1
|
El-Sayed SAES, Rizk MA, Eldoumani H, Sorour SS, Terkawi MA, AbouLaila M, Igarashi I, Sayed-Ahmed MZ. Identification and Characterization of P0 Protein as a Vaccine Candidate Against Babesia divergens, Blood Parasite of Veterinary and Zoonotic Importance. Front Vet Sci 2022; 8:795906. [PMID: 35071386 PMCID: PMC8776984 DOI: 10.3389/fvets.2021.795906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
The molecular identification and antigenic characterization of P0 protein in Babesia divergens, a blood parasite of veterinary and zoonotic importance, were carried out in this study for use in developing subunit vaccines against B. divergens infection. Recombinant protein encoding P0 (BdP0) was developed in Escherichia coli, and its antiserum was generated in mice for further molecular characterization. Anti-rBdP0 serum had a specific interaction with the corresponding legitimate B. divergens protein, as confirmed by Western blotting and indirect fluorescent antibody tests. ELISA was used to assess the immunogenicity of BdP0 in a group of 68 bovine field samples, and significant immunological reactivity was found in 19 and 20 positive samples of rBdp0 and B. divergens lysate, respectively. The in vitro growth of B. divergens cultures treated with anti-rBdP0 serum was significantly inhibited (p < 0.05). Furthermore, after 6 h of incubation with 2 mg/ml anti-rBdP0 serum, the ability of pre-incubated free merozoites to invade bovine erythrocytes was reduced by 59.88%. The obtained data suggest the possible use of rBdP0 as diagnostic antigen and may serve as a vaccine candidate against babesiosis caused by B. divergens either in animal or human.
Collapse
Affiliation(s)
- Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Mohamed Abdo Rizk
| | - Haitham Eldoumani
- Department of Anatomy, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shimaa Sobhy Sorour
- Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mahmoud AbouLaila
- Department of Parasitology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Ikuo Igarashi
| | - Mohamed Z. Sayed-Ahmed
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
2
|
Sears KP, Kappmeyer LS, Wise LN, Silva M, Ueti MW, White S, Reif KE, Knowles DP. Infection dynamics of Theileria equi and Theileria haneyi, a newly discovered apicomplexan of the horse. Vet Parasitol 2019; 271:68-75. [PMID: 31303207 DOI: 10.1016/j.vetpar.2019.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 11/15/2022]
Abstract
Theileria equi infection, exotic to the United States has reemerged through intravenous (iatrogenic) and tick-borne transmission. Surveillance at the US-Mexico border identified a new species, Theileria haneyi, (T. haneyiEP) (EP = Eagle Pass, Texas) which warranted additional investigation due to inability to detect by PCR targeting of T. equi ema-1 and EMA-1-cELISA validated for T. equi. Infection dynamics of T. haneyiEP were evaluated, including ability to superinfect in the presence of T. equi-Texas (T. equiTX), the isolate responsible for the reemergence of T. equi in the U S. Experimental infection with T. equiTX or T. haneyiEP revealed minimal clinical disease however, T. equiTX infection led to significantly greater neutropenia. Comparison of time to antibody detection following inoculation revealed significantly greater time to detectable anti-T. haneyiEP antibody (26.67 days post-inoculation (DPI)) than T. equiTX (11.67 DPI). Regardless of initial infection with either T. equiTX or T. haneyiEP, superinfection was established. Comparative analysis of antibody responses from a splenectomized horse infected with T. haneyiEP to that of a spleen intact horse infected with T. equiFL revealed a different antibody binding profile to T. haneyiEP, T. equiTX and T. equiFL merozoite antigen and limited shared antigen/cross-reactive antibody(s). Affinity purified T. equi EMA-1 and EMA-2 from T. equiFL were shown as targets for horse antibodies against T. haneyi. Data presented here show (1) T. haneyiEP can superinfect in the presence of T. equiTX infection and co-persists for minimally 25 months, (2) intravenous challenge with T. haneyi is subclinical, and (3) limited cross-reactive antibody between T. haneyiEP and T. equi includes reactivity to EMA-1 and EMA-2.
