1
|
Kim JO, Nothaft H, Moon Y, Jeong S, Vortherms AR, Song M, Szymanski CM, White J, Walker R. Shigella Mutant with Truncated O-Antigen as an Enteric Multi-Pathogen Vaccine Platform. Vaccines (Basel) 2025; 13:506. [PMID: 40432116 PMCID: PMC12115902 DOI: 10.3390/vaccines13050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Rising antibiotic resistance underscores the urgent need for effective vaccines against shigellosis. Our previous research identified the Shigella flexneri 2a truncated mutant (STM), a wzy gene knock-out strain cultivated in shake-flasks, as a promising broadly protective Shigella vaccine candidate. Expanding on this finding, our current study explores the feasibility of transitioning to a fermentor-grown STM as a vaccine candidate for further clinical development. Methods: The STM and STM-Cj, engineered to express the conserved Campylobacter jejuni N-glycan antigen, were grown in animal-free media, inactivated with formalin, and evaluated for key antigen retention and immunogenicity in mice. Results: The fermentor-grown STM exhibited significantly increased production yields and retained key antigens after inactivation. Immunization with the STM, particularly along with the double-mutant labile toxin (dmLT) adjuvant, induced robust immune responses to the conserved proteins IpaB, IpaC, and PSSP-1. Additionally, it provided protection against homologous and heterologous Shigella challenges in a mouse pulmonary model. The STM-Cj vaccine elicited antibody responses specific to the N-glycan while maintaining protective immune responses against Shigella. These findings underscore the potential of the fermentor-grown STM as a safe and immunogenic vaccine platform for combating shigellosis and possibly other gastrointestinal bacterial infections. Conclusions: Further process development to optimize growth and key antigen expression as well as expanded testing in additional animal models for the assessment of protection against Shigella and Campylobacter are needed to build on these encouraging initial results. Ultimately, clinical trials are essential to evaluate the efficacy and safety of STM-based vaccines in humans.
Collapse
Affiliation(s)
- Jae-Ouk Kim
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea (S.J.); (M.S.)
| | - Harald Nothaft
- VaxAlta Inc., Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.N.); (C.M.S.)
| | - Younghye Moon
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea (S.J.); (M.S.)
| | - Seonghun Jeong
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea (S.J.); (M.S.)
| | | | - Manki Song
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea (S.J.); (M.S.)
| | - Christine M. Szymanski
- VaxAlta Inc., Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.N.); (C.M.S.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
2
|
Walker RI. Conserved antigens for enteric vaccines. Vaccine 2025; 50:126828. [PMID: 39914256 PMCID: PMC11878282 DOI: 10.1016/j.vaccine.2025.126828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
Enterotoxigenic Escherichia coli (ETEC), Shigella, and Campylobacter have been identified as major causes of diarrheal diseases worldwide. In addition to overt disease and death, they are responsible for stunting in children with the risk of lifelong consequences on health and economic opportunities. All three of these bacterial pathogens, which collectively account for approximately 30 % of the cases of diarrheal diseases, are recognized as antimicrobial resistance (AMR) threats. In spite of the dangers these pathogens represent for both children and adults, there is as yet no licensed vaccine available for any of them. Fortunately, much has been accomplished to identify conserved antigens against each of these pathogens so that now relatively simple vaccines have the potential to be developed into multi-pathogen vaccines which could have a major impact on reduction of diarrheal diseases. Conserved antigens may be used even more efficiently if consolidated and expressed on a cellular vector or as part of a conjugate vaccine. A new mucosal adjuvant, double mutant heat-labile toxin (dmLT), has been shown to not only be among the conserved antigens against ETEC, but to also have properties which drive robust mucosal and systemic immune responses for antigens given orally or intramuscularly. Conserved antigens and the strategies for their use such as co-administration with dmLT will be presented in this review.
