1
|
Malik S, Le L, Boissy RE, Brideau-Andersen A, Sondergaard B. Botulinum neurotoxin type DC (BoNT/DC) cleavage of VAMP3 reduces melanin production in melanocytes. Toxicon 2025; 261:108372. [PMID: 40286827 DOI: 10.1016/j.toxicon.2025.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Melanin in skin and hair protects cells from UV damage; however, uneven skin color or hyperpigmentation is a common aesthetic concern. Melanin is synthesized in melanosomes, organelles within melanocytes, where tyrosinase converts tyrosine to melanin. Trafficking of tyrosinase or other cargo (eg, premelanosome protein [PMEL]) may depend on vesicle-associated membrane proteins (VAMPs); interfering with VAMPs has been reported to impact melanogenesis. Botulinum neurotoxin type DC (BoNT/DC) is a naturally occurring mosaic serotype that cleaves the SNARE proteins VAMP1-3. This study evaluated BoNT/DC as a potential treatment for hyperpigmentation by testing if it affects melanogenesis. In melanocytes, BoNT/DC cleaved VAMP2 and VAMP3, and knockdown of VAMP3, but not VAMP2, reduced melanin content, which suggests that BoNT/DC may affect melanogenesis via VAMP3 cleavage. Indeed, BoNT/DC (5 nM) produced a ∼50 % reduction in melanin content in melanocytes, and in 2 human melanocyte models, BoNT/DC, but not BoNT/A, significantly reduced melanin content (∼40-50 %) without cytotoxicity. Electron microscopy showed that BoNT/DC-treated melanocytes contained more early-stage (II) and fewer late-stage (IV) melanosomes than vehicle- or BoNT/A-treated melanocytes. Overall, BoNT/DC reduced melanin content in multiple melanocyte models, and its lightening effects are likely due to VAMP3 cleavage interfering with trafficking of cargo (eg, tyrosinase, PMEL) required for melanogenesis.
Collapse
Affiliation(s)
- Shiazah Malik
- Allergan Aesthetics, an AbbVie Company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Linh Le
- Allergan Aesthetics, an AbbVie Company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Raymond E Boissy
- Department of Dermatology, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45229, USA
| | - Amy Brideau-Andersen
- Allergan Aesthetics, an AbbVie Company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Birgitte Sondergaard
- Allergan Aesthetics, an AbbVie Company, 2525 Dupont Drive, Irvine, CA, 92612, USA.
| |
Collapse
|
2
|
A Four-Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotypes C and D. Toxins (Basel) 2021; 13:toxins13090641. [PMID: 34564645 PMCID: PMC8472335 DOI: 10.3390/toxins13090641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/04/2022] Open
Abstract
Human botulism can be caused by botulinum neurotoxin (BoNT) serotypes A to G. Here, we present an antibody-based antitoxin composed of four human monoclonal antibodies (mAbs) against BoNT/C, BoNT/D, and their mosaic toxins. This work built on our success in generating protective mAbs to BoNT /A, B and E serotypes. We generated mAbs from human immune single-chain Fv (scFv) yeast-display libraries and isolated scFvs with high affinity for BoNT/C, BoNT/CD, BoNT/DC and BoNT/D serotypes. We identified four mAbs that bound non-overlapping epitopes on multiple serotypes and mosaic BoNTs. Three of the mAbs underwent molecular evolution to increase affinity. A four-mAb combination provided high-affinity binding and BoNT neutralization of both serotypes and their mosaic toxins. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing and neutralizing BoNT/C and BoNT/D serotypes and their mosaic toxins. A derivative of the four-antibody combination (NTM-1634) completed a Phase 1 clinical trial (Snow et al., Antimicrobial Agents and Chemotherapy, 2019) with no drug-related serious adverse events.
Collapse
|
3
|
Intratracheal inoculation of AHc vaccine induces protection against aerosolized botulinum neurotoxin A challenge in mice. NPJ Vaccines 2021; 6:87. [PMID: 34158496 PMCID: PMC8219734 DOI: 10.1038/s41541-021-00349-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Botulinum neurotoxin (BoNT), produced by Clostridium botulinum, is generally known to be the most poisonous of all biological toxins. In this study, we evaluate the protection conferred by intratracheal (i.t.) inoculation immunization with recombinant Hc subunit (AHc) vaccines against aerosolized BoNT/A intoxication. Three AHc vaccine formulations, i.e., conventional liquid, dry powder produced by spray freeze drying, and AHc dry powder reconstituted in water are prepared, and mice are immunized via i.t. inoculation or subcutaneous (s.c.) injection. Compared with s.c.-AHc-immunized mice, i.t.-AHc-immunized mice exhibit a slightly stronger protection against a challenge with 30,000× LD50 aerosolized BoNT/A. Of note, only i.t.-AHc induces a significantly higher level of toxin-neutralizing mucosal secretory IgA (SIgA) production in the bronchoalveolar lavage of mice. In conclusion, our study demonstrates that the immune protection conferred by the three formulations of AHc is comparable, while i.t. immunization of AHc is superior to s.c. immunization against aerosolized BoNT/A intoxication.