Collapse
Affiliation(s)
- Kelly P Sears
- Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA.
| | - Lowell S Kappmeyer
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA
| | - Lauren N Wise
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA; St. George's University, School of Veterinary Medicine True Blue Campus, St. George's, Grenada West Indies, Grenada
| | - Marta Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Massaro W Ueti
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA
| | - Stephen White
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Kathryn E Reif
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, USA; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
3
|
Kar B, Mohapatra A, Mohanty J, Sahoo PK. Evaluation of ribosomal P0 peptide as a vaccine candidate against Argulus siamensis in Labeo rohita. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractArgulusspp. are important ectoparasites of fish, and the current approach of their control using chemical pesticides has numerous drawbacks. Vaccination is a promising alternative but identification of protective antigens is a limiting step. The ribosomal protein P0, essential for protein synthesis, has been studied as a vaccine candidate. We generated sequence information of the P0 protein of the ectoparasiteArgulus siamensisand the hostLabeo rohita. The region of the parasite P0 protein with less sequence similarity with that of the host P0 protein and high predicted antigenicity was used for peptide synthesis. The peptide was conjugated with keyhole limpet hemocyanin (KLH) for immunization of rohu at a dose of 1.5 μg/g body weight. Dot blot assays confirmed production of antibodies against pP0-KLH in immunized fish. We evaluated the efficiency of pP0-KLH as a vaccine antigen by challenge of the immunized fish withA.siamensis. Although there was no significant difference in parasite load between both groups, a reduced and delayed mortality of 59% (15 days post-infection) in immunized group was noticed as compared to 75% mortality (within 7–15 days post-infection) in control group. The partial protection observed indicated the need for further optimization of this molecule to develop it into a vaccine candidate.
Collapse
Affiliation(s)
- Banya Kar
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha, India
| | - Amruta Mohapatra
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha, India
| | - Jyotirmaya Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha, India
| | - Pramoda Kumar Sahoo
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Odisha, India
| |
Collapse
|
4
|
Liu L, Xu Y, Xu L, Wang J, Wu W, Xu L, Yan Y. Analysis of differentially expressed proteins in zebrafish (Danio rerio) embryos exposed to chlorpyrifos. Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:183-9. [PMID: 25445019 DOI: 10.1016/j.cbpc.2014.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/20/2022]
Abstract
In this study, the protein expression profiles of zebrafish embryos under chlorpyrifos (CPF) stress were investigated. Zebrafish embryos were exposed to 0.25 mg/L CPF, and embryo samples were collected until 24 h post-fertilization (hpf). To gain a better understanding of the response of zebrafish embryos to CPF exposure, two-dimensional polyacrylamide gel electrophoresis (2D PAGE) coupled with mass spectrometry was employed to carry out a comparative proteomic analysis. Total proteins were extracted from the control and treated samples, separated by 2D PAGE, and visualized by silver staining. A total of 59 protein spots showed reproducible changes compared with the control. Of these 59 spots, 19 were selected and subjected to matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight mass spectrometry (TOF/TOF) analysis; 9 differentially expressed proteins were successfully identified, including 3 up-regulated proteins and 6 down-regulated proteins. The increased expression of 3 proteins associated with detoxification and stress response suggested that the activation of protective proteins was required in zebrafish embryos exposed to CPF. On the other hand, the decreased expression of 6 proteins is mainly involved in cytoskeleton structure, protein translation, signal transduction and lipoprotein metabolism. These data may help us understand the functions and the molecular mechanisms of these proteins in zebrafish embryos' response to CPF exposure.
Collapse
Affiliation(s)
- Lili Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Dysregulation of apoptotic signaling pathways by interaction of RPLP0 and cathepsin X/Z in gastric cancer. Pathol Res Pract 2014; 211:62-70. [PMID: 25433997 DOI: 10.1016/j.prp.2014.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 01/30/2023]
Abstract
Cathepsin X (CTSX, also called cathepsin Z/P) is a cysteine protease that still plays an unknown role in human cancer. It has been shown to bind cell surface heparin sulphate proteoglycans and integrins, indicating possible functions of CTSX in cellular adhesion, phagocytosis, and immune response. Our previous studies have shown an association between Helicobacter pylori (H. pylori) infection, a strong up-regulation of CTSX, and development of gastric cancer. In this study, yeast two-hybrid analysis revealed that RPLP0, a ribosomal protein P0, interacts with the human CTSX protein in gastric cancer. The CTSX/RPLP0 interaction was confirmed by co-immunoprecipitation assays. In addition, co-localization studies in cancer cell line N87 and gastric cancer tissue samples were performed. Laserscan microscopy revealed a shuttling of RPLP0 (and CTSX) from cytoplasm to the nucleus after CTSX knockdown. Down-regulation of RPLP0 resulted in G1 arrest of gastric cancer cells, whereas knockdown of CTSX led to G1 arrest and apoptosis after 48 h. Knockdown of both proteins caused increased apoptosis. RPLP0 deficiency could suppress cell growth and cell cycle progression by down-regulating CDK2. It was further demonstrated that RPLP0 affected p21 expression, but did not change the expression of Cyclin E. Down-regulation of both proteins at least through CDK2 suggests an anti-apoptotic effect on gastric cancer cells and opens up new possibilities for apoptotic immune modulation and gastric cancer therapy.