Collapse
Affiliation(s)
- Richard I Walker
- PATH, 455 Massachusetts Ave, Suite 1000, Washington, DC, 20001-2621, USA.
| |
Collapse
|
3
|
Westcott MM, Blevins M, Wierzba TF, Morse AE, White KR, Sanders LA, Sanders JW. The Immunogenicity and Properties of a Whole-Cell ETEC Vaccine Inactivated with Psoralen and UVA Light in Comparison to Formalin. Microorganisms 2023; 11:2040. [PMID: 37630600 PMCID: PMC10458022 DOI: 10.3390/microorganisms11082040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Inactivated whole-cell vaccines present a full repertoire of antigens to the immune system. Formalin treatment, a standard method for microbial inactivation, can modify or destroy protein antigenic epitopes. We tested the hypothesis that photochemical inactivation with psoralen and UVA light (PUVA), which targets nucleic acid, would improve the immunogenicity of an Enterotoxigenic E. coli (ETEC) vaccine relative to a formalin-inactivated counterpart. Exposure of ETEC H10407 to PUVA using the psoralen drug 4'-Aminomethyltrioxsalen hydrochloride (AMT) yielded replication-incompetent bacteria that retained their metabolic activity. CFA/I-mediated mannose-resistant hemagglutination (MRHA) was equivalent for PUVA-inactivated and live ETEC, but was severely reduced for formalin-ETEC, indicating that PUVA preserved fimbrial protein functional integrity. The immunogenicity of PUVA-ETEC and formalin-ETEC was compared in mice ± double mutant heat-labile enterotoxin (dmLT) adjuvant. Two weeks after an intramuscular prime/boost, serum anti-ETEC IgG titers were similar for the two vaccines and were increased by dmLT. However, the IgG responses raised against several conserved ETEC proteins were greater after vaccination with PUVA-ETEC. In addition, PUVA-ETEC generated IgG specific for heat-labile toxin (LT) in the absence of dmLT, which was not a property of formalin-ETEC. These data are consistent with PUVA preserving ETEC protein antigens in their native-like form and justify the further testing of PUVA as a vaccine platform for ETEC using murine challenge models.
Collapse
Affiliation(s)
- Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Maria Blevins
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - Thomas F. Wierzba
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - Alexis E. Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Kinnede R. White
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Leigh Ann Sanders
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - John W. Sanders
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| |
Collapse
|
4
|
Chowdhury FM, Ahsan CR, Birkeland NK. Oral immunization of Escherichia albertii strain DM104 induces protective immunity against Shigella dysenteriae type 4 in mouse model. Acta Microbiol Immunol Hung 2021. [PMID: 34292874 DOI: 10.1556/030.2021.01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
The recent rise of antibiotic resistance and lack of an effective vaccine make the scenario of shigellosis alarming in developing countries like Bangladesh. In recent years, our group reported the vaccine efficacy of a non-pathogenic Escherichia albertii strain DM104 in different animal models, where an ocularly administered vaccine in the guinea pig eye model against Shigella dysenteriae type 4 challenge showed high protective efficacy and also induced a high titer of serum IgG against S. dysenteriae type 4 whole cell lysate (WCL) and LPS. In this study, we report further evaluation of the non-invasive and non-toxic environmental strain DM104 as a vaccine candidate against S. dysenteriae type 4 in mice model. Oral immunization of live DM104 bacterial strain demonstrated better protective immunity in mice model by showing 90% protection in mice against live S. dysenteriae type 4 lethal dose challenge and by inducing effective humoral and mucosal immune responses.
