1
|
Zhou Y, Cheng JT, Feng ZX, Wang YY, Zhang Y, Cai WQ, Han ZW, Wang XW, Xiang Y, Yang HY, Liu BR, Peng XC, Cui SZ, Xin HW. Could gastrointestinal tumor-initiating cells originate from cell-cell fusion in vivo? World J Gastrointest Oncol 2021; 13:92-108. [PMID: 33643526 PMCID: PMC7896421 DOI: 10.4251/wjgo.v13.i2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/25/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-initiating cells (TICs) or cancer stem cells are believed to be responsible for gastrointestinal tumor initiation, progression, metastasis, and drug resistance. It is hypothesized that gastrointestinal TICs (giTICs) might originate from cell-cell fusion. Here, we systemically evaluate the evidence that supports or opposes the hypothesis of giTIC generation from cell-cell fusion both in vitro and in vivo. We review giTICs that are capable of initiating tumors in vivo with 5000 or fewer in vivo fused cells. Under this restriction, there is currently little evidence demonstrating that giTICs originate from cell-cell fusion in vivo. However, there are many reports showing that tumor generation in vitro occurs with more than 5000 fused cells. In addition, the mechanisms of giTIC generation via cell-cell fusion are poorly understood, and thus, we propose its potential mechanisms of action. We suggest that future research should focus on giTIC origination from cell-cell fusion in vivo, isolation or enrichment of giTICs that have tumor-initiating capabilities with 5000 or less in vivo fused cells, and further clarification of the underlying mechanisms. Our review of the current advances in our understanding of giTIC origination from cell-cell fusion may have significant implications for the understanding of carcinogenesis and future cancer therapeutic strategies targeting giTICs.
Collapse
Affiliation(s)
- Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Zi-Xian Feng
- Department of Oncology and Haematology, Lianjiang People's Hospital, Guangzhou 524400, Guangdong Province, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ying Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Hui-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
2
|
Purified dendritic cell-tumor fusion hybrids supplemented with non-adherent dendritic cells fraction are superior activators of antitumor immunity. PLoS One 2014; 9:e86772. [PMID: 24466232 PMCID: PMC3900640 DOI: 10.1371/journal.pone.0086772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
Background Strong evidence supports the DC-tumor fusion hybrid vaccination strategy, but the best fusion product components to use remains controversial. Fusion products contain DC-tumor fusion hybrids, unfused DCs and unfused tumor cells. Various fractions have been used in previous studies, including purified hybrids, the adherent cell fraction or the whole fusion mixture. The extent to which the hybrids themselves or other components are responsible for antitumor immunity or which components should be used to maximize the antitumor immunity remains unknown. Methods Patient-derived breast tumor cells and DCs were electro-fused and purified. The antitumor immune responses induced by the purified hybrids and the other components were compared. Results Except for DC-tumor hybrids, the non-adherent cell fraction containing mainly unfused DCs also contributed a lot in antitumor immunity. Purified hybrids supplemented with the non-adherent cell population elicited the most powerful antitumor immune response. After irradiation and electro-fusion, tumor cells underwent necrosis, and the unfused DCs phagocytosed the necrotic tumor cells or tumor debris, which resulted in significant DC maturation. This may be the immunogenicity mechanism of the non-adherent unfused DCs fraction. Conclusions The non-adherent cell fraction (containing mainly unfused DCs) from total DC/tumor fusion products had enhanced immunogenicity that resulted from apoptotic/necrotic tumor cell phagocytosis and increased DC maturation. Purified fusion hybrids supplemented with the non-adherent cell population enhanced the antitumor immune responses, avoiding unnecessary use of the tumor cell fraction, which has many drawbacks. Purified hybrids supplemented with the non-adherent cell fraction may represent a better approach to the DC-tumor fusion hybrid vaccination strategy.