Collapse
|
6
|
Goo YK, Xuan X. New Molecules in Babesia gibsoni and their application for diagnosis, vaccine development, and drug discovery. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:345-53. [PMID: 25246713 PMCID: PMC4170030 DOI: 10.3347/kjp.2014.52.4.345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/29/2014] [Accepted: 06/24/2014] [Indexed: 12/03/2022]
Abstract
Babesia gibsoni is an intraerythrocytic apicomplexan parasite that causes piroplasmosis in dogs. B. gibsoni infection is characterized clinically by fever, regenerative anemia, splenomegaly, and sometimes death. Since no vaccine is available, rapid and accurate diagnosis and prompt treatment of infected animals are required to control this disease. Over the past decade, several candidate molecules have been identified using biomolecular techniques in the authors' laboratory for the development of a serodiagnostic method, vaccine, and drug for B. gibsoni. This review article describes newly identified candidate molecules and their applications for diagnosis, vaccine production, and drug development of B. gibsoni.
Collapse
Affiliation(s)
- Youn-Kyoung Goo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan. ; Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
7
|
Masatani T, Ooka H, Terkawi MA, Cao S, Luo Y, Asada M, Hayashi K, Nishikawa Y, Xuan X. Identification, cloning and characterization of BmP41, a common antigenic protein of Babesia microti. J Vet Med Sci 2013; 75:967-70. [PMID: 23428774 DOI: 10.1292/jvms.12-0535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Babesia microti is a rodent tick-borne blood parasite and the major causative agent of emerging human babesiosis. Here, we identified a candidate of common antigenic protein BmP41 of B. microti by serological screening of cDNA library of human-pathogenic Gray strain with antisera against rodent Munich strain. Immunofluorescent antibody test using mouse anti-recombinant BmP41 (rBmP41) serum revealed that native BmP41 was expressed in each of the developmental stages of B. microti merozoites. An enzyme-linked immunosorbent assay (ELISA) using rBmP41 detected specific antibodies in sera from hamsters infected with B. microti Gray strain and mice infected with B. microti Munich strain. Taken together, BmP41 could be a promising universal serological marker for diagnosis of human babesiosis.
Collapse
Affiliation(s)
- Tatsunori Masatani
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cao S, Luo Y, Aboge GO, Terkawi MA, Masatani T, Suzuki H, Igarashi I, Nishikawa Y, Xuan X. Identification and characterization of an interspersed repeat antigen of Babesia microti (BmIRA). Exp Parasitol 2013; 133:346-52. [PMID: 23291346 DOI: 10.1016/j.exppara.2012.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
In this report, a novel gene encoding an interspersed repeat antigen from Babesia microti (BmIRA) was identified and described. The full-length cDNA containing an open reading frame of 1,947 bp was obtained by immunoscreening a B. microti cDNA expression library. The full-length of BmIRA gene was expressed as a GST fusion recombinant BmIRA (rBmIRA) in Escherichia coli. Sera of mice immunized with the rBmIRA detected a native parasite protein with a molecular mass of 76 kDa on Western blot analysis. The same protein was detected in the parasites by immunofluorescent antibody test (IFAT). An enzyme-linked immunosorbent assay (ELISA) using rBmIRA detected specific antibodies as early as 11 days post-infection in sera from a hamster experimentally infected with B. microti Gray stain (US type). Furthermore, a rapid immunochromatographic test (ICT) using rBmIRA detected specific antibodies in a hamster experimentally infected with B. microti from day 11 to at least day 180 post-infection. The results indicate the antibody response against the rBmIRA was maintained during the chronic stage of infection. On the other hand, an immunoprotective property of rBmIRA as a subunit vaccine was evaluated in hamsters against B. microti challenge, but no significant protection was observed. Our data suggest that the immunodominant antigen BmIRA could be a useful serodiagnostic antigen for screening of B. microti infection.