Collapse
|
4
|
Rasetti-Escargueil C, Popoff MR. Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. Toxins (Basel) 2020; 13:1. [PMID: 33374954 PMCID: PMC7821915 DOI: 10.3390/toxins13010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) show increasing therapeutic applications ranging from treatment of locally paralyzed muscles to cosmetic benefits. At first, in the 1970s, BoNT was used for the treatment of strabismus, however, nowadays, BoNT has multiple medical applications including the treatment of muscle hyperactivity such as strabismus, dystonia, movement disorders, hemifacial spasm, essential tremor, tics, cervical dystonia, cerebral palsy, as well as secretory disorders (hyperhidrosis, sialorrhea) and pain syndromes such as chronic migraine. This review summarizes current knowledge related to engineering of botulinum toxins, with particular emphasis on their potential therapeutic applications for pain management and for retargeting to non-neuronal tissues. Advances in molecular biology have resulted in generating modified BoNTs with the potential to act in a variety of disorders, however, in addition to the modifications of well characterized toxinotypes, the diversity of the wild type BoNT toxinotypes or subtypes, provides the basis for innovative BoNT-based therapeutics and research tools. This expanding BoNT superfamily forms the foundation for new toxins candidates in a wider range of therapeutic options.
Collapse
|
5
|
Docking Simulation and Sandwich Assay for Aptamer-Based Botulinum Neurotoxin Type C Detection. BIOSENSORS-BASEL 2020; 10:bios10080098. [PMID: 32806662 PMCID: PMC7460441 DOI: 10.3390/bios10080098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Aptamers are biomaterials that bind to a target molecule through a unique structure, and have high applicability in the diagnostic and medical fields. To effectively utilize aptamers, it is important to analyze the structure of the aptamer binding to the target molecule; however, there are difficulties in experimentally identifying this structure. In the modern pharmaceutical industry, computer-driven docking simulations that predict intermolecular binding models are used to select candidates that effectively bind target molecules. Botulinum toxin (BoNT) is the most poisonous neurotoxin produced from the Clostridium botulinum bacteria, and BoNT/C, one of the eight serotypes, causes paralysis in livestock. In this study, the aptamers that bound to BoNT/C were screened via the systematic evolution of ligands by exponential enrichment, and the binding affinity analysis and binding model were evaluated to select optimal aptamers. Based on surface plasmon resonance analysis and molecular operating environment docking simulation, a pair of aptamers that had high binding affinity to BoNT/C and were bound to different BoNT/C sites were selected. A sandwich assay based on this aptamer pair detected the BoNT/C protein to a concentration as low as ~0.2 ng Ml-1. These results show that docking simulations are a useful strategy for screening aptamers that bind to specific targets.
Collapse
|
6
|
Safety and Pharmacokinetics of a Four Monoclonal Antibody Combination Against Botulinum C and D Neurotoxins. Antimicrob Agents Chemother 2019:AAC.01270-19. [PMID: 31591130 PMCID: PMC6879217 DOI: 10.1128/aac.01270-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Botulism is caused by botulinum neurotoxin (BoNT), the most poisonous substance known. BoNTs are also classified as Tier 1 biothreat agents due to their high potency and lethality. The existence of seven BoNT serotypes (A-G), which differ between 35% to 68% in amino acid sequence, necessitates the development of serotype specific countermeasures. We present results of a Phase 1 clinical study of an anti-toxin to BoNT serotypes C and D, NTM-1634, which consists of an equimolar mixture of four fully human IgG1 monoclonal antibodies (mAbs), each binding to non-overlapping epitopes on BoNT serotypes C and D resulting in potent toxin neutralization in rodents. This first-in-human study evaluated the safety and pharmacokinetics of escalating doses of NTM-1634 administered intravenously to healthy adults (NCT03046550). Three cohorts of eight healthy subjects received a single intravenous dose of NTM-1634 or placebo at 0.33 mg/kg, 0.66 mg/kg or 1 mg/kg. Follow-up examinations and pharmacokinetic evaluations were continued up to 121 days post-infusion. Subjects were monitored using physical examinations, hematology and chemistry blood tests, and electrocardiograms. Pharmacokinetic parameters were estimated using noncompartmental methods. The results demonstrated that the materials were safe and well-tolerated with the expected half-lives for human mAbs and with minimal anti-drug antibodies detected over the dose ranges and duration of the study.
