1
|
Jia J, Zhang M, Cao Z, Hu X, Lei S, Zhang Y, Kang X. The rabbit model for spinal tuberculosis: An overview. J Orthop Surg (Hong Kong) 2024; 32:10225536241266703. [PMID: 39033332 DOI: 10.1177/10225536241266703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis infection has emerged as a global public health issue, predominantly manifesting as pulmonary tuberculosis. Bone and joint tuberculosis, with spinal tuberculosis accounting for approximately 50%, represents a significant form of extrapulmonary tuberculosis. Over the past years, there has been a rise in the incidence of spinal tuberculosis, and research concerning this area has gained significant attention. At present, animal models provide a means to investigate the pathogenesis, drug resistance, and novel treatment approaches for spinal tuberculosis. New Zealand rabbits, possessing a comparable anatomical structure to humans and capable of reproducing typical pathological features of human tuberculosis, are extensively employed in spinal tuberculosis research using animal models. This article comprehensively evaluates the strengths, considerations in strain selection, various modelling approaches, and practical applications of the rabbit model in studying spinal tuberculosis based on pertinent literature to guide fundamental research in this field by providing valuable insights into appropriate animal model selection.
Collapse
Affiliation(s)
- Jingwen Jia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Zhenyu Cao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Xuchang Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Shuanhu Lei
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Yizhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| |
Collapse
|
2
|
Responses of Humoral and Cellular Immune Mediators in BALB/c Mice to LipX (PE11) as Seed Tuberculosis Vaccine Candidates. Genes (Basel) 2022; 13:genes13111954. [DOI: 10.3390/genes13111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
A member of the pe/ppe gene family, lipX (pe11), is capable of directing persistent Mycobacterium tuberculosis and avoiding host immune responses. Some studies have indicated that LipX (PE11) can detect humoral antibodies in tuberculosis patients. Hence, information on immune mediators’ responses to this protein is essential to understand its protective efficacy against M. tuberculosis infections. This study aimed to examine the response of immune mediators to pCDNA3.1-lipX expression in vivo. In the experiment, pCDNA3.1-lipX was injected into BALB/c strain male mice aged between 6 and 8 weeks, and they were compared to groups injected with pCDNA3.1 and without injection. The injection was carried out three times intramuscularly every two weeks. Blood was taken retro-orbitally and used for humoral response analysis by Western blotting against LipX-His protein. Simultaneously, the splenocytes were cultured and induced with LipX-His protein for cellular immunity analyses. Our study showed that the recombinant DNA of pCDNA3.1-lipX induced a humoral and cellular immune response, especially in IL-4, IL-12, and IFN-γ, which are the primary cellular responses to M. tuberculosis infections. However, additional studies, such as a challenge study, are needed to strengthen the argument that this plasmid construction is feasible as a tuberculosis seed vaccine candidate.
Collapse
|
3
|
León-Janampa N, Shinkaruk S, Gilman RH, Kirwan DE, Fouquet E, Szlosek M, Sheen P, Zimic M. Biorecognition and detection of antigens from Mycobacterium tuberculosis using a sandwich ELISA associated with magnetic nanoparticles. J Pharm Biomed Anal 2022; 215:114749. [PMID: 35447489 DOI: 10.1016/j.jpba.2022.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is one of the 10 leading causes of death worldwide, especially in low-income areas. A rapid, low-cost diagnostic assay for TB with high sensitivity and specificity is not currently available. Bio-functionalized magnetic nanoparticles (MNPs) which are able to efficiently detect and concentrate biomolecules from complex biological samples, allows improving the diagnostic immunoassays. In this way, a proof-of-concept of MNP-based sandwich immunoassay was developed to detect various MTB protein antigens. The superficial and secretory antigenic proteins considered in this research were: CFP10, ESAT6, MTC28, MPT64, 38 kDa protein, Ag85B, and MoeX. The proteins were cloned and expressed in an E. coli system. Polyclonal antibodies (ab) against the recombinant antigens were elicited in rabbits and mice. Antibodies were immobilized on the surface of amine-silanized nanoparticles (MNP@Si). The functionalized MNP@Si@ab were tested in a colorimetric sandwich enzyme-linked immunosorbent assay (sELISA-MNP@Si@ab) to recognize the selected antigens in sputum samples. The selected MTB antigens were successfully detected in sputum from TB patients in a shorter time (~ 4 h) using the sELISA-MNP@Si@ab, compared to the conventional sELISA (~15 h) standardized in home. Moreover, the sELISA-MNP@Si@ab showed the higher sensitivity in the real biological samples from infected patients.