Collapse
Affiliation(s)
- Shinuo Cao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rodríguez-Mallon A, Fernández E, Encinosa PE, Bello Y, Méndez-Pérez L, Ruiz LC, Pérez D, González M, Garay H, Reyes O, Méndez L, Estrada MP. A novel tick antigen shows high vaccine efficacy against the dog tick, Rhipicephalus sanguineus. Vaccine 2012; 30:1782-9. [PMID: 22245603 DOI: 10.1016/j.vaccine.2012.01.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/28/2022]
Abstract
Ticks are acaridae ectoparasites that, while taking a blood meal, can transmit viruses, bacteria, protozoa and filarial nematodes, which cause a variety of human and animal illnesses. The use of chemical pesticides constitutes the primary measure for control of these ectoparasites. However, the intensive use of these chemicals has drawbacks such as the contamination of food, environmental pollution and development of resistance by ectoparasites. Vaccination is considered a promising alternative for controlling infestations by ectoparasites. Although emerging tick proteins have been identified recently, and have been proposed as potential targets for generating protective molecules, only a limited number of them have been evaluated in vaccine trials. More than 80 proteins are found in eukaryotic ribosomes. The protein P0 is essential for the assembly of the 60S ribosomal subunit. We have identified an immunogenic region of the ribosomal protein P0 from Rhipicephalus sp. ticks that is not very conserved compared to host P0. The efficacy of a 20 amino acid synthetic peptide from this sequence was assayed as a vaccine antigen against Rhipicephalus sanguineus infestations in an immunization and challenge experiment on rabbits. A remarkable diminution in the viability of newly molted nymphs from larvae fed on vaccinated rabbits was observed. The number of adults and the number of eggs hatching were significantly reduced, with an overall efficacy of 90%. Our results demonstrated that immunization with an immunogenic peptide of tick protein P0 greatly reduced survival of ticks, suggesting that it has promise as an effective tick control agent.
Collapse
Affiliation(s)
- Alina Rodríguez-Mallon
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, 31th Avenue and 190, P.O. Box 6162, Havana 10600, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Terkawi MA, Huyen NX, Shinuo C, Inpankaew T, Maklon K, Aboulaila M, Ueno A, Goo YK, Yokoyama N, Jittapalapong S, Xuan X, Igarashi I. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the northeast region of Thailand. Vet Parasitol 2011; 178:201-7. [PMID: 21324601 DOI: 10.1016/j.vetpar.2011.01.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
Bovine babesiosis is a tick-transmitted hemoprotozoan disease that is mainly caused by Babesia bovis and Babesia bigemina and is characterized by significant morbidity and mortality worldwide. The disease is widespread in the northeastern region of Thailand, where an increasingly large part of the livestock is composed of water buffaloes. The present study was therefore conducted to investigate the epidemiological distribution of B. bovis and B. bigemina in water buffaloes in the northeastern region of Thailand. A total of 305 buffalo blood samples were randomly collected from five provinces and simultaneously analyzed by the nested PCR (nPCR) assay, ELISA, and IFAT techniques. The overall prevalence of B. bovis and B. bigemina was 11.2% and 3.6% by nPCR, 14.7% and 5.9% by ELISA, and 16.8% and 5.6% by IFAT, respectively. The high concordance between the molecular and the serological detection tests revealed the specificity and sensitivity of the diagnostic assays used for the detection of infection as well as the endemic stability status of the parasites in the surveyed areas. Statistically significant differences in the prevalence of the two infections were observed on the basis of age and location but not gender. Our data provide valuable information regarding the epidemiology of B. bovis and B. bigemina infection in water buffaloes in the northeastern region of Thailand which will likely be very beneficial for management and control programs of this disease.