Collapse
|
7
|
Prisilla A, Chellapandi P. Cloning and expression of immunogenic Clostridium botulinum C2I mutant proteins designed from their evolutionary imprints. Comp Immunol Microbiol Infect Dis 2019; 65:207-212. [DOI: 10.1016/j.cimid.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
|
8
|
Chellapandi P, Prisilla A. Clostridium botulinum type A-virulome-gut interactions: A systems biology insight. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.humic.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Webb RP, Smith TJ, Smith LA, Wright PM, Guernieri RL, Brown JL, Skerry JC. Recombinant Botulinum Neurotoxin Hc Subunit (BoNT Hc) and Catalytically Inactive Clostridium botulinum Holoproteins (ciBoNT HPs) as Vaccine Candidates for the Prevention of Botulism. Toxins (Basel) 2017; 9:toxins9090269. [PMID: 28869522 PMCID: PMC5618202 DOI: 10.3390/toxins9090269] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
There are few available medical countermeasures against botulism and the discontinuation of the pentavalent botulinum toxoid vaccine by the Centers for Disease Control and Prevention in 2011 has resulted in the need for a safe and effective prophylactic alternative. Advances in genetic engineering have resulted in subsequent vaccine efforts being primarily focused on the production of highly purified recombinant protein antigens representing one or more domains of the botulinum neurotoxin. Recombinant subunit vaccines based on the carboxy one-third of the toxin (Hc) developed in our lab against serotypes A-F have been shown to be safe and effective. However, in response to the identification of an ever increasing number of BoNT subtypes with significant amino acid heterogeneity, we have developed catalytically inactive BoNT holoproteins (ciBoNT HPs) in an attempt to elicit greater protective immunity to address these toxin variants. Here we report the production of ciBoNT/B1 HP, ciBoNT/C1 HP, ciBoNT/E1 HP and ciBoNT/F1 HP and compare the immunological and protective abilities of ciBoNT HPs and BoNT/A Hc, BoNT/B Hc, BoNT/C Hc, BoNT/E Hc and BoNT/F Hc vaccines when challenged with homologous and heterologous toxins. Our results suggest the ciBoNT HP vaccines exhibit superior potency after single vaccinations but multiple vaccinations with BoNT/Hc antigens resulted in increased survival rates at the toxin challenge levels used.
Collapse
Affiliation(s)
- Robert P Webb
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Theresa J Smith
- Ke'aki Technologies LLC, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Leonard A Smith
- Office of the Chief Scientist, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Patrick M Wright
- Clinical Research Management, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21707, USA.
| | - Rebecca L Guernieri
- Ke'aki Technologies LLC, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Jennifer L Brown
- Ke'aki Technologies LLC, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Janet C Skerry
- Ke'aki Technologies LLC, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Hansbauer EM, Skiba M, Endermann T, Weisemann J, Stern D, Dorner MB, Finkenwirth F, Wolf J, Luginbühl W, Messelhäußer U, Bellanger L, Woudstra C, Rummel A, Fach P, Dorner BG. Detection, differentiation, and identification of botulinum neurotoxin serotypes C, CD, D, and DC by highly specific immunoassays and mass spectrometry. Analyst 2016; 141:5281-97. [PMID: 27353114 DOI: 10.1039/c6an00693k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Botulinum neurotoxin (BoNT) serotypes C and D and their mosaic variants CD and DC cause severe cases of botulism in animal husbandry and wildlife. Epidemiological data on the exact serotype or toxin variant causing outbreaks are rarely available, mainly because of their high sequence identity and the lack of fast and specific screening tools to detect and differentiate the four similar toxins. To fill this gap, we developed four highly specific sandwich enzyme-linked immunosorbent assays (ELISAs) able to detect and differentiate botulinum neurotoxins type BoNT/C, D, CD, and DC based on four distinct combinations of specific monoclonal antibodies targeting both conserved and divergent subdomains of the four toxins. Here, highly sensitive detection with detection limits between 2 and 24 pg mL(-1) was achieved. The ELISAs were extensively validated and results were compared with data obtained by quantitative real-time PCR using a panel of Clostridium botulinum strains, real sample materials from veterinary botulism outbreaks, and non-BoNT-producing Clostridia. Additionally, in order to verify the results obtained by ELISA screening, the new monoclonal antibodies were used for BoNT enrichment and subsequent detection (i) on a functional level by endopeptidase mass spectrometry (Endopep-MS) assays and (ii) on a protein sequence level by LC-MS/MS spectrometry. Based on all technical information gathered in the validation study, the four differentiating ELISAs turned out to be highly reliable screening tools for the rapid analysis of veterinary botulism cases and should aid future field investigations of botulism outbreaks and the acquisition of epidemiological data.
