recruited for the study. BC cell lines were cultured and transfected using validated oligonucleotide delivery system. Gene and protein expression analysis was performed using qRT-PCR, western blot and flow-cytometry. In-vitro analysis for BC hallmarks was performed using MTT, BrdU, Modified Boyden chamber, migration and colony forming assays. H2S and nitric oxide (NO) levels were measured spectrophotometrically. Primary natural killer cells (NK cells) and T cell isolation and chimeric antigen receptor transduction (CAR T cells) were performed using appropriate kits. NK and T cells cytotoxicity was measured. Finally, computational target prediction analysis and binding confirmation analyses were performed using different software and dual luciferase assay kit, respectively. RESULTS The H2S synthesizing enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), exhibited elevated levels in the clinical samples that correlated with tumor proliferation index. Knock-down of CBS and CSE in the HER2+ BC and triple negative BC (TNBC) cells resulted in significant attenuation of BC malignancy. In addition to increased susceptibility of HER2+ BC and TNBC to the cytotoxic activity of HER2 targeting CAR T cells and NK cells, respectively. Transcriptomic and phosphoprotein analysis revealed that H2S signaling is mediated through Akt in MCF7, STAT3 in MDA-MB-231 and miR-155/ NOS2/NO signaling in both cell lines. Lastly, miR-4317 was found to function as an upstream regulator of CBS and CSE synergistically abrogates the malignancy of BC cells. CONCLUSION These findings demonstrate the potential role of H2S signaling in BC pathogenesis and the potential of its targeting for disease mitigation.
Collapse
Key Words
- 41BBL, 41BB Ligand
- 51Cr-release, Chromium release assay
- BC, Breast Cancer
- Breast cancer
- CAR T cells
- CAR, Chimeric antigen receptor
- CBS, Cystathionine β-synthase
- CD80, Cluster of differentiation 80
- CD86, Cluster of differentiation 86
- CSE, Cystathionine γ-lyase
- CTL, Cytotoxic T lymphocyte
- H2S, Hydrogen sulphide
- HCC, Hepatocellular carcinoma
- HLA-DR, Human Leukocytic antigen DR
- Hydrogen sulphide
- IFN-γ, Interferon gamma
- KD, Knock down
- LDH, Lactate dehydrogenase Assay
- MICA/B, MHC class I polypeptide-related sequence A/B
- NK, Natural killer
- NKG2D, Natural Killer Group 2D
- NO, Nitric oxide
- NOS2, Inducible nitric oxide synthase-2
- NOS3, Endothelial nitric oxide synthase-3
- Natural killer cells
- Nitric oxide
- PD-L1, Programmed death-ligand 1
- PI3K/AKT signaling pathway
- Scr-miRNAs, Scrambled microRNAs
- Scr-siRNAs, Scrambled siRNAs
- TNBC, Triple negative breast cancer
- TNF-α, Tumor necrosis factor-α
- ULBP2/5/6, UL16 binding protein 2/5/6
- miR-155/NOS2/NO signaling pathway
- miR-4317
- miRNA, MicroRNA
- ncRNAs, Non-coding RNAs
- siRNAs, Small interfering RNAs
Collapse
Affiliation(s)
- Rana Ahmed Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Ahmed Zakaria Gad
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Khaled Sanber
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Jin Ahn
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gi-Ja Lee
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Emad Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, 12613 Cairo, Egypt
| | - Hafez Mohamed Hafez
- Department of General Surgery, Faculty of Medicine, Cairo University, 12613 Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Egypt
| | - Nabil Ahmed
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohamed Zakaria Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
18
|
Wang L, Yang Z, Wu Z, He J, Xu S, Li D, Zou Q, Yuan Y. Increased expression of cystathionine beta-synthase and chemokine ligand 21 is closely associated with poor prognosis in extrahepatic cholangiocarcinoma. Medicine (Baltimore) 2020; 99:e22255. [PMID: 32957374 PMCID: PMC7505348 DOI: 10.1097/md.0000000000022255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The expression of Cystathionine beta-synthase (CBS) and Chemokine ligand 21 (CCL21) is associated with the tumorigenesis and progression of a variety of tumors, but whether alterations in their expression levels correlates with the carcinogenesis and progression of EHCC is still unknown. This study investigated the clinicopathological significance of CBS and CCL21 expression in EHCC.We investigated the correlations between the expression of CBS and CCL21 and clinicopathological characteristics in EHCC using EnVision immunohistochemistry.The expression of CBS and CCL21 was significantly higher in EHCC tumors than in nontumor tissues (P < .05 and P < .01). EHCC patients with CBS and CCL21 expression combined with lymph node metastasis, tumor cell invasion, and TNM III/IV stage had more severe conditions than those with no lymph node metastasis, distant invasion and TNM I/II stage (P < .01). Kaplan-Meier survival analysis showed that the overall survival rates for EHCC patients with negative CBS or CCL21 reaction were significantly higher than those for patients with positive CBS or CCL21 reaction((P < .01). CBS or CCL21 expression was revealed as an independent poor prognostic factor for EHCC patients by Cox multivariate analysis.The present study indicates that CBS and CCL21 expression is closely associated with the pathogenesis of clinical, pathological and biological behaviors and poor prognosis in EHCC.