Collapse
Affiliation(s)
- Fatema Moni Chowdhury
- 1Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
- 2Department of Biological Sciences, University of Bergen, Bergen 5020, Norway
| | | | - Nils-Kåre Birkeland
- 2Department of Biological Sciences, University of Bergen, Bergen 5020, Norway
| |
Collapse
|
5
|
Mirhoseini A, Amani J, Nazarian S. Review on pathogenicity mechanism of enterotoxigenic Escherichia coli and vaccines against it. Microb Pathog 2018; 117:162-169. [DOI: 10.1016/j.micpath.2018.02.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
|
6
|
Chakraborty S, Harro C, DeNearing B, Bream J, Bauers N, Dally L, Flores J, Van de Verg L, Sack DA, Walker R. Evaluation of the Safety, Tolerability, and Immunogenicity of an Oral, Inactivated Whole-Cell Shigella flexneri 2a Vaccine in Healthy Adult Subjects. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:315-25. [PMID: 26865592 PMCID: PMC4820506 DOI: 10.1128/cvi.00608-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022]
Abstract
Shigella causes high morbidity and mortality worldwide, but there is no licensed vaccine for shigellosis yet. We evaluated the safety and immunogenicity of a formalin-inactivated whole-cell Shigella flexneri2a vaccine, Sf2aWC, given orally to adult volunteers. In a double-blind, placebo-controlled trial, 82 subjects were randomized to receive three doses of vaccine in dose escalation (2.6 ± 0.8 × 10(8), × 10(9), × 10(10), and × 10(11)vaccine particles/ml). Vaccine safety was actively monitored, and antigen-specific systemic and mucosal immune responses were determined in serum, antibody in lymphocyte supernatant (ALS), and fecal samples. Cytokines were measured in the serum. Sf2aWC was well tolerated and generally safe at all four dose levels. The vaccine resulted in a dose-dependent immune response. At the highest dose, the vaccine induced robust responses to lipopolysaccharide (LPS) in both serum and ALS samples. The highest magnitude and frequency of responses occurred after the first dose in almost all samples but was delayed for IgG in serum. Fifty percent of the vaccinees had a >4-fold increase in anti-LPS fecal antibody titers. Responses to invasion plasmid antigens (Ipa) were low. The levels of interleukin-17 (IL-17), IL-2, gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-10 were increased, and IL-8 was decreased immediately after first dose, but these changes were very transient. This phase I trial demonstrated that the Sf2aWC vaccine, a relatively simple vaccine concept, was safe and immunogenic. The vaccine elicited immune responses which were comparable to those induced by a live, attenuated Shigella vaccine that was protective in prior human challenge studies.
Collapse
Affiliation(s)
- Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Clayton Harro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jay Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Len Dally
- The EMMES Corporation, Rockville, Maryland, USA
| | | | | | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | |
Collapse
|
7
|
The Orchestra and Its Maestro: Shigella's Fine-Tuning of the Inflammasome Platforms. Curr Top Microbiol Immunol 2016; 397:91-115. [PMID: 27460806 DOI: 10.1007/978-3-319-41171-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Shigella spp. are the causative agents of bacillary dysentery, leading to extensive mortality and morbidity worldwide. These facultative intracellular bacteria invade the epithelium of the colon and the rectum, inducing a severe inflammatory response from which the symptoms of the disease originate. Shigella are human pathogens able to manipulate and subvert the innate immune system surveillance. Shigella dampens inflammasome activation in epithelial cells. In infected macrophages, inflammasome activation and IL-1β and IL-18 release lead to massive neutrophil recruitment and greatly contribute to inflammation. Here, we describe how Shigella hijacks and finely tunes inflammasome activation in the different cell populations involved in pathogenesis: epithelial cells, macrophages, neutrophils, DCs, and B and T lymphocytes. Shigella emerges as a "sly" pathogen that switches on/off the inflammasome mechanisms in order to optimize the interaction with the host and establish a successful infection.