Collapse
Affiliation(s)
- Eva-Maria Hansbauer
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute (RKI), Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruwona TB, Xu H, Li J, Diaz-Arévalo D, Kumar A, Zeng M, Cui Z. Induction of protective neutralizing antibody responses against botulinum neurotoxin serotype C using plasmid carried by PLGA nanoparticles. Hum Vaccin Immunother 2016; 12:1188-92. [PMID: 26837242 DOI: 10.1080/21645515.2015.1122147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a lethal neurotoxin, for which there is currently not an approved vaccine. Recent efforts in developing vaccine candidates against botulism have been directed at the heavy chain fragment of BoNT, because antibodies against this region have been shown to prevent BoNT from binding to its receptor and thus to nerve cell surface, offering protection against BoNT intoxication. In the present study, it was shown that immunization with plasmid DNA that encodes the 50 KDa C-terminal fragment of the heavy chain of BoNT serotype C (i.e., BoNT/C-Hc50) and is carried by cationic poly (lactic-co-glycolic) acid (PLGA) nanoparticles induces stronger BoNT/C-specific antibody responses, as compared to immunization with the plasmid alone. Importantly, the antibodies have BoNT/C-neutralizing activity, protecting the immunized mice from a lethal dose of BoNT/C challenge. A plasmid DNA vaccine encoding the Hc50 fragments of BoNT serotypes that cause human botulism may represent a viable vaccine candidate for protecting against botulinum neurotoxin intoxication.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- a College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin , TX , USA
| | - Haiyue Xu
- a College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin , TX , USA
| | - Junwei Li
- b Department of Biomedical Sciences , Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso , El Paso , TX , USA
| | - Diana Diaz-Arévalo
- b Department of Biomedical Sciences , Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso , El Paso , TX , USA
| | - Amit Kumar
- a College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin , TX , USA
| | - Mingtao Zeng
- b Department of Biomedical Sciences , Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso , El Paso , TX , USA
| | - Zhengrong Cui
- a College of Pharmacy, Pharmaceutics Division, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
12
|
Ravichandran E, Janardhanan P, Patel K, Riding S, Cai S, Singh BR. In Vivo Toxicity and Immunological Characterization of Detoxified Recombinant Botulinum Neurotoxin Type A. Pharm Res 2015; 33:639-52. [PMID: 26530460 DOI: 10.1007/s11095-015-1816-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE A double-mutant E224A/E262A full-length botulinum neurotoxin (BoNT) Type A with structural similarity to native BoNT/A but lacking the endopeptidase activity provides an ideal surrogate for testing pharmacokinetics and immunochemical characteristics of BoNT. METHODS We determined lethality (LD50) of deactivated recombinant botulinum neurotoxin (drBoNT/A) to be 24.0 μg by intraperitoneal route (i.p). The polypeptide drBoNT/A labeled with near infra-red dye 800 (NIR 800) was used to examine its distribution to different organs using whole body imaging when administered to mice via intravenous (i.v) or i.p route. Also, drBoNT/A was used to evaluate its immunogenicity in Balb/C mice model. RESULTS drBoNT/A was found to be highly immunogenic when tested under various in vivo conditions in Balb/C mice model. For the first time we have demonstrated that a full length 150 kDa drBoNT/A, by administering via inhalation route in mice model, has evoked both circulating immunoglobulin levels of IgG and secretory IgA at the mucosal surface. The immunoglobulin levels were sufficient enough to protect against the challenge dose of native BoNT toxin in mice model. Tissue distribution of drBoNT/A seems to be similar to that of native toxin. CONCLUSIONS Based on the characteristics described in this report this nontoxic holotoxin protein will assist us to explore the window of opportunity available for therapeutic treatment in case of unnatural poisoning, and also it can be an effective vaccine candidate.
Collapse
Affiliation(s)
- Easwaran Ravichandran
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts, 02747, USA
- Aurobindo Pharma USA Inc, 6 Wheeling Road, Dayton, New Jersey, 08810, USA
| | - Pavithra Janardhanan
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts, 02747, USA
| | - Kruti Patel
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts, 02747, USA
| | - Stephen Riding
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts, 02747, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts, 02747, USA
| | - Bal Ram Singh
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, Massachusetts, 02747, USA.
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, Massachusetts, 02747, USA.