Collapse
Affiliation(s)
- Lingxiang Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery
| | - Zhulin Yang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery
| | - Zhengchun Wu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery
| | - Jun He
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery
| | - Shu Xu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, Department of General Surgery
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
19
|
Serpa J. Cysteine as a Carbon Source, a Hot Spot in Cancer Cells Survival. Front Oncol 2020; 10:947. [PMID: 32714858 PMCID: PMC7344258 DOI: 10.3389/fonc.2020.00947] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer cells undergo a metabolic rewiring in order to fulfill the energy and biomass requirements. Cysteine is a pivotal organic compound that contributes for cancer metabolic remodeling at three different levels: (1) in redox control, free or as a component of glutathione; (2) in ATP production, via hydrogen sulfide (H2S) production, serving as a donor to electron transport chain (ETC), and (3) as a carbon source for biomass and energy production. In the present review, emphasis will be given to the role of cysteine as a carbon source, focusing on the metabolic reliance on cysteine, benefiting the metabolic fitness and survival of cancer cells. Therefore, the interplay between cysteine metabolism and other metabolic pathways, as well as the regulation of cysteine metabolism related enzymes and transporters, will be also addressed. Finally, the usefulness of cysteine metabolic route as a target in cancer treatment will be highlighted.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
20
|
Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation, Migration, and Bioenergetics in Murine Colon Cancer Cells. Biomolecules 2020; 10:biom10030447. [PMID: 32183148 PMCID: PMC7175125 DOI: 10.3390/biom10030447] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) has emerged as one of the significant sources of biologically active sulfur species in various mammalian cells. The current study was designed to investigate the functional role of 3-MST’s catalytic activity in the murine colon cancer cell line CT26. The novel pharmacological 3-MST inhibitor HMPSNE was used to assess cancer cell proliferation, migration and bioenergetics in vitro. Methods included measurements of cell viability (MTT and LDH assays), cell proliferation and in vitro wound healing (IncuCyte) and cellular bioenergetics (Seahorse extracellular flux analysis). 3-MST expression was detected by Western blotting; H2S production was measured by the fluorescent dye AzMC. The results show that CT26 cells express 3-MST protein and mRNA, as well as several enzymes involved in H2S degradation (TST, ETHE1). Pharmacological inhibition of 3-MST concentration-dependently suppressed H2S production and, at 100 and 300 µM, attenuated CT26 proliferation and migration. HMPSNE exerted a bell-shaped effect on several cellular bioenergetic parameters related to oxidative phosphorylation, while other bioenergetic parameters were either unaffected or inhibited at the highest concentration of the inhibitor tested (300 µM). In contrast to 3-MST, the expression of CBS (another H2S producing enzyme which has been previously implicated in the regulation of various biological parameters in other tumor cells) was not detectable in CT26 cells and pharmacological inhibition of CBS exerted no significant effects on CT26 proliferation or bioenergetics. In summary, 3-MST catalytic activity significantly contributes to the regulation of cellular proliferation, migration and bioenergetics in CT26 murine colon cancer cells. The current studies identify 3-MST as the principal source of biologically active H2S in this cell line.
Collapse
|
21
|
Hydrogen Sulfide: Emerging Role in Bladder, Kidney, and Prostate Malignancies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2360945. [PMID: 31781328 PMCID: PMC6875223 DOI: 10.1155/2019/2360945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels. Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.
Collapse
|
22
|
Jou YC, Wang SC, Dai YC, Chen SY, Shen CH, Lee YR, Chen LC, Liu YW. Gene expression and DNA methylation regulation of arsenic in mouse bladder tissues and in human urothelial cells. Oncol Rep 2019; 42:1005-1016. [PMID: 31322264 PMCID: PMC6667867 DOI: 10.3892/or.2019.7235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
According to a report of the International Agency for Research on Cancer, arsenic and inorganic arsenic compounds are classified into Group 1 carcinogens with regard to human health. Epidemiological studies indicate that arsenic is one of the main risk factors for the development of bladder cancer. In the present study, arsenic-altered gene expression in mouse bladder tissues and in human urothelial cells was compared. In the mouse model, sodium arsenite-induced mouse urothelial hyperplasia and intracellular inclusions were present. Following DNA array analysis, four genes with differential expression were selected for quantitative real-time PCR assay. The genes were the following: Cystathionine β-synthase (CBS), adenosine A1 receptor (ADORA1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and Wnt inhibitory factor 1 (Wif1). The results indicated a significant increase in the levels of Cbs and Adora1. The analysis of the DNA CpG methylation levels of the mouse Cbs and Adora1 genes revealed no significant change. In contrast to these observations, the four genes were further analyzed in the human normal urothelial cell line SV-HUC1. The data indicated that WIF1 gene expression was decreased by sodium arsenite, whereas this was not noted for CBS, MALAT1 and ADORA1. Sodium arsenite decreased mRNA and protein expression levels of the WIF1 gene. In addition, the methylation levels of the WIF1 gene were increased. Sodium arsenite inhibited cell proliferation and promoted cell migration as demonstrated in cell functional assays. The gene status was compared in 8 human urothelial cell lines, and WIF1 mRNA expression levels were determined to be higher, whereas DNA CpG methylation levels were lower in SV-HUC1 cells compared with those noted in the other 7 bladder cancer cell lines. In summary, the data indicated that sodium arsenite decreased WIF1 gene expression and promoted cell migration. The increased methylation levels of WIF1 DNA CpG could be a potential biomarker for bladder cancer.