Collapse
Affiliation(s)
- Nancy León-Janampa
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru; Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Svitlana Shinkaruk
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| | - Daniela E Kirwan
- Institute for Infection & Immunity, St. George's, University of London, London, United Kingdom.
| | - Eric Fouquet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Magali Szlosek
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400 Talence, France.
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
4
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
5
|
Lima D, ZÁrate-Bladés C, Souza P, Trombone A, Santos-Junior R, Brandão L, Masson A, Bonato V, Coelho-Castelo A, Sartori A, Vendramini M, Soares E, Benvenutti L, Silva C, Coelho V. No Evidence of Pathological Autoimmunity following Mycobacterium Leprae Heat-Shock Protein 65-Dna Vaccination in Mice. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x0900700204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Heat-shock proteins (HSPs) are currently one of the most promising targets for the development of immunotherapy against tumours and autoimmune disorders. This protein family has the capacity to activate or modulate the function of different immune system cells. They induce the activation of monocytes, macrophages and dendritic cells, and contribute to cross-priming, an important mechanism of presentation of exogenous antigen in the context of MHC class I molecules. These various immunological properties of HSP have encouraged their use in several clinical trials. Nevertheless, an important issue regarding these proteins is whether the high homology among HSPs across different species may trigger the breakdown of immune tolerance and induce autoimmune diseases. We have developed a DNA vaccine codifying the Mycobacterium leprae Hsp65 (DNAhsp65), which showed to be highly immunogenic and protective against experimental tuberculosis. Here, we address the question of whether DNAhsp65 immunization could induce pathological autoimmunity in mice. Our results show that DNAhsp65 vaccination induced antibodies that can recognize the human Hsp60 but did not induce harmful effects in 16 different organs analysed by histopathology up to 210 days after vaccination. We also showed that anti-DNA antibodies were not elicited after DNA vaccination. The results are important for the development of both HSP and DNA-based immunomodulatory agents.
Collapse
Affiliation(s)
- D.S. Lima
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - C.R. ZÁrate-Bladés
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - P.R.M. Souza
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - A.P. Trombone
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - R.R. Santos-Junior
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo
| | - Lt. Brandão
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - A.P. Masson
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - V.L. Bonato
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - A.A.M. Coelho-Castelo
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - A. Sartori
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Botucatu, São Paulo
| | - M. Vendramini
- Department of Pathology, University of São Paulo Medical School, São Paulo
| | - E.G. Soares
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo
| | - L.A. Benvenutti
- Department of Pathology, University of São Paulo Medical School, São Paulo
| | - C.L. Silva
- The Centre for Tuberculosis Research, Department of Biochemistry and Immunology, Medicine School of Ribeirão Preto, University of São Paulo, São Paulo
| | - V. Coelho
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo
- Institute for Investigation in Immunology, National Institute of Science and Technology -INCT, São Paulo, Brazil
| |
Collapse
|
6
|
Abstract
The conventional treatment for fungal diseases usually shows long periods of therapy and the high frequency of relapses and sequels. New strategies of the treatment are necessary. We have shown that the Mycobacterium leprae HSP65 gene can be successfully used as therapy against murine Paracoccidioidomycosis (PCM). Here, we described the methodology of DNAhsp65 immunotherapy in mice infected with the dimorphic fungus Paracoccidioides brasiliensis, one of PCM agent, evaluating cytokines levels, fungal burden, and lung injury. Our results provide a new prospective on the immunotherapy of mycosis.