- Prime Bio, Inc., Dartmouth, Massachusetts, 02747, USA.
| |
Collapse
|
13
|
Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon 2015; 107:2-8. [PMID: 26368006 DOI: 10.1016/j.toxicon.2015.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022]
Abstract
The recent availability of multiple Clostridium botulinum genomic sequences has initiated a new genomics era that strengthens our understanding of the bacterial species that produce botulinum neurotoxins (BoNTs). Analysis of the genomes has reinforced the historical Group I-VI designations and provided evidence that the bont genes can be located within the chromosome, phage or plasmids. The sequences provide the opportunity to examine closely the variation among the toxin genes, the composition and organization of the toxin complex, the regions flanking the toxin complex and the location of the toxin within different bacterial strains. These comparisons provide evidence of horizontal gene transfer and site-specific insertion and recombination events that have contributed to the variation observed among the neurotoxins. Here, examples that have contributed to the variation observed in serotypes A-H strains are presented to illustrate the mechanisms that have contributed to their variation.
Collapse
|
14
|
Smith TJ, Hill KK, Raphael BH. Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol 2015; 166:290-302. [PMID: 25312020 PMCID: PMC11302483 DOI: 10.1016/j.resmic.2014.09.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022]
Abstract
For nearly one hundred years, researchers have attempted to categorize botulinum neurotoxin-producing clostridia and the toxins that they produce according to biochemical characterizations, serological comparisons, and genetic analyses. Throughout this period the bacteria and their toxins have defied such attempts at categorization. Below is a description of both historic and current Clostridium botulinum strain and neurotoxin information that illustrates how each new finding has significantly added to the knowledge of the botulinum neurotoxin-containing clostridia and their diversity.
Collapse
Affiliation(s)
- Theresa J Smith
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Karen K Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Brian H Raphael
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
15
|
Jenko KL, Zhang Y, Kostenko Y, Fan Y, Garcia-Rodriguez C, Lou J, Marks JD, Varnum SM. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins. Analyst 2014; 139:5093-102. [PMID: 25112421 PMCID: PMC6540756 DOI: 10.1039/c4an01270d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant and microbial toxins are considered bioterrorism threat agents because of their extreme toxicity and/or ease of availability. Additionally, some of these toxins are increasingly responsible for accidental food poisonings. The current study utilized an ELISA-based protein antibody microarray for the multiplexed detection of ten biothreat toxins, botulinum neurotoxins (BoNT) A, B, C, D, E, F, ricin, shiga toxins 1 and 2 (Stx), and staphylococcus enterotoxin B (SEB), in buffer and complex biological matrices. The multiplexed assay displayed a sensitivity of 1.3 pg mL(-1) (BoNT/A, BoNT/B, SEB, Stx-1 and Stx-2), 3.3 pg mL(-1) (BoNT/C, BoNT/E, BoNT/F) and 8.2 pg mL(-1) (BoNT/D, ricin). All assays demonstrated high accuracy (75-120 percent recovery) and reproducibility (most coefficients of variation <20%). Quantification curves for the ten toxins were also evaluated in clinical samples (serum, plasma, nasal fluid, saliva, stool, and urine) and environmental samples (apple juice, milk and baby food) with overall minimal matrix effects. The multiplex assays were highly specific, with little cross-reactivity observed between the selected toxin antibodies. The results demonstrate a multiplex microarray that improves current immunoassay sensitivity for biological warfare agents in buffer, clinical, and environmental samples.
Collapse
Affiliation(s)
- Kathryn L Jenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Production of recombinant botulism antigens: A review of expression systems. Anaerobe 2014; 28:130-6. [DOI: 10.1016/j.anaerobe.2014.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022]
|
17
|
Gil LAF, da Cunha CEP, Moreira GMSG, Salvarani FM, Assis RA, Lobato FCF, Mendonça M, Dellagostin OA, Conceição FR. Production and evaluation of a recombinant chimeric vaccine against clostridium botulinum neurotoxin types C and D. PLoS One 2013; 8:e69692. [PMID: 23936080 PMCID: PMC3729698 DOI: 10.1371/journal.pone.0069692] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/25/2013] [Indexed: 11/19/2022] Open
Abstract
Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (HC) are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB), a strong adjuvant of the humoral immune response, fused to the HC of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH)3) developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH)3 developed a protective immune response against both BoNT/C (5 IU/mL) and BoNT/D (10 IU/mL), as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH)3. Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle.