Collapse
Affiliation(s)
- Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Shou-Chieh Wang
- Division of Nephrology, Department of Internal Medicine, Kuang Tien General Hospital, Taichung 437, Taiwan, R.O.C
| | - Yuan-Chang Dai
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan, R.O.C
| | - Shih-Ying Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan, R.O.C
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Lei-Chin Chen
- Department of Nutrition, I‑Shou University, Jiaosu, Yanchao, Kaohsiung 82445, Taiwan, R.O.C
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan, R.O.C
| |
Collapse
|
23
|
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? Antioxid Redox Signal 2019; 31:1-38. [PMID: 29790379 PMCID: PMC6551999 DOI: 10.1089/ars.2017.7058] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
Abstract
Significance: Hydrogen sulfide (H2S) has been recognized as the third gaseous transmitter alongside nitric oxide and carbon monoxide. In the past decade, numerous studies have demonstrated an active role of H2S in the context of cancer biology. Recent Advances: The three H2S-producing enzymes, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3MST), have been found to be highly expressed in numerous types of cancer. Moreover, inhibition of CBS has shown anti-tumor activity, particularly in colon cancer, ovarian cancer, and breast cancer, whereas the consequence of CSE or 3MST inhibition remains largely unexplored in cancer cells. Intriguingly, H2S donation at high amounts or a long time duration has also been observed to induce cancer cell apoptosis in vitro and in vivo while sparing noncancerous fibroblast cells. Therefore, a bell-shaped model has been proposed to explain the role of H2S in cancer development. Specifically, endogenous H2S or a relatively low level of exogenous H2S may exhibit a pro-cancer effect, whereas exposure to H2S at a higher amount or for a long period may lead to cancer cell death. This indicates that inhibition of H2S biosynthesis and H2S supplementation serve as two distinct ways for cancer treatment. This paradoxical role of H2S has stimulated the enthusiasm for the development of novel CBS inhibitors, H2S donors, and H2S-releasing hybrids. Critical Issues: A clear relationship between H2S level and cancer progression remains lacking. The possibility that the altered levels of these byproducts have influenced the cell viability of cancer cells has not been excluded in previous studies when modulating H2S producing enzymes. Future Directions: The consequence of CSE or 3MST inhibition in cancer cells need to be examined in the future. Better portrayal of the crosstalk among these gaseous transmitters may not only lead to an in-depth understanding of cancer progression but also shed light on novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-zhong Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yong Yang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | | | - Philip K. Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic dysregulation is an appreciated hallmark of cancer and a target for therapeutic intervention. Cellular metabolism involves a series of oxidation/reduction (redox) reactions that yield the energy and biomass required for tumor growth. Cells require diverse molecular species with constituent sulfur atoms to facilitate these processes. For humans, this sulfur is derived from the dietary consumption of the proteinogenic amino acids cysteine and methionine, as only lower organisms (e.g., bacteria, fungi, and plants) can synthesize them de novo. In addition to providing the sulfur required to sustain redox chemistry, the metabolism of these sulfur-containing amino acids yield intermediate metabolites that constitute the cellular antioxidant system, mediate inter- and intracellular signaling, and facilitate the epigenetic regulation of gene expression, all of which contribute to tumorigenesis.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|
25
|
Hydrogen Sulfide Oxidation: Adaptive Changes in Mitochondria of SW480 Colorectal Cancer Cells upon Exposure to Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8102936. [PMID: 30838088 PMCID: PMC6374825 DOI: 10.1155/2019/8102936] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), a known inhibitor of cytochrome c oxidase (CcOX), plays a key signaling role in human (patho)physiology. H2S is synthesized endogenously and mainly metabolized by a mitochondrial sulfide-oxidizing pathway including sulfide:quinone oxidoreductase (SQR), whereby H2S-derived electrons are injected into the respiratory chain stimulating O2 consumption and ATP synthesis. Under hypoxic conditions, H2S has higher stability and is synthesized at higher levels with protective effects for the cell. Herein, working on SW480 colon cancer cells, we evaluated the effect of hypoxia on the ability of cells to metabolize H2S. The sulfide-oxidizing activity was assessed by high-resolution respirometry, measuring the stimulatory effect of sulfide on rotenone-inhibited cell respiration in the absence or presence of antimycin A. Compared to cells grown under normoxic conditions (air O2), cells exposed for 24 h to hypoxia (1% O2) displayed a 1.3-fold reduction in maximal sulfide-oxidizing activity and 2.7-fold lower basal O2 respiration. Based on citrate synthase activity assays, mitochondria of hypoxia-treated cells were 1.8-fold less abundant and displayed 1.4-fold higher maximal sulfide-oxidizing activity and 2.6-fold enrichment in SQR as evaluated by immunoblotting. We speculate that under hypoxic conditions mitochondria undergo these adaptive changes to protect cell respiration from H2S poisoning.