Collapse
|
8
|
Nag D, Sinha R, Mitra S, Barman S, Takeda Y, Shinoda S, Chakrabarti MK, Koley H. Heat killed multi-serotype Shigella immunogens induced humoral immunity and protection against heterologous challenge in rabbit model. Immunobiology 2015. [PMID: 26210044 DOI: 10.1016/j.imbio.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently we have shown the homologous protective efficacy of heat killed multi-serotype Shigella (HKMS) immunogens in a guinea pig colitis model. In our present study, we have advanced our research by immunizing rabbits with a reduced number of oral doses and evaluating the host's adaptive immune responses. The duration of immunogenicity and subsequently protective efficacy was determined against wild type heterologous Shigella strains in a rabbit luminal model. After three successive oral immunizations with HKMS immunogens, serum and lymphocyte supernatant antibody titer against the heterologous shigellae were reciprocally increased and remained at an elevated level up to 180 days. Serogroup and serotype specific O-antigen of lipopolysaccharide and immunogenic proteins of heterologous challenge strains were detected by immunoblot assay. Up-regulation of IL-12p35, IFN-γ and IL-10 mRNA expression was detected in immunized rabbit peripheral blood mononuclear cells (PBMC) after stimulation with HKMS in vitro. HKMS-specific plasma cell response was confirmed by production of a relatively higher level of HKMS-specific IgG in immunized PBMC supernatant compared to control group. Furthermore, the immunized groups of rabbits exhibited complete protection against wild type heterologous shigellae challenge. Thus HKMS immunogens induced humoral and Th1-mediated adaptive immunity and provided complete protection in a rabbit model. These immunogens could be a broad spectrum non-living vaccine candidate for human use in the near future.
Collapse
Affiliation(s)
- Dhrubajyoti Nag
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Soma Mitra
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Soumik Barman
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Yoshifumi Takeda
- Collaborative Research Centre of Okayama University for Infectious Diseases, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sumio Shinoda
- Collaborative Research Centre of Okayama University for Infectious Diseases, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - M K Chakrabarti
- Division of Pathophysiology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
9
|
Comparison of resistance to third-generation cephalosporins in Shigella between Europe-America and Asia-Africa from 1998 to 2012. Epidemiol Infect 2015; 143:2687-99. [PMID: 25553947 DOI: 10.1017/s0950268814003446] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We conducted a systematic review to compare resistance to third-generation cephalosporins (TGCs) in Shigella strains between Europe-America and Asia-Africa from 1998 to 2012 based on a literature search of computerized databases. In Asia-Africa, the prevalence of resistance of total and different subtypes to ceftriaxone, cefotaxime and ceftazidime increased markedly, with a total prevalence of resistance up to 14·2% [95% confidence interval (CI) 3·9-29·4], 22·6% (95% CI 4·8-48·6) and 6·2% (95% CI 3·8-9·1) during 2010-2012, respectively. By contrast, resistance rates to these TGCs in Europe-America remained relatively low--less than 1·0% during the 15 years. A noticeable finding was that certain countries both in Europe-America and Asia-Africa, had a rapid rising trend in the prevalence of resistance of S. sonnei, which even outnumbered S. flexneri in some periods. Moreover, comparison between countries showed that currently the most serious problem concerning resistance to these TGCs appeared in Vietnam, especially for ceftriaxone, China, especially for cefotaxime and Iran, especially for ceftazidime. These data suggest that monitoring of the drug resistance of Shigella strains should be strengthened and that rational use of antibiotics is required.
Collapse
|
10
|
Walker RI. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children. Vaccine 2014; 33:954-65. [PMID: 25482842 DOI: 10.1016/j.vaccine.2014.11.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 02/06/2023]
Abstract
Despite improvements to water quality, sanitation, and the implementation of current prevention and treatment interventions, diarrhea remains a major cause of illness and death, especially among children less than five years of age in the developing world. Rotavirus vaccines have already begun making a real impact on diarrhea, but several more enteric vaccines will be necessary to achieve broader reductions of illness and death. Among the many causes of diarrheal disease, enterotoxigenic Escherichia coli (ETEC) and Shigella are the two most important bacterial pathogens for which there are no currently licensed vaccines. Vaccines against these two pathogens could greatly reduce the impact of disease caused by these infections. This review describes the approaches to ETEC and Shigella vaccines that are currently under development, including a range of both cellular and subunit approaches for each pathogen. In addition, the review discusses strategies for maximizing the potential benefit of these vaccines, which includes the feasibility of co-administration, consolidation, and combination of vaccine candidates, as well as issues related to effective administration of enteric vaccines to infants. Recent impact studies indicate that ETEC and Shigella vaccines could significantly benefit global public health. Either vaccine, particularly if they could be combined together or with another enteric vaccine, would be an extremely valuable tool for saving lives and promoting the health of infants and children in the developing world, as well as potentially providing protection to travelers and military personnel visiting endemic areas.