Collapse
Affiliation(s)
- Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Spherical body protein 4 is a new serological antigen for global detection of Babesia bovis infection in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:337-42. [PMID: 21123520 DOI: 10.1128/cvi.00388-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Five Babesia bovis recombinant proteins, including merozoite surface antigen 2c (BbMSA-2c), C-terminal rhoptry-associated protein 1 (BbRAP-1/CT), truncated thrombospondin-related anonymous protein (BbTRAP-T), spherical body protein 1 (BbSBP-1), and spherical body protein 4 (BbSBP-4), were evaluated as diagnostic antigens to detect the infection in cattle. The recombinant proteins were highly antigenic when tested with experimentally B. bovis-infected bovine serum in Western blot analysis. Furthermore, five antisera that had been raised against each of the recombinant proteins reacted specifically with the corresponding authentic protein, as determined in Western blot analysis. Next, enzyme-linked immunosorbent assays (ELISAs) using these recombinant proteins were evaluated for diagnostic use, and the sensitivity and specificity of each protein were demonstrated with a series of serum samples from experimentally B. bovis-infected cattle. Furthermore, a total of 669 field serum samples collected from cattle in regions of B. bovis endemicity in seven countries were tested with the ELISAs, and the results were compared to those of an indirect fluorescent antibody test (IFAT), as a reference. Among five recombinant antigens, recombinant BbSBP-4 (rBbSBP-4) had the highest concordance rate (85.3%) and kappa value (0.705), indicating its reliability in the detection of specific antibodies to B. bovis in cattle, even in different geographical regions. Overall, we have successfully developed an ELISA based on rBbSBP-4 as a new serological antigen for a practical and sensitive test which will be applicable for epidemiologic survey and control programs in the future.
Collapse
|
12
|
Ooka H, Terkawi MA, Goo YK, Luo Y, Li Y, Yamagishi J, Nishikawa Y, Igarashi I, Xuan X. Babesia microti: molecular and antigenic characterizations of a novel 94-kDa protein (BmP94). Exp Parasitol 2010; 127:287-93. [PMID: 20599995 DOI: 10.1016/j.exppara.2010.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/07/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
A novel gene, BmP94, encoding 94-kDa protein of Babesia microti was identified by immunoscreening of the cDNA expression library. The full-length of BmP94 was expressed in Escherichia coli (rBmP94), which resulted in insoluble form with low yield, and the truncated hydrophilic C-terminus region of the gene was expressed as a soluble protein (rBmP94/CT) with improved productivity. Antiserum raised against rBmP94/CT recognized the 94-kDa native protein in the parasite extract by Western blot analysis. Next, an ELISA using rBmP94/CT was evaluated for diagnostic use, and it demonstrated high sensitivity and specificity when tested with the sera from mice experimentally infected with B. microti and closely related parasites. Moreover, the immunoprotective property of rBmP94/CT as a subunit vaccine was evaluated in BALB/c mice against a B. microti challenge, but no significant protection was observed. Our data suggest that the immunodominant antigen BmP94 could be a promising candidate for diagnostic use for human babesiosis.
Collapse
Affiliation(s)
- Hideo Ooka
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Proteomics analysis of MPP+-induced apoptosis in SH-SY5Y cells. Neurol Sci 2010; 32:221-8. [DOI: 10.1007/s10072-010-0340-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 05/22/2010] [Indexed: 01/06/2023]
|
14
|
Ramos CAN, Araújo FR, Souza IIF, Oliveira RHM, Elisei C, Soares CO, Sacco AMS, Rosinha GMS, Alves LC. Molecular and antigenic characterisation of ribosomal phosphoprotein P0 from Babesia bovis. Mem Inst Oswaldo Cruz 2010; 104:998-1002. [PMID: 20027467 DOI: 10.1590/s0074-02762009000700010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/23/2009] [Indexed: 11/21/2022] Open
Abstract
Babesia bovis is a tick-borne pathogen that remains an important constraint for the development of cattle industries in tropical and subtropical regions of the world. Effective control can be achieved by vaccination with live attenuated phenotypes of the parasite. However, these phenotypes have a number of drawbacks, which justifies the search for new, more efficient immunogens based mainly on recombinant protein technology. In the present paper, ribosomal phosphoprotein P0 from a Brazilian isolate of B. bovis was produced and evaluated with regard to conservation and antigenicity. The protein sequence displayed high conservation between different Brazilian isolates of B. bovis and several Apicomplexa parasites such as Theileria, Neospora and Toxoplasma. IgG from cattle experimentally and naturally infected with B. bovisas well as IgG1 and IgG2 from naturally infected cattle reacted with the recombinant protein. IgG from cattle experimentally infected with Babesia bigemina cross-reacted with B. bovis recombinant P0. These characteristics suggest that P0 is a potential antigen for recombinant vaccine preparations against bovine babesiosis.