Collapse
|
7
|
Cardona PJ. The Progress of Therapeutic Vaccination with Regard to Tuberculosis. Front Microbiol 2016; 7:1536. [PMID: 27733848 PMCID: PMC5039189 DOI: 10.3389/fmicb.2016.01536] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
A major problem with tuberculosis (TB) control is the long duration of drug therapy-both for latent and for active TB. Therapeutic vaccination has been postulated to improve this situation, and to this end there are several candidates already in clinical phases of development. These candidates follow two main designs, namely bacilli-directed therapy based on inactivated -whole or -fragmented bacillus (Mycobacterium w and RUTI) or fusion proteins that integrate non-replicating bacilli -related antigens (H56 vaccine), and host-directed therapy to reduce the tissue destruction. The administration of inactivated Mycobacterium vaccae prevents the "Koch phenomenon" response, and oral administration of heat-killed Mycobacterium manresensis prevents excessive neutrophilic infiltration of the lesions. This review also tries to explain the success of Mycobacterium tuberculosis by reviewing its evolution from infection to disease, and highlights the lack of a definitive understanding of the natural history of TB pathology and the need to improve our knowledge on TB immunology and pathogenesis.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Universitat Autònoma de Barcelona, CIBERES, Fundació Institut Germans Trias i Pujol Badalona, Spain
| |
Collapse
|
8
|
Doimo NTS, Zárate-Bladés CR, Rodrigues RF, Tefé-Silva C, Trotte MNS, Souza PRM, Soares LS, Rios WM, Floriano EM, Brandão IT, Masson AP, Coelho V, Ramos SG, Silva CL. Immunotherapy of tuberculosis with Mycobacterium leprae Hsp65 as a DNA vaccine triggers cross-reactive antibodies against mammalian Hsp60 but not pathological autoimmunity. Hum Vaccin Immunother 2014; 10:1238-43. [PMID: 24607935 DOI: 10.4161/hv.28249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite substantial efforts in recent years toward the development of new vaccines and drugs against tuberculosis (TB), success has remained elusive. Immunotherapy of TB with mycobacterial Hsp65 as a DNA vaccine (DNA-hsp65) results in a reduction of systemic bacterial loads and lung tissue damage, but the high homology of Hsp65 with the mammalian protein raises concern that pathological autoimmune responses may also be triggered. We searched for autoimmune responses elicited by DNA-hsp65 immunotherapy in mice chronically infected with TB by evaluating the humoral immune response and comprehensive histopathology using stereology. Cross-reactive antibodies between mycobacterial and mammalian Hsp60/65 were detected; however, no signs of pathological autoimmunity were found up to 60 days after the end of the therapy.
Collapse
Affiliation(s)
- Nayara T S Doimo
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Carlos R Zárate-Bladés
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Rodrigo F Rodrigues
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Cristiane Tefé-Silva
- Department of Pathology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Marcele N S Trotte
- Veterinary Medical Department of Anatomical Pathology; State University of Rio de Janeiro; Rio de Janeiro, Brazil
| | - Patrícia R M Souza
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Luana S Soares
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Wendy M Rios
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Elaine M Floriano
- Department of Pathology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Izaira T Brandão
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Ana P Masson
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Verônica Coelho
- Laboratory of Immunology; Heart Institute (InCor); School of Medicine; University of São Paulo; São Paulo, Brazil; Institute for Investigation in Immunology (iii)-National Institute of Science and Technology; São Paulo, Brazil
| | - Simone G Ramos
- Department of Pathology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| | - Celio L Silva
- The Centre for Tuberculosis Research; Department of Biochemistry and Immunology; Ribeirão Preto School of Medicine; University of São Paulo; São Paulo, Brazil
| |
Collapse
|
9
|
Wu K, Zhao XJ, Wong KW, Fan XY. Comparison of plasmid DNA versus PCR amplified gene of insert DNA for nucleofection in Kasumi-1 cells. Cytotechnology 2014; 67:275-83. [PMID: 24468832 DOI: 10.1007/s10616-013-9683-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023] Open
Abstract
Plasmid electroporation, or its optimized version nucleofection, is an important technique for gene transfection of cells in suspension. However, substantial cell death and/or low transfection efficiency are still common for some cell lines. By using enhanced green fluorescent protein (EGFP) as a reporter, we compared the use of PCR amplified EGFP (PaEGFP) and its parental plasmid (pEGFP-N2) for nucleofection in Kasumi-1 cells. We found that PaEGFP induced significantly lower cell death but had similar transfection efficiency compared to its parent plasmid (pEGFP-N2). Most importantly, contrary to the pEGFP-N2-nucleofected cells, the PaEGFP-nucleofected cells subsequently grew properly. Tests in other cell lines also implied that PaEGFP indeed induced consistently less cell death, but transfection efficiencies varied, being good in suspension cell lines but lower in adhesive cell lines. We suggest that direct transfection with PCR amplified genes can be a simple and useful approach for optimization of electropulse-based transfection not only of Kasumi-1 cells, but also may be useful for other cell lines that are difficult to transfect in suspension.
