1
|
Silva IMD, Vacario BGL, Okuyama NCM, Barcelos GRM, Fuganti PE, Guembarovski RL, Cólus IMDS, Serpeloni JM. Polymorphisms in drug-metabolizing genes and urinary bladder cancer susceptibility and prognosis: Possible impacts and future management. Gene 2024; 907:148252. [PMID: 38350514 DOI: 10.1016/j.gene.2024.148252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.
Collapse
Affiliation(s)
- Isabely Mayara da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Beatriz Geovana Leite Vacario
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil; Center of Health Sciences, State University of West Paraná (UNIOESTE), Francisco Beltrão-Paraná, 85605-010, Brazil.
| | - Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute for Health and Society, Federal University of São Paulo (UNIFESP), Santos 11.060-001, Brazil.
| | | | - Roberta Losi Guembarovski
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina 86057-970, Brazil.
| |
Collapse
|
2
|
Shiota M, Miyake H, Takahashi M, Oya M, Tsuchiya N, Masumori N, Matsuyama H, Obara W, Shinohara N, Fujimoto K, Nozawa M, Ohba K, Ohyama C, Hashine K, Akamatsu S, Kamba T, Mita K, Gotoh M, Tatarano S, Fujisawa M, Tomita Y, Mukai S, Ito K, Tanegashima T, Tokunaga S, Eto M. Effect of genetic polymorphisms on outcomes following nivolumab for advanced renal cell carcinoma in the SNiP-RCC trial. Cancer Immunol Immunother 2023; 72:1903-1915. [PMID: 36729213 DOI: 10.1007/s00262-023-03367-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Anti-PD-1 antibodies are widely used for cancer treatment including advanced renal cell carcinoma (RCC). However, their therapeutic and adverse effects vary among patients. This study aimed to identify genetic markers that predict outcome after nivolumab anti-PD-1 antibody treatment for advanced RCC. METHODS This study was registered on the website of the University Hospital Medical Information Network (protocol ID, UMIN000037739). Patient enrollment was conducted at 23 institutions in Japan between August 19, 2019, and September 30, 2020. Patient follow-up ended on March 31, 2021. Patients were treated with nivolumab for advanced clear cell RCC. A genome-wide association study was performed in the development set, while genotyping of target regions in the validation set was undertaken. Single nucleotide polymorphisms (SNPs) in genes of interest CD274, PDCD1LG2 and PDCD1 were genotyped in the combined set. The primary endpoint was the association of SNPs with objective response following nivolumab treatment. As secondary endpoints, the associations of SNPs with radiographic progression-free survival (rPFS) and treatment-related grade ≥ 3 adverse events (AEs) were evaluated. RESULTS A genome-wide association study followed by a validation study identified that SNPs in FARP1 (rs643896 and rs685736) were associated with objective response and rPFS but not AEs following nivolumab treatment. Furthermore, SNPs in PDCD1LG2 (rs822339 and rs1411262) were associated with objective response, rPFS, and AEs following nivolumab treatment. Genetic risk category determined according to the number of risk alleles in SNPs (rs643896 in FARP1 and rs4527932 in PDCD1LG2) excellently predicted objective response and rPFS in nivolumab treatment. CONCLUSION This study revealed that SNPs in FARP1 and PDCD1LG2 were correlated with outcome in nivolumab treatment. The use of these SNPs may be beneficial in selecting appropriate treatment for individual patients and may contribute to personalized medicine.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Takahashi
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Masahiro Nozawa
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kojiro Ohba
- Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Katsuyoshi Hashine
- Department of Urology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Mita
- Department of Urology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiko Tomita
- Department of Urology and Molecular Oncology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shoji Tokunaga
- Medical Information Center, Kyushu University Hospital, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | |
Collapse
|