Collapse
|
26
|
Turbat-Herrera EA, Kilpatrick MJ, Chen J, Meram AT, Cotelingam J, Ghali G, Kevil CG, Coppola D, Shackelford RE. Cystathione β-Synthase Is Increased in Thyroid Malignancies. Anticancer Res 2018; 38:6085-6090. [PMID: 30396922 DOI: 10.21873/anticanres.12958] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cystathione β-synthase (CBS) catalyzes the conversion of homocysteine and cysteine to hydrogen sulfide (H2S) and cystathione, via the trans-sulfuration pathway. CBS protein expression levels are increased in several different human malignancies, with increased protein expression correlating with parameters such as tumor stage, anaplasia, metastases, and chemotherapy resistance. MATERIALS AND METHODS This study employed tissue microarrays to examine CBS expression in benign thyroid tissue, thyroid oncocytomas, thyroid follicular adenomas, and in follicular, papillary, anaplastic, and medullary thyroid carcinomas. RESULTS CBS expression was increased in all thyroid carcinomas types compared to benign thyroid tissue, but not in thyroid follicular adenomas or oncocytomas. A similar pattern was observed for nicotinamide phosphoribosyltransferase (NAMPT) tissue microarray analysis comparing thyroid adenomas and follicular carcinomas. CONCLUSION For the first time, we showed that an H2S-syntheszing enzyme plays a role in thyroid malignancies. Additionally, our data suggest that CBS and NAMPT immunohistochemistry may be useful in differentiating follicular adenomas from follicular carcinomas.
Collapse
Affiliation(s)
- Elba A Turbat-Herrera
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Matthew J Kilpatrick
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Jie Chen
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Andrew T Meram
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - James Cotelingam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Ghali Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Rodney E Shackelford
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A.
| |
Collapse
|
27
|
Meram AT, Chen J, Patel S, Kim DD, Shirley B, Covello P, Coppola D, Wei EX, Ghali G, Kevil CG, Shackelford RE. Hydrogen Sulfide Is Increased in Oral Squamous Cell Carcinoma Compared to Adjacent Benign Oral Mucosae. Anticancer Res 2018; 38:3843-3852. [PMID: 29970504 PMCID: PMC7771275 DOI: 10.21873/anticanres.12668] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Hydrogen sulfide (H2S) and the enzymes that synthesize it, cystathionine-b-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate, are increased in different human malignancies. Due to its short half-life, H2S concentrations have not been directly measured in a human malignancy. Here we directly measured in vivo H2S levels within oral squamous cell carcinoma (OSCC). PATIENTS AND METHODS Punch biopsies of OSCC and benign mucosae from 15 patients were analyzed by HPLC, western blotting, and tissue microarray analyses. RESULTS H2S concentrations were significantly higher in OSCC compared to adjacent benign oral mucosae. Western blot and tissue microarray studies revealed significantly increased cystathionine-b-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate, phopho-Stat3, mitoNEET, hTERT, and MAPK protein levels in OSCC. CONCLUSION H2S concentrations and the enzymes that synthesize it are significantly increased in OSCC. Here, for the first time H2S concentrations within a living human malignancy were measured and compared to adjacent counterpart benign tissue.
Collapse
Affiliation(s)
- Andrew T Meram
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Jie Chen
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Stavan Patel
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Dongsoo D Kim
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Brett Shirley
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Paul Covello
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Eric X Wei
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Ghali Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Rodney E Shackelford
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A.
| |
Collapse
|
28
|
Nunes SC, Serpa J. Glutathione in Ovarian Cancer: A Double-Edged Sword. Int J Mol Sci 2018; 19:ijms19071882. [PMID: 29949936 PMCID: PMC6073569 DOI: 10.3390/ijms19071882] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 01/21/2023] Open
Abstract
Glutathione (GSH) has several roles in a cell, such as a reactive oxygen species (ROS) scavenger, an intervenient in xenobiotics metabolism and a reservoir of cysteine. All of these activities are important in the maintenance of normal cells homeostasis but can also constitute an advantage for cancer cells, allowing disease progression and resistance to therapy. Ovarian cancer is the major cause of death from gynaecologic disease and the second most common gynaecologic malignancy worldwide. In over 50 years, the overall survival of patients diagnosed with epithelial ovarian cancer has not changed, regardless of the efforts concerning early detection, radical surgery and new therapeutic approaches. Late diagnosis and resistance to therapy are the main causes of this outcome, and GSH is profoundly associated with chemoresistance to platinum salts, which, together with taxane-based chemotherapy and surgery, are the main therapy strategies in ovarian cancer treatment. Herein, we present some insights into the role of GSH in the poor prognosis of ovarian cancer, and also point out how some strategies underlying the dependence of ovarian cancer cells on GSH can be further used to improve the effectiveness of therapy.
Collapse
Affiliation(s)
- Sofia C Nunes
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal.