Collapse
|
3
|
Decker WK, Safdar A. Dendritic cell vaccines for the immunocompromised patient: prevention of influenza virus infection. Expert Rev Vaccines 2014; 9:721-30. [DOI: 10.1586/erv.10.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Baek S, Lee SJ, Kim MJ, Lee H. Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model; Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC. Immune Netw 2012; 12:269-76. [PMID: 23396889 PMCID: PMC3566422 DOI: 10.4110/in.2012.12.6.269] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 12/05/2022] Open
Abstract
The anti-tumor effect of monocyte-derived DC (MoDC) vaccine was studied in lung cancer model with feasible but weak Ag-specific immune response and incomplete blocking of tumor growth. To overcome this limitation, the hematopoietic stem cell-derived DC (SDC) was cultured and the anti-tumor effect of MoDC & SDC was compared in mouse lung cancer minimal residual model (MRD). Therapeutic DCs were cultured from either CD34+ hematopoietic stem cells with GM-CSF, SCF and IL-4 for 14 days (SDC) or monocytes with GM-CSF and IL-4 for 7 days (MoDC). DCs were injected twice by one week interval into the peritoneum of mice that are inoculated with Lewis Lung Carcinoma cells (LLC) one day before the DC injection. Anti-tumor responses and the immune modulation were observed 3 weeks after the final DC injection. CD11c expression, IL-12 and TGF-β secretion were higher in SDC but CCR7 expression, IFN-γ and IL-10 secretion were higher in MoDC. The proportion of CD11c+CD8a+ cells was similar in both DC cultures. Although both DC reduced the tumor burden, histological anti-tumor effect and the frequencies of IFN-γ secreting CD8+ T cells were higher in SDC treated group than in MoDC. Conclusively, although both MoDC and SDC can induce the anti-tumor immunity, SDC may be better module as anti-tumor vaccine than MoDC in mouse lung cancer.
Collapse
Affiliation(s)
- Soyoung Baek
- Office of Biomedical Professors, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | | | | | | |
Collapse
|
5
|
Cord blood stem-cell-derived dendritic cells generate potent antigen-specific immune responses and anti-tumour effects. Clin Sci (Lond) 2012; 123:347-60. [PMID: 22264240 DOI: 10.1042/cs20110272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to investigate whether CBSCs [(umbilical) cord blood stem cells] can be a new source of DCs (dendritic cells), which can generate more potent antigen-specific immune responses and anti-tumour effects. CBSCs and PBMCs (peripheral blood mononuclear cells) were collected, cultured and differentiated into DCs. Surface markers, secreting cytokines, antigen-presentation activity, antigen-specific cell-mediated immunity and cytotoxic killing effects induced by these two DC origins were evaluated and compared. CBSCs were expanded ~17-fold by ex vivo culture. The expression of surface markers in CBSC-derived DCs were higher than those in PBMC-derived DCs treated with LPS (lipopolysaccharide). The CBSC-derived DCs mainly secreted IL (interleukin)-6, IL-10 and TNF (tumour necrosis factor)-α, whereas PBMC-derived DCs mainly secreted IL-5 and IFN (interferon)-γ. The CBSC-derived DCs had better antigen-presentation abilities when stimulated with LPS or TNF-α, induced higher numbers of IFN-γ-secreting antigen-specific CD8+ T-cells, as assessed using an ELISpot (enzyme-linked immunosorbent spot) assay, and stimulated more potent antigen-specific CTL (cytotoxic T-cell) activities (P<0.01, one-way ANOVA). CBSC-derived DCs had quicker and greater ERK (extracellular-signal-regulated kinase) and Akt phosphorylation, and weaker p38 phosphorylation, than PBMC-derived DCs when stimulated with LPS. In conclusion, CBSC-derived DCs have the ability to induce stronger antigen-specific immunity and more potent anti-tumour effects and therefore could be a good source of DCs for use in DC-based cancer vaccines and immunotherapy.