Collapse
Affiliation(s)
- Carlos A N Ramos
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cloning and characterization of the acidic ribosomal protein P2 of Cryptosporidium parvum, a new 17-kilodalton antigen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:954-65. [PMID: 20410328 DOI: 10.1128/cvi.00073-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptosporidium infection is commonly observed among children and immunocompromised individuals in developing countries, but large-scale outbreaks of disease among adults have not been reported. In contrast, outbreaks of cryptosporidiosis in the United States and Canada are increasingly common among patients of all ages. Thus, it seems likely that residents of regions where Cryptosporidium is highly endemic acquire some level of immunity, while residents of the developed world do not. A new immunodominant Cryptosporidium parvum antigen in the 15- to 17-kDa size range was identified as the Cryptosporidium parvum 60S acidic ribosomal protein P2 (CpP2). We developed a recombinant protein-based enzyme-linked immunosorbent assay for serologic population surveillance for antibodies that was 89% sensitive and 92% specific relative to the results of the large-format Western blot assay. The human IgG response is directed almost exclusively toward the highly conserved, carboxy-terminal 15 amino acids of the protein. Although IgG antibody cross-reactivity was documented with sera from patients with acute babesiosis, the development of an anti-CpP2 antibody response in our Peru study population correlated better with Cryptosporidium infection than with infection by any other parasitic protozoan. In Haiti, the prevalence of antibodies to CpP2 plateaus at 11 to 20 years of age. Because anti-CpP2 IgG antibodies were found only among residents of countries in the developing world where Cryptosporidium infection occurs early and often, we propose that this response may be a proxy for the intensity of infection and for acquired immunity.
Collapse
|
16
|
Molecular characterizations of three distinctBabesia gibsonirhoptry-associated protein-1s (RAP-1s). Parasitology 2009; 136:1147-60. [DOI: 10.1017/s003118200999045x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThree cDNAs encoding rhoptry-associated protein 1 (RAP-1) homologues were found in theBabesia gibsoniEST database. Based on similarities to BgRAP-1a, which was identified previously by serological screening of a cDNA merozoite library, the two new genes were designatedBgRAP-1b(33·7%) andBgRAP-1c(57%). Mice antiserum raised against each recombinant protein reacted specifically withB. gibsoniparasites as determined by Western blotting, which showed native molecular sizes of the BgRAP-1a (51 kDa), BgRAP-1b (53 kDa) and BgRAP-1c (47 kDa) consistent with predictable molecular weights. Immunofluoresence using these antibodies revealed localization of all BgRAP-1s within the matrix of merozoites; however, BgRAP-1a appeared to diverge from the other two when it was found secreted into the cytoplasm of infected erythrocytes. Apical localization of all 3 BgRAP-1s during the extracellular stage of the parasite combined with their ability to bind a canine erythrocyte membrane fraction was suggestive of a role for these proteins in erythrocyte attachment. Lastly, the ability of these recombinant proteins to be used as diagnostic reagents was tested by ELISA and the sensitivities of BgRAP-1a and BgRAP-1c were found increased through N-terminal truncation. Taken together, our data suggest divergent roles for the 3 BgRAP-1s in the merozoite stage ofB. gibsoni.
Collapse
|
17
|
TERKAWI MALAA, ABOGE G, JIA H, GOO YK, OOKA H, YAMAGISHI J, NISHIKAWA Y, YOKOYAMA N, IGARASHI I, KAWAZU SI, FUJISAKI K, XUAN X. Molecular and immunological characterization ofBabesia gibsoniandBabesia microtiheat shock protein-70. Parasite Immunol 2009; 31:328-40. [DOI: 10.1111/j.1365-3024.2009.01109.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Martínez-López R, Nombela C, Diez-Orejas R, Monteoliva L, Gil C. Immunoproteomic analysis of the protective response obtained from vaccination with Candida albicans ecm33 cell wall mutant in mice. Proteomics 2008; 8:2651-64. [PMID: 18546157 DOI: 10.1002/pmic.200701056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systemic candidiasis remains a major cause of disease and death, particularly among immunocompromised patients. The cell wall of Candida albicans defines the interface between host and pathogen and surface proteins are major elicitors of host immune responses during candidiasis. The C. albicans ecm33 mutant (RML2U) presents an altered cell wall, which entails an increase in the outermost protein layer. Vaccination of BALB/c mice with RML2U mutant protected them from a subsequent lethal infection with virulent strain SC5314 in a systemic candidiasis model. Using immunoproteomics (2-DE followed by Immunoblotting) we detected 29 immunoreactive proteins specifically recognized by antibodies from vaccinated mice sera, six of which are described as immunogenic for the first time (Gnd1p, Cit1p, Rpl10Ep, Yst1p, Cys4p, Efb1p). Furthermore, identification of wild type and mutant cell surface proteome (surfome), confirmed us that the mutant surfome presented a larger number of proteins than the wild type. Interestingly, proteins exclusively identified in the mutant surfome (Met6p, Eft2p, Tkl1p, Rpl10Ep, Atp1p, Atp2p) were also detected as immunogenic, supporting the idea that their surface location enhances their immunoprotective capacity.