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
29
|
Nunes SC, Ramos C, Lopes-Coelho F, Sequeira CO, Silva F, Gouveia-Fernandes S, Rodrigues A, Guimarães A, Silveira M, Abreu S, Santo VE, Brito C, Félix A, Pereira SA, Serpa J. Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Sci Rep 2018; 8:9513. [PMID: 29934500 PMCID: PMC6015047 DOI: 10.1038/s41598-018-27753-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/01/2018] [Indexed: 01/13/2023] Open
Abstract
Ovarian cancer is the second most common gynaecologic malignancy and the main cause of death from gynaecologic cancer, due to late diagnosis and chemoresistance. Studies have reported the role of cysteine in cancer, by contributing for hydrogen sulphide (H2S) generation and as a precursor of glutathione (GSH). However, the role of cysteine in the adaptation to hypoxia and therapy response remains unclear. We used several ovarian cancer cell lines, ES2, OVCAR3, OVCAR8, A2780 and A2780cisR, to clarify cysteine relevance in ovarian cancer cells survival upon hypoxia and carboplatin. Results show that ES2 and OVCAR8 cells presented a stronger dependence on cysteine availability upon hypoxia and carboplatin exposure than OVCAR3 cells. Interestingly, the A2780 cisR, but not A2780 parental cells, benefits from cysteine upon carboplatin exposure, showing that cysteine is crucial for chemoresistance. Moreover, GSH degradation and subsequent cysteine recycling pathway is associated with ovarian cancer as seen in peripheral blood serum from patients. Higher levels of total free cysteine (Cys) and homocysteine (HCys) were found in ovarian cancer patients in comparison with benign tumours and lower levels of GSH were found in ovarian neoplasms patients in comparison with healthy individuals. Importantly, the total and S-Homocysteinylated levels distinguished blood donors from patients with neoplasms as well as patients with benign from patients with malignant tumours. The levels of S-cysteinylated proteins distinguish blood donors from patients with neoplasms and the free levels of Cys in serum distinguish blood from patients with benign tumours from patients with malignant tumours. Herein we disclosed that cysteine contributes for a worse disease prognosis, allowing faster adaptation to hypoxia and protecting cells from carboplatin. The measurement of serum cysteine levels can be an effective tool for early diagnosis, for outcome prediction and follow up of disease progression.
Collapse
Affiliation(s)
- Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Cristiano Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Catarina O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Fernanda Silva
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Armanda Rodrigues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - António Guimarães
- Serviço de Oncologia Médica do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Margarida Silveira
- Serviço de Patologia Clinica do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Sofia Abreu
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Vítor E Santo
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana Félix
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Serviço de Anatomia Patológica do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
30
|
Nunes SC, Lopes-Coelho F, Gouveia-Fernandes S, Ramos C, Pereira SA, Serpa J. Cysteine boosters the evolutionary adaptation to CoCl 2 mimicked hypoxia conditions, favouring carboplatin resistance in ovarian cancer. BMC Evol Biol 2018; 18:97. [PMID: 29921232 PMCID: PMC6011206 DOI: 10.1186/s12862-018-1214-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ovarian cancer is the second most common gynaecologic malignancy and the most common cause of death from gynaecologic cancer, especially due to diagnosis at an advanced stage, when a cure is rare. As ovarian tumour grows, cancer cells are exposed to regions of hypoxia. Hypoxia is known to be partially responsible for tumour progression, metastasis and resistance to therapies. These suggest that hypoxia entails a selective pressure in which the adapted cells not only have a fitness increase under the selective environment, but also in non-selective adverse environments. In here, we used two different ovarian cancer cell lines - serous carcinoma (OVCAR3) and clear cell carcinoma (ES2) - in order to address the effect of cancer cells selection under normoxia and hypoxia mimicked by cobalt chloride on the evolutionary outcome of cancer cells. RESULTS Our results showed that the adaptation to normoxia and CoCl2 mimicked hypoxia leads cells to display opposite strategies. Whereas cells adapted to CoCl2 mimicked hypoxia conditions tend to proliferate less but present increased survival in adverse environments, cells adapted to normoxia proliferate rapidly but at the cost of increased mortality in adverse environments. Moreover, results suggest that cysteine allows a quicker response and adaptation to hypoxic conditions that, in turn, are capable of driving chemoresistance. CONCLUSIONS We showed that cysteine impacts the adaptation of cancer cells to a CoCl2 mimicked hypoxic environment thus contributing for hypoxia-drived platinum-based chemotherapeutic agents' resistance, allowing the selection of more aggressive phenotypes. These observations support a role of cysteine in cancer progression, recurrence and chemoresistance.
Collapse
Affiliation(s)
- Sofia C. Nunes
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia Gouveia-Fernandes
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Cristiano Ramos
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia A. Pereira
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
- Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| |
Collapse
|
31
|
Pan Y, Lu L, Chen J, Zhong Y, Dai Z. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma. Hereditas 2018; 155:21. [PMID: 29760609 PMCID: PMC5941338 DOI: 10.1186/s41065-018-0061-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Methods Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Results Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Conclusion Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Yue Pan
- 1Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Lingyun Lu
- Department of Orthopaedics, the Fifth Hospital of Xiamen, Xiamen, 361101 China
| | - Junquan Chen
- 1Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Yong Zhong
- 3Department of Nephrology, Xiangya Hospital of Central South University, Changsha, 410008 China
| | - Zhehao Dai
- 1Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011 China
| |
Collapse
|
32
|
Wahafu W, Gai J, Song L, Ping H, Wang M, Yang F, Niu Y, Xing N. Increased H 2S and its synthases in urothelial cell carcinoma of the bladder, and enhanced cisplatin-induced apoptosis following H 2S inhibition in EJ cells. Oncol Lett 2018; 15:8484-8490. [PMID: 29928321 PMCID: PMC6004664 DOI: 10.3892/ol.2018.8373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2018] [Indexed: 01/02/2023] Open
Abstract
H2S, synthesized by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST), functions as a signalling molecule in mammalian cells. H2S serves complex functions in physiological and pathological processes, including in bladder cancer. In the present study, H2S production, the expression of the associated enzymes and the effect of H2S on human urothelial cell carcinoma of the bladder (UCB) tissue and cell lines were evaluated, and whether decreasing H2S levels influenced cell viability and tumour growth following treatment with cisplatin (CDDP) was assessed in UCB cells in vitro and in vivo. H2S production and the expression of CBS, CSE and MPST in bladder tissue specimens and the UCB cell lines 5637, EJ and UM-UC-3 were analysed using a sulfur-sensitive electrode and western blotting. UCB cells were subjected to different treatments, and viability and protein expression were determined. H2S production was inhibited to examine its influence on EJ cell tumour growth following CDDP treatment in vivo. It was identified that CBS, CSE and MPST protein were up-regulated in UCB tissues and cells. The H2S production and enzyme expression levels were the highest in UCB tissue and EJ cells. The inhibition of endogenous H2S biosynthesis decreased EJ cell viability and tumour growth in response to CDDP treatment. H2S levels and the associated biosynthetic enzymes were increased in human UCB tissue and cells compared with adjacent tissue and normal cells, which may have increased the resistance to CDDP-induced apoptosis in UCB. Therefore, H2S and its production may be an alternative therapeutic target for UCB.