Collapse
|
6
|
Nicotine stimulated bone marrow-derived dendritic cells could augment HBV specific CTL priming by activating PI3K-Akt pathway. Immunol Lett 2012; 146:40-9. [PMID: 22546501 DOI: 10.1016/j.imlet.2012.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/16/2012] [Accepted: 02/19/2012] [Indexed: 01/08/2023]
Abstract
Our previous studies have revealed that nicotine-treated immature dendritic cells (imDCs) have anti-tumor effects in murine lymphoma models. The present study is to explore HBV-specific CTL priming and its cytolytic activities of nicotine-treated murine DCs, the mechanism of α7 nicotinic acetylcholine receptor (nAChR) up-regulation by nicotine and the efficiency of nicotine with other cytokines. To address these hypotheses, bone marrow-derived imDCs were stimulated by nicotine and expression of α7 nAChR was firstly determined by flow cytometry and Western blot. Then, DCs-dependent HBV-specific T cell proliferation and IL-12 secretion were secondly determined by BrdU cell proliferation assay and ELISA, respectively. The HBV-specific CTL priming and its activities were further explored by intraperitoneal transfer of nicotine treated imDCs. The mechanism of nicotine up-regulating α7 nAChR was finally explored by Western blot. The results showed that: first, the maximal activation of PI3K and Akt was reached at 30 and 60-120 min respectively after nicotine stimulation. Nicotine up-regulated the expression of α7 nAChR by activating PI3K-Akt pathway in murine DCs; secondly, nicotine stimulation could enhance DCs' ability of HBV-specific T cell proliferation and IL-12 secretion; thirdly, adoptive transfer of nicotine stimulated DCs could induce HBV specific CTL priming in vivo and those CTL had cytolytic activities; fourthly, nicotine had equal efficiencies to 2 ng/ml IFN-γ in DCs-mediated T cell proliferation. All these data presented here indicated that nicotine treated imDCs might be considered as a potential candidate for HBV immunotherapy.
Collapse
|
7
|
Cathelin D, Nicolas A, Bouchot A, Fraszczak J, Labbé J, Bonnotte B. Dendritic cell-tumor cell hybrids and immunotherapy: what's next? Cytotherapy 2011; 13:774-85. [PMID: 21299362 DOI: 10.3109/14653249.2011.553593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation still require optimization. An alternative technique for providing antigens to DC consists of the direct fusion of dendritic cells with tumor cells. These resulting hybrid cells may express both major histocompatibility complex (MHC) class I and II molecules associated with tumor antigens and the appropriate co-stimulatory molecules required for T-cell activation. Initially tested in animal models, this approach has now been evaluated in clinical trials, although with limited success. We summarize and discuss the results from the animal studies and first clinical trials. We also present a new approach to inducing hybrid formation by expression of viral fusogenic membrane glycoproteins.
Collapse
Affiliation(s)
- Dominique Cathelin
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, France.
| | | | | | | | | | | |
Collapse
|
8
|
Balan S, Kale VP, Limaye LS. A large number of mature and functional dendritic cells can be efficiently generated from umbilical cord blood-derived mononuclear cells by a simple two-step culture method. Transfusion 2011; 50:2413-23. [PMID: 20497510 DOI: 10.1111/j.1537-2995.2010.02706.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Advances in the past two decades in dendritic cell (DC) biology paved the way to exploit them as a promising tool in cancer immunotherapy. The prerequisite for DC vaccine preparations is large-scale in vitro generations of homogeneous, mature, and functional DCs. Frequent improvements are being made in the existing in vitro DC production protocols to achieve this goal. In our previous study we reported a large-scale generation of mature, functional DCs from umbilical cord blood (UCB) CD34+ cells. Here we report that this method can be used for the efficient generation of DCs from UCB mononuclear cells (MNCs) and thus the hematopoietic stem cell isolation step is not essential. STUDY DESIGN AND METHODS MNCs or CD34+ cells isolated from the same cord blood (CB) samples were used for the generation of DCs. DCs were characterized for morphology, phenotype, and functional assays including antigen uptake, chemotaxis, and mixed leukocyte reaction. Similarly DCs generated from the MNCs of same fresh and frozen CB units were compared. RESULTS The morphologic, phenotypic, and functional characterization of the DCs generated from various sets show that they were comparable in nature irrespective of the starting population used. CONCLUSION We conclude that the CD34+ isolation step is not essential for the generation of mature, functional DCs and thus can be eliminated. More importantly, we show that DCs can be generated with equal efficiency from the MNCs of frozen CB units. Our culture method will be useful for exploiting the potential of UCB as an additional source for allogeneic DCs in the clinical settings.