Collapse
Affiliation(s)
- Richard I Walker
- PATH, 455 Massachusetts Avenue NW, Suite 1000, Washington, DC 20001, USA.
| |
Collapse
|
11
|
Development and preclinical evaluation of a trivalent, formalin-inactivated Shigella whole-cell vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:366-82. [PMID: 24403527 DOI: 10.1128/cvi.00683-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Studies were undertaken to manufacture a multivalent Shigella inactivated whole-cell vaccine that is safe, effective, and inexpensive. By using several formalin concentrations, temperatures, and incubation periods, an optimized set of inactivation conditions was established for Shigella flexneri 2a, S. sonnei, and S. flexneri 3a to produce inactivated whole cells expressing a full repertoire of Ipa proteins and lipopolysaccharide (LPS). The inactivation conditions selected were treatment with 0.2% formalin (S. flexneri 2a and 3a) or 0.6% formalin (S. sonnei) for 48 h at 25°C. Vaccine formulations prepared under different inactivation conditions, in different doses (10E5, 10E7, and 10E9 cells), and with or without the inclusion of double-mutant heat-labile toxin (dmLT) were evaluated in mice. Two intranasal immunizations with ≥10E7 inactivated whole cells resulted in high levels of anti-Invaplex and moderate levels of LPS-specific IgG and IgA in serum and in lung and intestinal wash samples. Addition of dmLT to the vaccine formulations did not significantly enhance humoral immunogenicity. Minimal humoral responses for IpaB, IpaC, or IpaD were detected after immunization with inactivated whole Shigella cells regardless of the vaccine inactivation conditions. In guinea pigs, monovalent formulations of S. flexneri 2a of 3a or S. sonnei consisting of 10E8, 10E9, or 10E10 cells were protective in a keratoconjunctivitis assay. A trivalent formulation provided protection against all three serotypes (S. flexneri 2a, P = 0.018; S. flexneri 3a, P = 0.04; S. sonnei, P < 0.0001). The inactivated Shigella whole-cell vaccine approach incorporates an uncomplicated manufacturing process that is compatible with multivalency and the future development of a broadly protective Shigella vaccine.
Collapse
|
12
|
Barman S, Koley H, Ramamurthy T, Chakrabarti MK, Shinoda S, Nair GB, Takeda Y. Protective immunity by oral immunization with heat-killedShigellastrains in a guinea pig colitis model. Microbiol Immunol 2013; 57:762-71. [DOI: 10.1111/1348-0421.12095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Soumik Barman
- National Institute of Cholera and Enteric Diseases; P-33, C.I.T. Road, Scheme XM
| | - Hemanta Koley
- National Institute of Cholera and Enteric Diseases; P-33, C.I.T. Road, Scheme XM
| | | | | | - Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Diseases in India; 67 Dr. S. C. Banerjee Road, ID Hospital Campus, Beliaghata Kolkata 700 010
| | - Gopinath Balakrish Nair
- Translational Health Science and Technology Institute; Plot No. 496, Phase-III, Udyog Vihar Gurgaon Haryana 122 016 India
| | - Yoshifumi Takeda
- Collaborative Research Center of Okayama University for Infectious Diseases in India; 67 Dr. S. C. Banerjee Road, ID Hospital Campus, Beliaghata Kolkata 700 010
| |
Collapse
|
13
|
Camacho A, Souza-Rebouças J, Irache J, Gamazo C. Towards a non-living vaccine against Shigella flexneri: From the inactivation procedure to protection studies. Methods 2013; 60:264-8. [DOI: 10.1016/j.ymeth.2012.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 11/27/2022] Open
|
14
|
Abstract
Renewed awareness of the substantial morbidity and mortality that Shigella infection causes among young children in developing countries, combined with technological innovations in vaccinology, has led to the development of novel vaccine strategies in the past 5 years. Along with advancement of classic vaccines in clinical trials and new sophisticated measurements of immunological responses, much new data has been produced, lending promise to the potential for production of safe and effective Shigella vaccines. Herein, we review the latest progress in Shigella vaccine development within the framework of persistent obstacles.