Collapse
Affiliation(s)
- Wasilijiang Wahafu
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Junwei Gai
- Department of Urology, Tianjin First Central Hospital, Tianjin 300191, P.R. China
| | - Liming Song
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Mingshuai Wang
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Feiya Yang
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Yinong Niu
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| | - Nianzeng Xing
- Department of Urology, Beijing Chao Yang Hospital, Beijing 100020, P.R. China
| |
Collapse
|
33
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
34
|
Niu W, Chen F, Wang J, Qian J, Yan S. Antitumor effect of sikokianin C, a selective cystathionine β-synthase inhibitor, against human colon cancer in vitro and in vivo. MEDCHEMCOMM 2018; 9:113-120. [PMID: 30108905 PMCID: PMC6072513 DOI: 10.1039/c7md00484b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
Abstract
Cystathionine β-synthase (CBS) overexpression is related to the proliferation and migration of human colon cancers. Targeted therapy that inhibits CBS has achieved promising effects in colon cancer treatments, but no selective inhibitor of CBS is available. In our previous study, a natural biflavonoid compound, sikokianin C, was identified as a potent and selective inhibitor of CBS. However, the mode of action of this compound and its antitumor efficacy in vivo remain unknown. In the present study, we have demonstrated that sikokianin C selectively inhibits CBS activity in a competitive manner, and the five key residues involved in the binding of sikokianin C to the substrate channel of CBS protein were identified via a combination of molecular docking and site-directed mutagenesis. Additionally, we analyzed the antitumor efficacy of sikokianin C against human colon cancer cells in vitro and in vivo. Sikokianin C greatly suppressed the proliferation of HT29 colon cancer cells with an IC50 value of 1.6 μM, and CBS is the target of sikokianin C in mammalian cells, as evidenced by CBS knockdown analyses. Moreover, sikokianin C induced the apoptosis of HT29 cancer cells in a dose dependent manner. Treating mice with sikokianin C dramatically reduced the tumor volume and the weight of the colon cancer xenograft in vivo. These results indicate that the selective CBS inhibitor sikokianin C can potentially be used for the treatment of colon cancer.
Collapse
Affiliation(s)
- Weining Niu
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Fei Chen
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jun Wang
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jing Qian
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Shasha Yan
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| |
Collapse
|
35
|
Untereiner AA, Pavlidou A, Druzhyna N, Papapetropoulos A, Hellmich MR, Szabo C. Drug resistance induces the upregulation of H 2S-producing enzymes in HCT116 colon cancer cells. Biochem Pharmacol 2017; 149:174-185. [PMID: 29061341 DOI: 10.1016/j.bcp.2017.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023]
Abstract
Hydrogen sulfide (H2S) production in colon cancer cells supports cellular bioenergetics and proliferation. The aim of the present study was to investigate the alterations in H2S homeostasis during the development of resistance to 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent. A 5-FU-resistant HCT116 human colon cancer cell line was established by serial passage in the presence of increasing 5-FU concentrations. The 5-FU-resistant cells also demonstrated a partial resistance to an unrelated chemotherapeutic agent, oxaliplatin. Compared to parental cells, the 5-FU-resistant cells rely more on oxidative phosphorylation than glycolysis for bioenergetic function. There was a significant increase in the expression of the drug-metabolizing cytochrome P450 enzymes CYP1A2 and CYP2A6 in 5-FU-resistant cells. The CYP450 inhibitor phenylpyrrole enhanced 5-FU-induced cytotoxicity in 5-FU-resistant cells. Two major H2S-generating enzymes, cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) were upregulated in the 5-FU-resistant cells. 5-FU-resistant cells exhibited decreased sensitivity to the CBS inhibitor aminooxyacetate (AOAA) in terms of suppression of cell viability, inhibition of cell proliferation and inhibition of oxidative phosphorylation. However, 5FU-resistant cells remained sensitive to the antiproliferative effect of benserazide (a recently identified, potentially repurposable CBS inhibitor). Taken together, the current data suggest that 5-FU resistance in HCT116 cells is associated with the upregulation of drug-metabolizing enzymes and an enhancement of endogenous H2S production. The anticancer effect of prototypical H2S biosynthesis inhibitor AOAA is impaired in 5-FU-resistant cells, but benserazide remains efficacious. Pharmacological approaches aimed at restoring the sensitivity of 5-FU-resistant cells to chemotherapeutic agents may be useful in the formulation of novel therapeutic strategies against colorectal cancer.