Collapse
Affiliation(s)
- Sreekumar Balan
- National Centre for Cell Science, Pune University Campus, Pune, India
| | | | | |
Collapse
|
9
|
Yang W, Zhang Y, Yu J, Li S. The low expression of CD80 correlated with the vascular endothelial growth factor in esophageal cancer tissue. Eur J Surg Oncol 2010; 36:501-6. [PMID: 20181455 DOI: 10.1016/j.ejso.2010.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 01/01/2010] [Accepted: 01/18/2010] [Indexed: 12/09/2022] Open
Abstract
AIMS To analyze the mRNA and protein expression of CD80 and vascular endothelial growth factor (VEGF) in esophageal cancer (EC) tissue, investigate the causes of esophageal cancer cell escape from immune surveillance. METHODS We detected the CD80 and VEGF mRNA with reverse transcription polymerase chain reaction (RT-PCR), CD80 protein with flow cytometry, VEGF protein with immunohistochemistry in the cancer tissues in 118 EC patients, and the normal esophageal tissue as controls. RESULTS The expression of CD80 mRNA and protein in cancer tissues were lower than that in the controls (p<0.01, respectively), The CD80 protein expression in poor differentiation was lower than that in the well and moderate (P<0.01), in the patients with lymph node metastasis lower than that with no metastasis (P=0.01), in stage IIIA patients lower than that in stages I and II patients (P=0.04); the VEGF mRNA and protein expression were just right opposite. The mean survival time in the CD80 positive group was significantly longer than that in the negative (p=0.041); while in VEGF positive group was lower than that in the negative (p=0.046). The CD80 expression of mRNA and protein were correlated negatively with VEGF in the cancer tissues (r=-0.82, -0.87, respectively). CONCLUSION It is suggested that CD80 was impaired in the EC tissues and correlated with the clinicopathological characteristics and prognosis, which indicated the dysfunction of immune system and enhancing the progression of EC. The low expression of CD80 correlated with the overexpression of VEGF.
Collapse
Affiliation(s)
- W Yang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China.
| | | | | | | |
Collapse
|
10
|
Alvarez E, Moga E, Barquinero J, Sierra J, Briones J. Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response. Gene Ther 2009; 17:469-77. [PMID: 20010627 DOI: 10.1038/gt.2009.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fusion of dendritic cells and tumor cells (FCs) constitutes a promising tool for generating an antitumor response because of their capacity to present tumor antigens and provide appropriate costimulatory signals. CD40-CD40L interaction has an important role in the maturation and survival of dendritic cells and provides critical help for T-cell priming. In this study, we sought to improve the effectiveness of FC vaccines in a murine model of B-cell lymphoma by engineering FCs to express CD40L by means of an adenovirus encoding CD40L (Adv-CD40L). Before transduction with Adv-CD40L, no CD40L expression was detected in FCs, DCs or tumor cells. The surface expression of CD40L in FC transduced with Adv-CD40L (FC-CD40L) ranged between 50 and 60%. FC-CD40L showed an enhanced expression of CD80, CD86, CD54 and MHC class II molecules and elicited a strong in vitro immune response in a syngeneic mixed lymphocyte reaction. Furthermore, FC-CD40L showed enhanced migration to secondary lymphoid organs. Splenocytes from mice treated with FC-CD40L had a dramatic increase in the production of IL-17, IL-6 and IFN-gamma, compared with controls. Treatment with the FC-CD40L vaccine induced regression of established tumors and increased survival. Our data demonstrate that FC transduced with Adv-CD40L enhances the antitumor effect of FC vaccines in a murine lymphoma model and this is associated with an increased Th17-type immune response.