Collapse
Affiliation(s)
- Luciana A. F. Gil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carlos Eduardo P. da Cunha
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Gustavo M. S. G. Moreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Felipe M. Salvarani
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ronnie A. Assis
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcelo Mendonça
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir A. Dellagostin
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabricio R. Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- * E-mail:
| |
Collapse
|
18
|
Yu YZ, Guo JP, An HJ, Zhang SM, Wang S, Yu WY, Sun ZW. Potent tetravalent replicon vaccines against botulinum neurotoxins using DNA-based Semliki Forest virus replicon vectors. Vaccine 2013; 31:2427-32. [PMID: 23583890 DOI: 10.1016/j.vaccine.2013.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/07/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Human botulism is commonly associated with botulinum neurotoxin (BoNT) serotypes A, B, E and F. This suggests that the greatest need is for a tetravalent vaccine that provides protection against all four of these serotypes. In current study, we investigated the feasibility of generating several tetravalent vaccines that protected mice against the four serotypes. Firstly, monovalent replicon vaccine against BoNT induced better antibody response and protection than that of corresponding conventional DNA vaccine. Secondly, dual-expression DNA replicon pSCARSE/FHc or replicon particle VRP-E/FHc vaccine was well resistant to the challenge of BoNT/E and BoNT/F mixture as a combination vaccine composed of two monovalent replicon vaccines. Finally, the dual-expression DNA replicon or replicon particle tetravalent vaccine could simultaneously and effectively neutralize and protect the four BoNT serotypes. Protection correlated directly with serum ELISA titers and neutralization antibody levels to BoNTs. Therefore, replicon-based DNA or particle might be effective vector to develop BoNT vaccines, which might be more desirable for use in clinical application than the conventional DNA vaccines. Our studies demonstrate the utility of combining dual-expression DNA replicon or replicon particle vaccines into multi-agent formulations as potent tetravalent vaccines for eliciting protective responses to four serotypes of BoNTs.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Karalewitz APA, Fu Z, Baldwin MR, Kim JJP, Barbieri JT. Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry. J Biol Chem 2012; 287:40806-16. [PMID: 23027864 PMCID: PMC3504792 DOI: 10.1074/jbc.m112.404244] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND How botulinum neurotoxin serotype C (BoNT/C) enters neurons is unclear. RESULTS BoNT/C utilizes dual gangliosides as host cell receptors. CONCLUSION BoNT/C accesses gangliosides on the plasma membrane. SIGNIFICANCE Plasma membrane accessibility of the dual ganglioside receptors suggests synaptic vesicle exocytosis may not be necessary to expose BoNT/C receptors. Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A-G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.
Collapse
Affiliation(s)
| | - Zhuji Fu
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Michael R. Baldwin
- the Department of Microbiology and Molecular Genetics, University of Missouri, Columbia, Missouri 65212
| | - Jung-Ja P. Kim
- Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Joseph T. Barbieri
- From the Departments of Microbiology and Molecular Genetics and , To whom correspondence should be addressed: Dept. of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226. Tel.: 414-955-8412; Fax: 414-955-6535; E-mail:
| |
Collapse
|
20
|
Zhang Y, Lou J, Jenko KL, Marks JD, Varnum SM. Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays. Anal Biochem 2012; 430:185-92. [PMID: 22935296 DOI: 10.1016/j.ab.2012.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022]
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are a group of seven (A-G) immunologically distinct proteins and cause the paralytic disease botulism. These toxins are the most poisonous substances known to humans and are potential bioweapon agents. Therefore, it is necessary to develop highly sensitive assays for the detection of BoNTs in both clinical and environmental samples. In the current study, we have developed an enzyme-linked immunosorbent assay (ELISA)-based protein antibody microarray for the sensitive and simultaneous detection of BoNT serotypes A, B, C, D, E, and F. With engineered high-affinity antibodies, the BoNT assays have sensitivities in buffer ranging from 1.3fM (0.2pg/ml) to 14.7fM (2.2pg/ml). Using clinical and food matrices (serum and milk), the microarray is capable of detecting BoNT serotypes A to F to similar levels as in standard buffer. Cross-reactivity between assays for individual serotype was also analyzed. These simultaneous, rapid, and sensitive assays have the potential to measure botulinum toxins in a high-throughput manner in complex clinical, food, and environmental samples.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
21
|
Karalewitz APA, Barbieri JT. Vaccines against botulism. Curr Opin Microbiol 2012; 15:317-24. [PMID: 22694934 DOI: 10.1016/j.mib.2012.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/10/2012] [Indexed: 11/27/2022]
Abstract
The clostridial neurotoxins (CNTs) are the most toxic proteins for humans and include botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT). CNT neurotropism is based upon the preferred binding and entry into neurons and specific cleavage of neuronal SNARE proteins. While chemically inactive TeNT toxoid remains an effect vaccine, the current pentavalent vaccine against botulism is in limited supply. Recent advances have facilitated the development of the next generation of BoNT vaccines, utilizing non-catalytic full-length BoNT or a subunit vaccine composed of the receptor binding domain of BoNT as immunogens. This review describes the issues and progress towards the production of a vaccine against botulism that will be effective against natural BoNT variants.