Collapse
Affiliation(s)
- Kang Wu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | | | | | | |
Collapse
|
10
|
Protective and therapeutic efficacy of Mycobacterium smegmatis expressing HBHA-hIL12 fusion protein against Mycobacterium tuberculosis in mice. PLoS One 2012; 7:e31908. [PMID: 22363768 PMCID: PMC3283714 DOI: 10.1371/journal.pone.0031908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/16/2012] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG), has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS) strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA) and human interleukin 12 (hIL-12). Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB) were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2) in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.
Collapse
|
11
|
Ahn SS, Jeon BY, Kim KS, Kwack JY, Lee EG, Park KS, Sung YC, Cho SN. Mtb32 is a promising tuberculosis antigen for DNA vaccination in pre- and post-exposure mouse models. Gene Ther 2011; 19:570-5. [PMID: 21956689 DOI: 10.1038/gt.2011.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of antigens that provide protective immunity via prophylactic and therapeutic vaccination against Mycobacterium tuberculosis is critical for the development of subunit vaccines for tuberculosis (TB). In this study, we performed a head-to-head comparison of seven well-known TB antigens delivered by DNA vaccine, and evaluated their respective immunogenicities and protective efficacies in pre- and post-exposure mouse models. All TB antigens were designed as a chimeric fusion with Flt3-L to enhance antigen-specific T-cell immunity upon vaccination. Prophylactic vaccination with the Flt3L (F)-Mtb32 DNA vaccine elicited significant protection in both the spleen and lungs against M. tuberculosis challenge, comparable to the Bacillus Calmette-Guerin vaccine. F-Ag85A and F-Mtb32 DNA vaccines, in combination with chemotherapy, reduced the bacterial burden to undetectable levels in the lungs of all mice infected with M. tuberculosis. These data collectively indicate that the F-Mtb32 DNA vaccine confers the most efficient protective immunity that suppresses bacterial growth in the active or latent status of M. tuberculosis.
Collapse
Affiliation(s)
- S-S Ahn
- Division of Molecular and Life Sciences, Postech Biotech Center, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Incorporation of immunostimulatory motifs in the transcribed region of a plasmid DNA vaccine enhances Th1 immune responses and therapeutic effect against Mycobacterium tuberculosis in mice. Vaccine 2011; 29:7624-30. [PMID: 21856352 DOI: 10.1016/j.vaccine.2011.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/01/2011] [Accepted: 08/02/2011] [Indexed: 11/20/2022]
Abstract
T-helper type 1 (Th1) immune response is involved in the development of protective immunity against Mycobacterium tuberculosis. Thus, an increase in Th1 and cellular immune responses should lead to enhanced anti-mycobacterial activity. In this study, we aimed to improve Th1 immune responses to a DNA vaccine by adding potentially immunostimulatory nucleotide sequences into the transcribed region downstream of the antigen. The Mycobacterium leprae gene for hsp65, codon-optimized for expression in mammalian cells, was inserted into pVAX1 with and without 3'-sequences containing CpG and dsRNA motifs. When the plasmid contained both motifs, transfected murine macrophage-like RAW264.7 cells showed markedly increased levels of mRNA for immune molecules of Th1 (IFN-α, IL-12) and Th17 (IL-17, IL-23 and IL-6) responses and for T cell co-stimulatory molecules (CD80 and CD86) but not for a Th2 response (IL-4 and IL-10). Immunized mice showed substantially increased serum anti-Hsp65 IgG2a antibody levels and IFN-γ production by spleen cells, confirming enhancement of the Th1 response in vivo. Furthermore, when non-vaccinated mice were infected with H37Rv by low-dose aerosol challenge, and then 4 weeks later were treated with plasmids by intramuscular injection, the mice that had been treated with plasmids containing immunostimulatory motifs showed an enhanced reduction in mycobacterial loads in lung and spleen. We conclude that DNA vaccines may be made more highly immunogenic and more effective for treatment by including transcribed stimulatory sequences.