Collapse
Affiliation(s)
- E Alvarez
- Department of Hematology, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
Silencing of tumor necrosis factor receptor 1 by siRNA in EC109 cells affects cell proliferation and apoptosis. J Biomed Biotechnol 2009; 2009:760540. [PMID: 19826638 PMCID: PMC2760352 DOI: 10.1155/2009/760540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/16/2009] [Accepted: 07/23/2009] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor receptor 1 (TNFR1) is a membrane receptor able to bind TNF-α or TNF-β. TNFR1 can suppress apoptosis by activating the NF-κB or JNK/SAPK signal transduction pathway, or it can induce apoptosis through a series of caspase cascade reactions; the particular effect may depend on the cell line. In the present study, we first showed that TNFR1 is expressed at both the gene and protein levels in the esophageal carcinoma cell line EC109. Then, by applying a specific siRNA, we silenced the expression of TNFR1; this resulted in a significant time-dependent promotion of cell proliferation and downregulation of the apoptotic rate. These results suggest that TNFR1 is strongly expressed in the EC109 cell line and that it may play an apoptosis-mediating role, which may be suppressed by highly activated NF-κB.
Collapse
|
12
|
Safdar A, Decker WK, Li S, Xing D, Robinson SN, Yang H, Steiner D, Rodriguez G, Shpall EJ, Bollard C. De novo T-lymphocyte responses against baculovirus-derived recombinant influenzavirus hemagglutinin generated by a naive umbilical cord blood model of dendritic cell vaccination. Vaccine 2009; 27:1479-84. [PMID: 19185049 DOI: 10.1016/j.vaccine.2009.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/17/2008] [Accepted: 01/08/2009] [Indexed: 12/09/2022]
Abstract
Cancer patients and recipients of hematopoietic stem cell transplantation exhibit a negligible response to influenza vaccine. Toward the goal of addressing this issue, we developed an in vitro model of dendritic cell (DC) immunotherapy utilizing DCs generated from naïve umbilical cord blood (UCB). UCB DCs were loaded with purified rHA protein and used to stimulate autologous T-lymphocytes. Upon recall with HA-loaded autologous DC, a 4-10-fold increase in the number of IFN-gamma producing T-lymphocytes was observed in comparison to T-cells stimulated with control DCs. Antigen-specific T-cell functionality was determined by (51)Cr lytic assay. Using a peptide library of predicted HA binding epitopes, we mapped an HA-specific, DR15-restricted CD4 T-cell epitope and observed tetramer positive cells. This model demonstrates that HA-specific immune responses might possibly be generated in a de novo fashion and suggests that dendritic cell immunotherapy for the prevention of influenza in populations of immunosuppressed individuals could be feasible.
Collapse
Affiliation(s)
- Amar Safdar
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang W, Yu J. Immunologic function of dendritic cells in esophageal cancer. Dig Dis Sci 2008; 53:1739-46. [PMID: 18080193 DOI: 10.1007/s10620-007-0095-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 10/27/2007] [Indexed: 12/14/2022]
Abstract
Esophageal cancer is one of the frequently occurring malignant cancers. The current therapy, including surgery, chemotherapy, radiotherapy, or a combination, is only to palliate the symptoms; overall the prognosis is poor. The immunotherapy of dendritic cells for esophageal cancer is a valuable method. Dendritic cells existing in the esophageal tissues play an important role in the host's immunosurveillance against cancer as the professional antigen-presenting cells. This review concerns the immunology of dendritic cells in esophageal cancer; it describes the expression of DCs in the normal esophageal tissues and benign disease of esophagus, relations between the DCs and cancer development in esophageal cancer, and the DC-based approach to establish treatment for esophageal cancer.