Collapse
Affiliation(s)
- Raquel Martínez-López
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Terkawi MA, Zhang G, Jia H, Aboge G, Goo YK, Nishikawa Y, Yokoyama N, Igarashi I, Kawazu SI, Fujisaki K, Xuan X. C3 contributes to the cross-protective immunity induced by Babesia gibsoni phosphoriboprotein P0 against a lethal B. rodhaini infection. Parasite Immunol 2008; 30:365-70. [PMID: 18533933 DOI: 10.1111/j.1365-3024.2008.01026.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the impact of complement component 3 (C3) deficiency on the progression of lethal Babesia rodhaini infection in immune mice. A B. gibsoni ribosomal phosphoprotein P0 (BgP0) previously reported to be a cross-protective antigen against Babesia infection was used to immunize C57BL/6 wild-type (WT) and C3-deficient (C3-/-) mice. Test mice were immunized intraperitoneally (i.p.) with recombinant BgP0 (rBgP0), while controls either were immunized with PBS or did not receive any immunization. Following the immunization regime, test WT mice induced a specifically strong humoral response consisting of mixed immunoglobulins IgG1 and IgG2 associated with high production of IFN-gamma in the supernatant of splenocytes. While test C3-/- mice had significantly decreased total IgG, IgG1 and IgG2b responses, the secretions of IL-12 and IFN-gamma tended to be lower than those in WT mice. Furthermore, partial protection was only observed in rBgP0-immunized WT mice but not in C3-/- mice or controls. Indeed, rBgP0-immunized WT mice showed significant reductions in the initiation of parasitaemia correlated with delayed mortalities and considerable survival rates. Taken together, our results indicate that cross-protection was impaired in C3-/- mice in view of the decrease in the antibody responses and cytokine production and the high susceptibility to infection.
Collapse
Affiliation(s)
- M A Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rachinsky A, Guerrero FD, Scoles GA. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet Parasitol 2008; 152:294-313. [PMID: 18243558 DOI: 10.1016/j.vetpar.2007.12.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 12/20/2022]
|
21
|
Terkawi MA, Jia H, Gabriel A, Goo YK, Nishikawa Y, Yokoyama N, Igarashi I, Fujisaki K, Xuan X. A shared antigen among Babesia species: ribosomal phosphoprotein P0 as a universal babesial vaccine candidate. Parasitol Res 2007; 102:35-40. [PMID: 17823817 DOI: 10.1007/s00436-007-0718-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
Babesia gibsoni ribosomal phosphoprotein P0 (BgP0) was previously identified as a cross-protective antigen against Babesia microti infection in mice. Interestingly, the same protein showed considerable antigenicity when tested with serum samples collected from Babesia-infected animals. Moreover, the polyclonal antibody raised against the recombinant BgP0 (rBgP0) recognized the P0 homologues from other Babesia species either by immunoblotting or by immunoscreening. The P0 genes from Babesia caballi, Babesia equi, and Babesia bigemina were then cloned and sequenced. The phylogenic analyses based on the amino acid sequences indicated that BgP0 has high identities with B. caballi P0 (88.1%), B. bigemina P0 (85.6%), Babesia bovis P0 (81.4%), and B. equi P0 (64.9%). Western blot analyses revealed that the corresponding native proteins ranged between 31 and 34 kDa, consistent with predicated molecular weight of Babesia P0. Furthermore, the immunogenic property of anti-rBgP0 IgG was evaluated against a B. bovis in vitro culture. The growth of B. bovis parasites was restricted by anti-rBgP0 IgG in a concentration-dependent manner, and significant reductions in parasitemia were observed only at 1 mg/ml in the culture. Taken together, these data suggest that P0 is a conserved protective antigen among Babesia species and might be a potentially universal vaccine candidate for babesiosis.