Collapse
|
13
|
Jørgensen LVG, Buchmann K. Cysteine proteases as potential antigens in antiparasitic DNA vaccines. Vaccine 2011; 29:5575-83. [PMID: 21664399 DOI: 10.1016/j.vaccine.2011.05.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/12/2011] [Accepted: 05/25/2011] [Indexed: 12/17/2022]
Abstract
Cysteine proteases in parasites are potent inducers of vertebrate host immune responses and may under certain circumstances take part in the pathogen's immune evasion strategies. These capacities place these parasite molecules as interesting candidate antigens in antiparasitic vaccines for use in vertebrates. Parasite cysteine proteases are able to skew the Th1/Th2 profile in mammals towards a response which allows sustainable parasite burdens in the host. DNA vaccines are also able to skew the Th1/Th2 profile by different administration techniques and the use of cysteine proteases in these genetic immunizations open perspectives for manipulation of the host immune response towards higher protection.
Collapse
Affiliation(s)
- Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Denmark.
| | | |
Collapse
|
14
|
The impact of transcriptomics on the fight against tuberculosis: focus on biomarkers, BCG vaccination, and immunotherapy. Clin Dev Immunol 2010; 2011:192630. [PMID: 21197423 PMCID: PMC3010624 DOI: 10.1155/2011/192630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 11/16/2010] [Indexed: 11/18/2022]
Abstract
In 1882 Robert Koch identified Mycobacterium tuberculosis as the causative agent of tuberculosis (TB), a disease as ancient as humanity. Although there has been more than 125 years of scientific effort aimed at understanding the disease, serious problems in TB persist that contribute to the estimated 1/3 of the world population infected with this pathogen. Nonetheless, during the first decade of the 21st century, there were new advances in the fight against TB. The development of high-throughput technologies is one of the major contributors to this advance, because it allows for a global vision of the biological phenomenon. This paper analyzes how transcriptomics are supporting the translation of basic research into therapies by resolving three key issues in the fight against TB: (a) the discovery of biomarkers, (b) the explanation of the variability of protection conferred by BCG vaccination, and (c) the development of new immunotherapeutic strategies to treat TB.
Collapse
|
15
|
Huang JM, Sali M, Leckenby MW, Radford DS, Huynh HA, Delogu G, Cranenburgh RM, Cutting SM. Oral delivery of a DNA vaccine against tuberculosis using operator-repressor titration in a Salmonella enterica vector. Vaccine 2010; 28:7523-8. [PMID: 20851079 DOI: 10.1016/j.vaccine.2010.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/30/2010] [Accepted: 09/01/2010] [Indexed: 12/14/2022]
Abstract
Attenuated Salmonella enterica offers a vaccine delivery route that has the benefits of enhanced immunogenicity and oral delivery. The majority of immunization studies have been conducted to deliver recombinant proteins, expressed from a gene that is either chromosomally integrated or carried on a low- or medium-copy number plasmid. There are, however, an increasing number of reports demonstrating the delivery of DNA vaccines, but the high-copy number plasmids that are preferentially used for this application are unstable in Salmonella. Here, we use the Operator-Repressor Titration (ORT) plasmid maintenance system in Salmonella enterica serovar Typhimurium to deliver a high-copy number plasmid expressing the Mycobacterium tuberculosis gene mpt64 to mice. MPT64 expression was detected in phagocytes using immunofluorescence microscopy following Salmonella-mediated delivery of the DNA vaccine. The indicative CD8+ responses measured by antigen-specific IFN-γ were higher from the live bacterial vector than from injected plasmid DNA, and a reduction in the pulmonary bacterial load was seen following an aerogenic challenge. This illustrates the potential of live attenuated Salmonella as oral tuberculosis vaccine vectors.
Collapse
Affiliation(s)
- Jen-Min Huang
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The current tuberculosis (TB) vaccine bacillus Calmette-Guérin (BCG) fails to protect against adult pulmonary TB. Yet, its capacity to control miliary TB in newborn infants forms the basis for development of novel vaccine candidates. These either exploit genetic modification of BCG to create a viable replacement vaccine or use BCG to prime the immune response followed by boost with a novel subunit vaccine. This could ultimately result in a combination vaccination schedule comprising a prime with a live BCG replacement followed by a subunit vaccine boost. Ultimately, vaccination strategies that achieve sterile eradication of, or prevent infection with, tubercle bacilli would be an ambitious highly promising goal.