Collapse
Affiliation(s)
- Ashley A Untereiner
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Athanasia Pavlidou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Nadiya Druzhyna
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
36
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
37
|
d'Emmanuele di Villa Bianca R, Fusco F, Mirone V, Cirino G, Sorrentino R. The Role of the Hydrogen Sulfide Pathway in Male and Female Urogenital System in Health and Disease. Antioxid Redox Signal 2017; 27:654-668. [PMID: 28398118 DOI: 10.1089/ars.2017.7079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE The endogenous hydrogen sulfide (H2S) pathway produces an array of biological effects that vary depending on the bodily region. In addition, the H2S pathway's relevance often changes depending on a healthy or disease state. There is abundant evidence pointing to a key role for this pathway in male and female genito-urinary diseases, suggesting it as a possible target for new therapeutic approaches. Recent Advances: The tissue-specific localization of the H2S enzymes in the genito-urinary tract has allowed for a better understanding of its role in the body's pathophysiology. Indeed, in humans, cystathionine-γ-lyase (CSE) plays a major role in corpus cavernosum whereas cystathionine-β-synthase (CBS) plays a role in bladder functioning. The prostate epithelium expresses CBS and CSE, but stromal CSE only. In the uterus, up- or downregulation of CBS and CSE varies strongly depending on the female's hormonal cycle or pregnancy. CRITICAL ISSUES There is still the need to better define the male and female's sexual hormonal roles in regulating the H2S pathway, particularly in human pathological conditions. The lack of a correlation between human and animal data should be carefully considered when planning preclinical studies. The unmet need for selective enzymatic inhibitors and the different methodologies for H2S measurements still represent a critical issue in this research field. FUTURE DIRECTIONS It is feasible that the L-cysteine/H2S pathway can represent an alternative therapeutic target in genito-urinary tract disorders. The research should focus on erectile dysfunction and preeclampsia, characterized by vascular defect, as well as on bladder disorders where the urothelium is compromised. Antioxid. Redox Signal. 27, 654-668.
Collapse
Affiliation(s)
- Roberta d'Emmanuele di Villa Bianca
- 1 Department of Pharmacy, School of Medicine, University of Naples Federico II , Naples, Italy .,2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Ferdinando Fusco
- 2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy .,3 Department of Neurosciences, Human Reproduction and Odontostomatology, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Vincenzo Mirone
- 2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy .,3 Department of Neurosciences, Human Reproduction and Odontostomatology, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Giuseppe Cirino
- 1 Department of Pharmacy, School of Medicine, University of Naples Federico II , Naples, Italy .,2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Raffaella Sorrentino
- 1 Department of Pharmacy, School of Medicine, University of Naples Federico II , Naples, Italy .,2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy
| |
Collapse
|
38
|
Cheng DD, Lin HC, Li SJ, Yao M, Yang QC, Fan CY. CSE1L interaction with MSH6 promotes osteosarcoma progression and predicts poor patient survival. Sci Rep 2017; 7:46238. [PMID: 28387323 PMCID: PMC5384328 DOI: 10.1038/srep46238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
To discover tumor-associated proteins in osteosarcoma, a quantitative proteomic analysis was performed to identify proteins that were differentially expressed between osteosarcoma and human osteoblastic cells. Through clinical screening and a functional evaluation, chromosome segregation 1-like (CSE1L) protein was found to be related to the growth of osteosarcoma cells. To date, little is known about the function and underlying mechanism of CSE1L in osteosarcoma. In the present study, we show that knockdown of CSE1L inhibits osteosarcoma growth in vitro and in vivo. By co-immunoprecipitation and RNA-seq analysis, CSE1L was found to interact with mutS homolog 6 (MSH6) and function as a positive regulator of MSH6 protein in osteosarcoma cells. A rescue study showed that decreased growth of osteosarcoma cells by CSE1L knockdown was reversed by MSH6 overexpression, indicating that the activity of CSE1L was an MSH6-dependent function. In addition, depletion of MSH6 hindered cellular proliferation in vitro and in vivo. Notably, CSE1L expression was correlated with MSH6 expression in tumor samples and was associated with poor prognosis in patients with osteosarcoma. Taken together, our results demonstrate that the CSE1L-MSH6 axis has an important role in osteosarcoma progression.