Collapse
Affiliation(s)
- M Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aboge GO, Jia H, Terkawi MA, Goo Y, Kuriki K, Nishikawa Y, Igarashi I, Suzuki H, Xuan X. A novel 57-kDa merozoite protein of Babesia gibsoni is a prospective antigen for diagnosis and serosurvey of canine babesiosis by enzyme-linked immunosorbent assay. Vet Parasitol 2007; 149:85-94. [PMID: 17706873 DOI: 10.1016/j.vetpar.2007.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/09/2007] [Accepted: 06/20/2007] [Indexed: 11/30/2022]
Abstract
We isolated a novel single copy gene encoding a 57-kDa merozoite protein of Babesia gibsoni (BgP57). The nucleotide sequence of the cDNA was 2387 bp with an open reading frame (ORF) of 1644 bp encoding a 57-kDa predicted polypeptide having 547 amino acid residues. The recombinant BgP57 (rBgP57) without a predicted signal peptide was expressed in Escherichia coli as a soluble glutathione S-transferase (GST) fusion protein. Western blotting showed that the corresponding native protein was 57-kDa, consistent with molecular weight of predicted mature polypeptide. An indirect enzyme-linked immunosorbent assay (ELISA) using the rBgP57 detected specific antibodies in the sequential sera from a dog experimentally infected with B. gibsoni. Moreover, the antigen did not cross-react with antibodies to B. canis sub-species and closely related apicomplexan parasites indicating that the rBgP57 was a specific antigen for B. gibsoni antibodies. The diagnostic performance of ELISA based on rBgP57 using 107 sera from B. gibsoni-naturally infected dogs was the same as the previously identified rBgP32 but performed better than the previously studied rBgP50. Although, seminested PCR detected higher proportions (82%) of positive samples than the ELISAs, the Mcnemar's chi-square test showed that there was no significant difference in relative effectiveness of rBgP57-ELISA and seminested PCR (chi(2)=2.70; P=0.1003) in identifying positive samples. The rBgP57-ELISA when used in combination with rBgP32-ELISA and rBgP50-ELISA appeared to improve sensitivity of the rBgP57-ELISA for detection of B. gibsoni antibodies. Overall, the rBgP57-ELISA and seminested PCR when used in combination, could improve epidemiological surveys and clinical diagnosis of B. gibsoni infection.
Collapse
Affiliation(s)
- Gabriel Oluga Aboge
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang H, Lee EG, Liao M, Compaore MKA, Zhang G, Kawase O, Fujisaki K, Sugimoto C, Nishikawa Y, Xuan X. Identification of ribosomal phosphoprotein P0 of Neospora caninum as a potential common vaccine candidate for the control of both neosporosis and toxoplasmosis☆. Mol Biochem Parasitol 2007; 153:141-8. [PMID: 17412435 DOI: 10.1016/j.molbiopara.2007.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/12/2007] [Accepted: 02/28/2007] [Indexed: 11/30/2022]
Abstract
The characterization of the cross-reactive antigens of two closely related apicomplexan parasites, Neospora caninum and Toxoplasma gondii, is important to elucidate the common mechanisms of parasite-host interactions. In this context, a gene encoding N. caninum ribosomal phosphoprotein P0 (NcP0) was identified by immunoscreening of a N. caninum tachyzoite cDNA expression library with antisera from mice immunized with T. gondii tachyzoites. The NcP0 was encoded by a gene with open reading frame of 936 bp, which encoded a protein of 311 amino acids. The NcP0 gene existed as a single copy in the genome and was interrupted by a 432 bp intron. The NcP0 showed 94.5% amino acid identity to T. gondii P0 (TgP0). Anti-recombinant NcP0 (rNcP0) sera recognized a native parasite protein with a molecular mass of 34 kDa in Western blot analysis. Immunofluorescence analysis showed that the NcP0 was localized to the surface of N. caninum tachyzoites. A purified anti-rNcP0 IgG antibody inhibited the growth of N. caninum and T. gondii in vitro in a concentration-dependent manner. These results indicate that P0 is a cross-reactive antigen between N. caninum and T. gondii and a potential common vaccine candidate to control both parasites.
Collapse
Affiliation(s)
- Houshuang Zhang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|