Collapse
Affiliation(s)
- S H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
17
|
Barabas AZ, Cole CD, Barabas AD, Graeff RM, Lafreniere R, Weir DM. Modified Vaccination Technique for Prophylactic and Therapeutic Applications to Combat Endogenous Antigen-Induced Disorders. Scand J Immunol 2010; 71:125-33. [DOI: 10.1111/j.1365-3083.2009.02360.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Blasi P, Schoubben A, Giovagnoli S, Rossi C, Ricci M. Fighting tuberculosis: old drugs, new formulations. Expert Opin Drug Deliv 2009; 6:977-93. [PMID: 19678791 DOI: 10.1517/17425240903130577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review reports the state of the art on innovative drug delivery strategies designed for antitubercular chemotherapeutics. The introduction contains the fundamental biological background concerning tuberculosis and a review of the current antitubercular therapy, and is followed by a critical report of the micrometric and nanometric particulate systems designed and investigated to improve tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Paolo Blasi
- University of Perugia, School of Pharmacy, Department of Chemistry and Technology of Drugs, Perugia, Italy.
| | | | | | | | | |
Collapse
|
19
|
Bivas-Benita M, Lin MY, Bal SM, van Meijgaarden KE, Franken KLMC, Friggen AH, Junginger HE, Borchard G, Klein MR, Ottenhoff THM. Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA-PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 2009; 27:4010-7. [PMID: 19389445 DOI: 10.1016/j.vaccine.2009.04.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/07/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
During persistent infection and hypoxic-stress, Mycobacterium tuberculosis (Mtb) expresses a series of Mtb latency antigens. The aim of this study was to evaluate the immunogenicity of a DNA vaccine encoding the Mtb latency antigen Rv1733c and to explore the effect of pulmonary delivery and co-formulation with poly (d,l-lactide-co-glycolide) (PLGA)-polyethyleneimine (PEI) nanoparticles (np) on host immunity. Characterization studies indicated that PLGA-PEI np kept their nanometer size after concentration and were positively charged. The np were able to mature human dendritic cells and stimulated them to secrete IL-12 and TNF-alpha comparable to levels observed after lipopolysaccharide (LPS) stimulation. Mtb latency antigen Rv1733c DNA prime combined with Rv1733c protein boost enhanced T cell proliferation and IFN-gamma secretion in mice in response to Rv1733c and Mtb hypoxic lysate. Rv1733c DNA adsorbed to PLGA-PEI np and applied to the lungs increased T cell proliferation and IFN-gamma production more potently compared to the same vaccinations given intramuscularly. The strongest immunogenicity was obtained by pulmonary priming with np-adsorbed Rv1733c DNA followed by boosting with Rv1733c protein. These results confirm that PLGA-PEI np are an efficient DNA vaccine delivery system to enhance T cell responses through pulmonary delivery in a DNA prime/protein boost vaccine regimen.
Collapse
Affiliation(s)
- Maytal Bivas-Benita
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Comparative analysis of microbial genomes to study unique and expanded gene families in Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2009; 9:314-21. [DOI: 10.1016/j.meegid.2007.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 11/30/2022]
|
21
|
Rook GAW, Hernández-Pando R, Zumla A. Tuberculosis Due to High-Dose Challenge in Partially Immune Individuals: A Problem for Vaccination? J Infect Dis 2009; 199:613-8. [DOI: 10.1086/596654] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
22
|
Zárate-Bladés CR, Bonato VLD, da Silveira ELV, Oliveira e Paula M, Junta CM, Sandrin-Garcia P, Fachin AL, Mello SS, Cardoso RS, Galetti FCDS, Coelho-Castelo AAM, Ramos SG, Donadi EA, Sakamoto-Hojo ET, Passos GADS, Silva CL. Comprehensive gene expression profiling in lungs of mice infected with Mycobacterium tuberculosis following DNAhsp65 immunotherapy. J Gene Med 2009; 11:66-78. [PMID: 19035575 DOI: 10.1002/jgm.1269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. METHODS We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. RESULTS The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-alpha, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. CONCLUSIONS The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies.