Collapse
|
15
|
Barman S, Kumar R, Chowdhury G, Rani Saha D, Wajima T, Hamabata T, Ramamurthy T, Balakrish Nair G, Takeda Y, Koley H. Live non-invasive Shigella dysenteriae 1 strain induces homologous protective immunity in a guinea pig colitis model. Microbiol Immunol 2011; 55:683-93. [DOI: 10.1111/j.1348-0421.2011.00371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
de Paula CMD, Mercedes PG, do Amaral PH, Tondo EC. Antimicrobial resistance and PCR-ribotyping of Shigella responsible for foodborne outbreaks occurred in southern Brazil. Braz J Microbiol 2010; 41:966-77. [PMID: 24031576 PMCID: PMC3769747 DOI: 10.1590/s1517-838220100004000015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 04/04/2010] [Accepted: 06/21/2010] [Indexed: 12/01/2022] Open
Abstract
Little information about Shigella responsible for foodborne shigellosis is available in Brazil. The present study aimed to investigate the antimicrobial resistance and PCR-ribotyping patterns of Shigella isolates responsible for foodborne outbreaks occurred in Rio Grande do Sul State (RS), Southern Brazil in the period between 2003 and 2007. Shigella strains (n=152) were isolated from foods and fecal samples of victims of shigellosis outbreaks investigated by the Surveillance Service. Identification of the strains at specie level indicated that 71.1% of them were S. flexneri, 21.5% S. sonnei, and 0.7% S. dysenteriae. Ten strains (6.7%) were identified only as Shigella spp. An increasing occurrence of S. sonnei was observed after 2004. Most of the strains were resistant to streptomycin (88.6%), followed by ampicillin (84.6%), and sulfamethoxazole/trimethoprim (80.5 %). Resistant strains belonged to 73 patterns, and pattern A (resistance to ampicillin, sulfamethoxazole/trimethoprim, tetracycline, streptomycin, chloramphenicol, and intermediate resistance to kanamycin) grouped the largest number of isolates (n=36). PCR-ribotyping identified three banding patterns (SH1, SH2, and SH3). SH1 grouped all S. flexneri and SH2 grouped all S. sonnei. The S. dysenteriae strain belonged to group SH3. According to the results, several Shigella isolates shared the same PCR-rybotyping banding pattern and the same resistance profile, suggesting that closely related strains were responsible for the outbreaks. However, other molecular typing methods need to be applied to confirm the clonal relationship of these isolates.
Collapse
|
17
|
Kaminski RW, Oaks EV. Inactivated and subunit vaccines to prevent shigellosis. Expert Rev Vaccines 2010; 8:1693-704. [PMID: 19943764 DOI: 10.1586/erv.09.127] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Shigellosis remains a formidable disease globally, with children of the developing world bearing the greatest number of infections. The need for an affordable, safe and efficacious vaccine has persisted for decades. Vaccines to prevent shigellosis can be divided into living and nonliving approaches. Several nonliving Shigella vaccines are currently at different stages of development and show substantial promise. Outlined here is an overview of multiple nonliving vaccine technologies, highlighting their current status and recent advances in testing. In addition, gaps in the knowledge base regarding immune mechanisms of protection are explored.