Collapse
Affiliation(s)
- Andrew P-A Karalewitz
- Medical College of Wisconsin, Microbiology and Molecular Genetics BSB-256, Milwaukee, WI 53226, USA
| | | |
Collapse
|
22
|
Peng L, Berntsson RPA, Tepp WH, Pitkin RM, Johnson EA, Stenmark P, Dong M. Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci 2012; 125:3233-42. [PMID: 22454523 DOI: 10.1242/jcs.103564] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are classified into seven types (A-G), but multiple subtype and mosaic toxins exist. These subtype and mosaic toxins share a high sequence identity, and presumably the same receptors and substrates with their parental toxins. Here, we report that a mosaic toxin, type D-C (BoNT/D-C), uses different receptors from its parental toxin BoNT/C. BoNT/D-C, but not BoNT/C, binds directly to the luminal domains of synaptic vesicle proteins synaptotagmin (Syt) I and II, and requires expression of SytI/II to enter neurons. The SytII luminal fragment containing the toxin-binding site can block the entry of BoNT/D-C into neurons and reduce its toxicity in vivo in mice. We also found that gangliosides increase binding of BoNT/D-C to SytI/II and enhance the ability of the SytII luminal fragment to block BoNT/D-C entry into neurons. These data establish SytI/II, in conjunction with gangliosides, as the receptors for BoNT/D-C, and indicate that BoNT/D-C is functionally distinct from BoNT/C. We further found that BoNT/D-C recognizes the same binding site on SytI/II where BoNT/B and G also bind, but utilizes a receptor-binding interface that is distinct from BoNT/B and G. Finally, we also report that human and chimpanzee SytII has diminished binding and function as the receptor for BoNT/B, D-C and G owing to a single residue change from rodent SytII within the toxin binding site, potentially reducing the potency of these BoNTs in humans and chimpanzees.
Collapse
Affiliation(s)
- Lisheng Peng
- Department of Microbiology and Immunobiology, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, MA 01772, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kroken AR, Karalewitz APA, Fu Z, Baldwin MR, Kim JJP, Barbieri JT. Unique ganglioside binding by botulinum neurotoxins C and D-SA. FEBS J 2011; 278:4486-96. [PMID: 21554541 PMCID: PMC3170675 DOI: 10.1111/j.1742-4658.2011.08166.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G), based on a lack of cross-antiserum neutralization. The BoNT/C and BoNT/D serotypes include mosaic toxins that are organized as D-C and C-D toxins. One BoNT D-C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with a vaccine composed of either prototype BoNT/C-Stockholm or BoNT/D-1873. Whereas several BoNT serotypes utilize dual receptors (gangliosides and proteins) to bind to and enter neurons, the basis for BoNT/C and BoNT/D entry into neurons is less well understood. Recent studies solved the crystal structures of the receptor-binding domains of BoNT/C, BoNT/D, and BoNT/D-SA. Comparative structural analysis showed that BoNT/C, BoNT/D and BoNT/D-SA lacked components of the ganglioside-binding pocket that exists within other BoNT serotypes. With the use of structure-based alignments, biochemical analyses, and cell-binding approaches, BoNT/C and BoNT/D-SA have been shown to possess a unique ganglioside-binding domain, the ganglioside-binding loop. Defining how BoNTs enter host cells provides insights towards understanding the evolution and extending the potential therapeutic and immunological values of the BoNT serotypes.
Collapse
Affiliation(s)
- Abby R. Kroken
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Andrew P-A. Karalewitz
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Zhuji Fu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Michael R. Baldwin
- Department of Microbiology and Immunology, University of Missouri, Columbia, MO
| | - Jung-Ja P. Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Joseph T. Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
24
|
Montgomery VA, Smith LA. Diagnostic and possible therapeutic application of a monoclonal antibody (14G8) directed against botulinum type C neurotoxin. Hybridoma (Larchmt) 2011; 30:209-16. [PMID: 21707354 DOI: 10.1089/hyb.2010.0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A monoclonal antibody, designated 14G8, detected Clostridium botulinum type C neurotoxin in immunoassays requiring native confirmation of the analyte. 14G8 bound to the light chain of the type C neurotoxin, which is conserved between strains of C. botulinum type C and C/d mosaic neurotoxins. 14G8 did not react to any other serotypes of C. botulinum neurotoxins. In mouse phrenic nerve-hemidiaphragm assays, 14G8, when combined with a second antibody (5D9-H9-A9, which reacts to epitopes on the carboxy terminus of the heavy chain), was able to protect the mouse myoneural junction from intoxication with C. botulinum type C neurotoxin. When used individually, both 14G8 and 5D9-H9-G9 antibodies slowed the loss of twitch tension in the mouse phrenic nerve-hemidiaphragm assays, but did not completely protect the phrenic nerve from paralysis. In in vivo mouse botulinum neurotoxin type C challenge studies, the combination of 14G8 and 5D9-H9-A9 significantly increased mean time-to-death and survival when compared to toxin controls and mice receiving only one of the monoclonal antibodies. These results suggest that the 14G8 monoclonal antibody could have useful therapeutic applications.