Collapse
Affiliation(s)
- Carlos Rodrigo Zárate-Bladés
- Núcleo de Pesquisas em Tuberculose, Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
WANG LIMEI, BAI YINLAN, SHI CHANGHONG, GAO HUI, XUE YING, JIANG HONG, XU ZHIKAI. Immunogenicity and protective efficacy of a DNA vaccine encoding the fusion protein of mycobacterium heat shock protein 65(Hsp65) with human interleukin-2 againstMycobacterium tuberculosisin BALB/c mice. APMIS 2008; 116:1071-81. [DOI: 10.1111/j.1600-0463.2008.01095.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
|
25
|
Michaluart P, Abdallah KA, Lima FD, Smith R, Moysés RA, Coelho V, Victora GD, Socorro-Silva A, Volsi EC, Zárate-Bladés CR, Ferraz AR, Barreto AK, Chammas MC, Gomes R, Gebrim E, Arakawa-Sugueno L, Fernandes KP, Lotufo PA, Cardoso MR, Kalil J, Silva CL. Phase I trial of DNA-hsp65 immunotherapy for advanced squamous cell carcinoma of the head and neck. Cancer Gene Ther 2008; 15:676-84. [PMID: 18535616 DOI: 10.1038/cgt.2008.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considering that mycobacterial heat-shock protein 65 (hsp65) gene transfer can elicit a profound antitumoral effect, this study aimed to establish the safety, maximum-tolerated dose (MTD) and preliminary efficacy of DNA-hsp65 immunotherapy in patients with advanced head and neck squamous cell carcinoma (HNSCC). For this purpose, 21 patients with unresectable and recurrent HNSCC were studied. Each patient received three ultrasound-guided injections at 21-day intervals of: 150, 600 or 400 microg of DNA-hsp65. Toxicity was graded according to CTCAE directions. Tumor volume was measured before and after treatment using computed tomography scan. The evaluation included tumor mass variation, delayed-type hypersensitivity response and spontaneous peripheral blood mononuclear cell proliferation before and after treatment. The MTD was 400 microg per dose. DNA-hsp65 immunotherapy was well tolerated with moderate pain, edema and infections as the most frequent adverse effects. None of the patients showed clinical or laboratory alterations compatible with autoimmune reactions. Partial response was observed in 4 out of 14 patients who completed treatment, 2 of which are still alive more than 3 years after the completion of the trial. Therefore, DNA-hsp65 immunotherapy is a feasible and safe approach at the dose of 400 microg per injection in patients with HNSCC refractory to standard treatment. Further studies in a larger number of patients are needed to confirm the efficacy of this novel strategy.
Collapse
Affiliation(s)
- P Michaluart
- HSP65 Clinical Trial Group, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu S, Gong Q, Wang C, Liu H, Wang Y, Guo S, Wang W, Liu J, Shao M, Chi L, Zhao K, Wang Z, Shi Y, Huang Y, guli A, Zhang C, Kong X. A novel DNA vaccine for protective immunity against virulent Mycobacterium bovis in mice. Immunol Lett 2008; 117:136-45. [DOI: 10.1016/j.imlet.2008.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/27/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
|
27
|
Abstract
Plasmid DNA vaccination is a very powerful and easy method for the induction of strong humoral and cell-mediated immune responses in mice. The technique has also been successfully applied for the definition of immunodominant, human T-cell epitopes using HLA-transgenic mice. By virtue of its strong capacity to induce CD4+-mediated Th1 and CD8+-mediated cytotoxic T-lymphocyte responses, this vaccine approach is particularly attractive for the prophylaxis of intracellular pathogens, such as Mycobacterium tuberculosis (TB) and other pathogenic mycobacteria. In small rodents, the potential of mycobacterial DNA vaccines is well established. In humans, DNA vaccines are clearly less immunogenic and, so far, TB-specific DNA vaccines have not been assessed in humans. However, a number of studies in cattle and sheep have demonstrated the potential of mycobacterial DNA vaccines in larger animals. Also, immunization protocols combining the potent priming capacity of plasmid DNA with subsequent boosting with recombinant protein, recombinant pox-viruses or with Mycobacterium bovis bacille Calmette-Guerin (BCG) vaccine are particularly promising for future applications. The potential of mycobacterial DNA vaccines for immunotherapy and post-exposure prophylaxis is still not clear.
Collapse
Affiliation(s)
- Kris Huygen
- Mycobacterial Immunology, Pasteur Institute Brussels, Wetenschappelijk Instituut voor Volksgezondheid, Brussels, Belgium.
| |
Collapse
|