Collapse
Affiliation(s)
- Robert W Kaminski
- Division of Bacterial and Rickettsial Diseases, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | |
Collapse
|
18
|
Anthrax protective antigen delivered by Salmonella enterica serovar Typhi Ty21a protects mice from a lethal anthrax spore challenge. Infect Immun 2009; 77:1475-82. [PMID: 19179420 DOI: 10.1128/iai.00828-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax disease, is a proven weapon of bioterrorism. Currently, the only licensed vaccine against anthrax in the United States is AVA Biothrax, which, although efficacious, suffers from several limitations. This vaccine requires six injectable doses over 18 months to stimulate protective immunity, requires a cold chain for storage, and in many cases has been associated with adverse effects. In this study, we modified the B. anthracis protective antigen (PA) gene for optimal expression and stability, linked it to an inducible promoter for maximal expression in the host, and fused it to the secretion signal of the Escherichia coli alpha-hemolysin protein (HlyA) on a low-copy-number plasmid. This plasmid was introduced into the licensed typhoid vaccine strain, Salmonella enterica serovar Typhi strain Ty21a, and was found to be genetically stable. Immunization of mice with three vaccine doses elicited a strong PA-specific serum immunoglobulin G response with a geometric mean titer of 30,000 (range, 5,800 to 157,000) and lethal-toxin-neutralizing titers greater than 16,000. Vaccinated mice demonstrated 100% protection against a lethal intranasal challenge with aerosolized spores of B. anthracis 7702. The ultimate goal is a temperature-stable, safe, oral human vaccine against anthrax infection that can be self-administered in a few doses over a short period of time.
Collapse
|
19
|
The efficacy and immunogenicity of a live transconjugant hybrid strain of Shigella dysenteriae type 1 in two animal models. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9937-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Van Gerven N, De Greve H, Hernalsteens JP. Inactivated Salmonella expressing the receptor-binding domain of bacterial adhesins elicit antibodies inhibiting hemagglutination. Vet Microbiol 2008; 131:369-75. [PMID: 18502056 DOI: 10.1016/j.vetmic.2008.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/25/2008] [Accepted: 04/10/2008] [Indexed: 11/28/2022]
Abstract
We examined the potential of inactivated Salmonella strains to induce protective antibodies against two adhesins of pathogenic Escherichia coli. The receptor-binding domains of the F17a-G adhesin of F17a fimbriae and of the FimH adhesin of type 1 fimbriae were fused to the translocator domain of the autotransporter AIDA-I. An IgG response against F17a-G or FimH was induced after immunization of mice with acetone-inactivated Salmonella displaying the corresponding fimbrial receptor-binding domain. These sera inhibit in vitro agglutination of erythrocytes by E. coli carrying these fimbriae. Our results demonstrate that induced and subsequently acetone-inactivated Salmonella are useful delivery vehicles for the stimulation of an IgG antibody response against heterologous antigens.
Collapse
Affiliation(s)
- Nani Van Gerven
- Onderzoeksgroep Genetische Virologie, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
| | | | | |
Collapse
|
21
|
Walker RI, Steele D, Aguado T. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine 2006; 25:2545-66. [PMID: 17224212 DOI: 10.1016/j.vaccine.2006.12.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 12/30/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of diarrhoea in the world, annually affecting up to 400,000,000 children under 5 years of age living in developing countries (DCs). Although ETEC possesses numerous antigens, the relatively conserved colonization factor (CF) antigens and the heat labile enterotoxin (LT) have been associated with protection and most vaccine candidates have exploited these antigens. A safe and effective vaccine against ETEC is a feasible goal as supported by the acquisition of protective immunity. The success of an ETEC vaccine targeting infants and children in DCs will depend on a combination of maximally antigenic vaccine preparations and regimens for their delivery which will produce optimal immune responses to these antigens. Vaccine candidates having a high priority for accelerated development and clinical testing for eventual use in infants would include inactivated ETEC or Shigella hybrids expressing ETEC antigens as well as attenuated ETEC strains which express the major CF antigens and LT toxin B-subunit, as well as attenuated Shigella, Vibrio cholerae and Salmonella typhi hybrids engineered to deliver antigens of ETEC. Candidates for an ETEC vaccine would have to meet the minimal requirement of providing at least 50% protection against severe disease in DCs during the first 2 years of life. The critical roadblock to achieving this goal has not been the science as much as the lack of a sufficiently funded and focused effort to bring it to realization. However, a Product Development Partnership to overcome this hurdle could accelerate the time lines towards when control of ETEC disease in DCs is substantially closer.
Collapse
Affiliation(s)
- Richard I Walker
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, MD 20851-1448, USA.
| | | | | |
Collapse
|