Collapse
Affiliation(s)
- Wenfeng Yang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Jiyan Road 440, Jinan 250117, Shandong Province, PR China,
| | | |
Collapse
|
14
|
Guo GH, Chen SZ, Yu J, Zhang J, Luo LL, Xie LH, Su ZJ, Dong HM, Xu H, Wu LB. In vivo anti-tumor effect of hybrid vaccine of dendritic cells and esophageal carcinoma cells on esophageal carcinoma cell line 109 in mice with severe combined immune deficiency. World J Gastroenterol 2008; 14:1167-74. [PMID: 18300341 PMCID: PMC2690663 DOI: 10.3748/wjg.14.1167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a fusion vaccine of esophageal carcinoma cells and dendritic cells (DC) and observe its protective and therapeutic effect against esophageal carcinoma cell line 109 (EC109).
METHODS: The fusion vaccine was produced by fusing traditional polyethyleneglycol (PEG), inducing cytokine, sorting CD34+ magnetic microbead marker and magnetic cell system (MACS). The liver, spleen and lung were pathologically tested after injection of the fusion vaccine. To study the therapeutic and protective effect of the fusion vaccine against tumor EC109, mice were divided immune group and therapeutic group. The immune group was divided into P, E, D and ED subgroups, immunized by phosphate buffered solution (PBS), inactivated EC109, DC and the fusion vaccine respectively, and attacked by EC109 cells. The tumor size, weight, latent period and mouse survival period were recorded and statistically analyzed. The therapeutic group was divided into four subgroups: P, inactivated EC109, D and ED subgroups, which were attacked by EC109 and then treated with PBS, inactivated EC109, DC, and EC109-DC respectively. Pathology and flow cytometry were also used to study the therapeutic effect of the fusion vaccine against EC109 cells.
RESULTS: Flow cytometry showed that the expression of folate receptor (FR), EC109 (C), DCs (D) in human nasopharyngeal carcinoma cell line (HNE1) (B) was 78.21%, 89.50%, and 0.18%, respectively. The fusion cells (C) were highly expressed. No tumor was found in the spleen, lung and liver after injection of the fusion vaccine. Human IgG was tested in peripheral blood lymphocytes (PBL). In the immune group, the latent period was longer in EC109-DC subgroup than in other subgroups, while the tumor size and weight were also smaller than those in ED subgroup. In the therapeutic group, the tumor size and weight were smaller in ED subgroup than in P, inactivated EC109 and DC subgroups.
CONCLUSION: Fusion cells are highly expressed not only in FR but also in CD80. The fusion vaccine has a distinctive protective effect against tumor EC109 and can inhibit the growth of tumor in mice, and its immune protection against tumor attack is more significant.
Collapse
|
15
|
Abstract
There has been a surge of interest in the use of dendritic cell (DC) vaccination as cellular immunotherapy for numerous cancers. Despite some encouraging results, this therapeutic modality is far from being considered as a therapy for cancer. This review will first discuss preclinical DC vaccination in murine models of cancer, with an emphasis on comparative studies investigating different methods of antigen priming. We will then comment on the various murine DC subsets and how these relate to human DC preparations used for clinical studies. Finally, the methodology used to generate human DCs and some recent clinical trials in several cancers are reviewed.
Collapse
Affiliation(s)
- Owen Proudfoot
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute at Austin, Studley Rd, Heidelberg, 3084, Victoria, Australia.
| | | | | | | | | |
Collapse
|
16
|
Yang BF, Zhao HL, Xue C, Xiong XH, Zhang W, Yao XQ, Liu ZM. Recombinant heat shock protein 65 carrying hepatitis B core antigen induces HBcAg-specific CTL response. Vaccine 2007; 25:4478-86. [PMID: 17467856 DOI: 10.1016/j.vaccine.2007.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 02/13/2007] [Accepted: 03/08/2007] [Indexed: 02/06/2023]
Abstract
Many studies have provided evidence that heat shock protein 65 (Hsp65) can elicit potent specific cellular adaptive immune responses (e.g. CD8(+) cytotoxic T-cell effectors or classic CTLs) based on their ability to chaperone antigenic peptides. Hsp65 is thus an effective carrier for heterologous peptide epitopes for therapeutic vaccines against cancer or chronic infectious diseases. The core antigen of hepatitis B virus (HBcAg) is extremely immunogenic, and functions as both a T-cell-dependent and a T-cell-independent antigen. Therefore, HBcAg may be a promising candidate target for therapeutic vaccine control of chronic HBV infection. Here, a chimeric protein, Hsp65Bc, was created by fusing the HBcAg sequence to the carboxyl terminus of the Hsp65 sequence in E. coli. Analysis of its antigenicity and immunogenicity revealed that HBc epitopes are surface accessible. Hsp65Bc induced moderate anti-HBc immune responses as well as a strong specific T-cell response in BALB/c mice. These results indicate that Hsp65Bc may have potential as a vaccine for treatment of HBV chronic infection.