Collapse
Affiliation(s)
- Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - He-Chun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Shi-Jie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cun-Yi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
39
|
Katsouda A, Bibli SI, Pyriochou A, Szabo C, Papapetropoulos A. Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol Res 2016; 113:175-185. [PMID: 27569706 DOI: 10.1016/j.phrs.2016.08.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
Recent studies have implicated endogenously produced H2S in the angiogenic process. On one hand, pharmacological inhibition and silencing of the enzymes involved in H2S synthesis attenuate the angiogenic properties of endothelial cells, including proliferation, migration and tube-like structure network formation. On the other hand, enhanced production of H2S by substrate supplementation or over-expression of H2S-producing enzymes leads to enhanced angiogenic responses in cultured endothelial cells. Importantly, H2S up-regulates expression of the key angiogenic factor vascular endothelial growth factor (VEGF) and contributes to the angiogenic signaling in response to VEGF. The signaling pathways mediating H2S-induced angiogenesis include mitogen-activated protein kinases, phosphoinositide-3 kinase, nitric oxide/cGMP-regulated cascades and ATP-sensitive potassium channels. Endogenously produced H2S has also been shown to facilitate neovascularization in prototypical model systems in vivo, and to contribute to wound healing, post-ischemic angiogenesis in the heart and other tissues, as well as in tumor angiogenesis. Targeting of H2S synthesizing enzymes might offer novel therapeutic opportunities for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Antonia Katsouda
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sofia-Iris Bibli
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece
| | - Anastasia Pyriochou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
40
|
Druzhyna N, Szczesny B, Olah G, Módis K, Asimakopoulou A, Pavlidou A, Szoleczky P, Gerö D, Yanagi K, Törö G, López-García I, Myrianthopoulos V, Mikros E, Zatarain JR, Chao C, Papapetropoulos A, Hellmich MR, Szabo C. Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine β-synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacol Res 2016; 113:18-37. [PMID: 27521834 PMCID: PMC5107130 DOI: 10.1016/j.phrs.2016.08.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/23/2023]
Abstract
Cystathionine-β-synthase (CBS) has been recently identified as a drug target for several forms of cancer. Currently no potent and selective CBS inhibitors are available. Using a composite collection of 8871 clinically used drugs and well-annotated pharmacological compounds (including the LOPAC library, the FDA Approved Drug Library, the NIH Clinical Collection, the New Prestwick Chemical Library, the US Drug Collection, the International Drug Collection, the ‘Killer Plates’ collection and a small custom collection of PLP-dependent enzyme inhibitors), we conducted an in vitro screen in order to identify inhibitors for CBS using a primary 7-azido-4-methylcoumarin (AzMc) screen to detect CBS-derived hydrogen sulfide (H2S) production. Initial hits were subjected to counterscreens using the methylene blue assay (a secondary assay to measure H2S production) and were assessed for their ability to quench the H2S signal produced by the H2S donor compound GYY4137. Four compounds, hexachlorophene, tannic acid, aurintricarboxylic acid and benserazide showed concentration-dependent CBS inhibitory actions without scavenging H2S released from GYY4137, identifying them as direct CBS inhibitors. Hexachlorophene (IC50: ∼60 μM), tannic acid (IC50: ∼40 μM) and benserazide (IC50: ∼30 μM) were less potent CBS inhibitors than the two reference compounds AOAA (IC50: ∼3 μM) and NSC67078 (IC50: ∼1 μM), while aurintricarboxylic acid (IC50: ∼3 μM) was equipotent with AOAA. The second reference compound NSC67078 not only inhibited the CBS-induced AzMC fluorescence signal (IC50: ∼1 μM), but also inhibited with the GYY4137-induced AzMC fluorescence signal with (IC50 of ∼6 μM) indicative of scavenging/non-specific effects. Hexachlorophene (IC50: ∼6 μM), tannic acid (IC50: ∼20 μM), benserazide (IC50: ∼20 μM), and NSC67078 (IC50: ∼0.3 μM) inhibited HCT116 colon cancer cells proliferation with greater potency than AOAA (IC50: ∼300 μM). In contrast, although a CBS inhibitor in the cell-free assay, aurintricarboxylic acid failed to inhibit HCT116 proliferation at lower concentrations, and stimulated cell proliferation at 300 μM. Copper-containing compounds present in the libraries, were also found to be potent inhibitors of recombinant CBS; however this activity was due to the CBS inhibitory effect of copper ions themselves. However, copper ions, up to 300 μM, did not inhibit HCT116 cell proliferation. Benserazide was only a weak inhibitor of the activity of the other H2S-generating enzymes CSE and 3-MST activity (16% and 35% inhibition at 100 μM, respectively) in vitro. Benserazide suppressed HCT116 mitochondrial function and inhibited proliferation of the high CBS-expressing colon cancer cell line HT29, but not the low CBS-expressing line, LoVo. The major benserazide metabolite 2,3,4-trihydroxybenzylhydrazine also inhibited CBS activity and suppressed HCT116 cell proliferation in vitro. In an in vivo study of nude mice bearing human colon cancer cell xenografts, benserazide (50 mg/kg/day s.q.) prevented tumor growth. In silico docking simulations showed that benserazide binds in the active site of the enzyme and reacts with the PLP cofactor by forming reversible but kinetically stable Schiff base-like adducts with the formyl moiety of pyridoxal. We conclude that benserazide inhibits CBS activity and suppresses colon cancer cell proliferation and bioenergetics in vitro, and tumor growth in vivo. Further pharmacokinetic, pharmacodynamic and preclinical animal studies are necessary to evaluate the potential of repurposing benserazide for the treatment of colorectal cancers.
Collapse
Affiliation(s)
- Nadiya Druzhyna
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Olah
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Katalin Módis
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Antonia Asimakopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Athanasia Pavlidou
- National and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece
| | - Petra Szoleczky
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Domokos Gerö
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Kazunori Yanagi
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Törö
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Isabel López-García
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Emmanuel Mikros
- National and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece
| | - John R Zatarain
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Celia Chao
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece; National and Kapodistrian University of Athens, School of Pharmacy, Athens, Greece
| | - Mark R Hellmich
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA; CBS Therapeutics Inc., Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; CBS Therapeutics Inc., Galveston, TX, USA.
| |
Collapse
|
41
|
H2S and cancer: Give credit where credit is due. Urol Oncol 2016; 34:334. [DOI: 10.1016/j.urolonc.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
|