Collapse
Affiliation(s)
- Bing-fen Yang
- Department of Microbiological Engineering, Beijing Institute of Biotechnology, 20 Dongdaije Street, Fengtai District, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhang HM, Zhang LW, Liu WC, Cheng J, Si XM, Ren J. Comparative analysis of DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma. Cytotherapy 2007; 8:580-8. [PMID: 17148035 DOI: 10.1080/14653240600991353] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND DC vaccination with the use of tumor cells provides the potential to generate a polyclonal immune response to multiple known and unknown tumor Ag. Our study comparatively analyzed DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma (HCC). METHODS Immature DC generated from PBMC of patients with HCC were fused with HepG2-GFP (HepG2 cell line transfected stably with plasmid pEGFP-C3) cells or transfected with their total RNA. Matured DC were used to stimulate autologous T cells, and the resultant Ag-specific effector T cells were analyzed by IFN-gamma ELISPOT assay. RESULTS DC were capable of further differentiation into mature DC after fusion with HepG2-GFP cells or transfection with HepG2-GFP cell total RNA, and were able to elicit specific T-cell responses in vitro. Both methods of Ag loading could result in stimulating CD4+ and CD8+ T cells, but with the indication that fusion loading was more efficient than RNA loading in priming the Th1 response, while RNA loading was more effective in CTL priming. DISCUSSION Our results indicate that DC fused with tumor cells or transfected with tumor total RNA represent promising strategies for the development of cancer vaccines for treatment of HCC. They may have potential as an adjuvant immunotherapy for patients with HCC.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Center of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 15 Chang-Le West Road, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Zhang Y, Ma B, Zhou Y, Zhang M, Qiu X, Sui Y, Zhang X, Ma B, Fan Q. Dendritic cells fused with allogeneic breast cancer cell line induce tumor antigen-specific CTL responses against autologous breast cancer cells. Breast Cancer Res Treat 2006; 105:277-86. [PMID: 17187233 DOI: 10.1007/s10549-006-9457-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/13/2006] [Indexed: 01/31/2023]
Abstract
Dendritic cell (DC)/tumor cell fusion vaccine has been revealed as a promising tool for the antitumor immunotherapy. Previous research has shown that fusion hybrids of human DCs and autologous tumor cells can induce cytotoxic T lymphocyte (CTL) responses against autologous tumor cells in animal models and human clinical trials. However, a major restriction factor for the clinical use is the difficulty for preparation of sufficient amount of autologous tumor cells especially for the patients with metastasis cancer whose primary tumor lesion is not clear or has been resected. In this study, allogeneic breast cancer cell line MCF-7 cells were electrofused to autologous DCs from patient with breast cancer as a strategy to deliver shared breast cancer antigens to DCs. Fusion cells generated by autologous DCs and allogeneic MCF-7 were able to induce autologous T lymphocytes proliferation, high levels of IFN-gamma production and CTL responses. CTLs induced by DCs/allogeneic MCF-7 fusion cells were able to kill autologous breast cancer cells in an antigen specific and HLA restriction manner. Our study may provide the experiment basis for the use of allogeneic breast cancer cell line in the DC/tumor cell fusion cell vaccination strategy.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center of Orthopaedic Surgery, Orthopaedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|