Collapse
Affiliation(s)
- Vicki A Montgomery
- Division of Integrated Toxicology, U.S. Army Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
25
|
Henkel JS, Tepp WH, Przedpelski A, Fritz RB, Johnson EA, Barbieri JT. Subunit vaccine efficacy against Botulinum neurotoxin subtypes. Vaccine 2011; 29:7688-95. [PMID: 21839134 DOI: 10.1016/j.vaccine.2011.07.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Botulinum neurotoxins (BoNT) are classified into 7 serotypes (A-G) based upon neutralization by serotype-specific anti-sera. Several recombinant serotype-specific subunit BoNT vaccines have been developed, including a subunit vaccine comprising the receptor binding domain (HCR) of the BoNTs. Sequencing of the genes encoding BoNTs has identified variants (subtypes) that possess up to 32% primary amino acid variation among different BoNT serotypes. Studies were conducted to characterize the ability of the HCR of BoNT/A to protect against challenge by heterologous BoNT/A subtypes (A1-A3). High dose vaccination with HCR/A subtypes A1-A4 protected mice from challenge by heterologous BoNT/A subtype A1-A3, while low dose HCR vaccination yielded partial protection to heterologous BoNT/A subtype challenge. Absolute IgG titers to HCRs correlated to the dose of HCR used for vaccination, where HCR/A1 elicited an A1 subtype-specific IgG response, which was not observed with HCR/A2 vaccination. Survival of mice challenged to heterologous BoNT/A2 following low dose HCR/A1 vaccination correlated with elevated IgG titers directed to the denatured C-terminal sub-domain of HCR/A2, while survival of mice to heterologous BoNT/A1 following low dose HCR/A2 vaccination correlated to elevated IgG titers directed to native HCRc/A1. This implies that low dose vaccinations with HCR/A subtypes elicit unique IgG responses, and provides a basis to define how the host develops a neutralizing immune response to BoNT intoxication. These results may provide a reference for the development of pan-BoNT vaccines.
Collapse
Affiliation(s)
- James S Henkel
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
26
|
Peng L, Tepp WH, Johnson EA, Dong M. Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 2011; 7:e1002008. [PMID: 21483489 PMCID: PMC3068998 DOI: 10.1371/journal.ppat.1002008] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/10/2011] [Indexed: 02/03/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) include seven bacterial toxins (BoNT/A-G) that target presynaptic terminals and act as proteases cleaving proteins required for synaptic vesicle exocytosis. Here we identified synaptic vesicle protein SV2 as the protein receptor for BoNT/D. BoNT/D enters cultured hippocampal neurons via synaptic vesicle recycling and can bind SV2 in brain detergent extracts. BoNT/D failed to bind and enter neurons lacking SV2, which can be rescued by expressing one of the three SV2 isoforms (SV2A/B/C). Localization of SV2 on plasma membranes mediated BoNT/D binding in both neurons and HEK293 cells. Furthermore, chimeric receptors containing the binding sites for BoNT/A and E, two other BoNTs that use SV2 as receptors, failed to mediate the entry of BoNT/D suggesting that BoNT/D binds SV2 via a mechanism distinct from BoNT/A and E. Finally, we demonstrated that gangliosides are essential for the binding and entry of BoNT/D into neurons and for its toxicity in vivo, supporting a double-receptor model for this toxin. BoNTs are a family of seven bacterial toxins (BoNT/A-G). Among the seven BoNTs, whether BoNT/D uses the same entry pathways and similar receptor-binding strategies as other BoNTs is not known. Previous studies have suggested that BoNT/D does not need a protein receptor nor ganglioside co-receptor, in contrast to all other BoNTs. Here we demonstrate that BoNT/D uses synaptic vesicle protein SV2 as its protein receptor and gangliosides as co-receptor, thus supporting the “double-receptor” model as a central theme for this class of toxins. Furthermore, we found that BoNT/D utilizes a SV2 binding mechanism distinct from BoNT/A and BoNT/E, two other BoNTs that use SV2 as receptors. This indicates that different BoNTs can develop their distinct mechanisms to target a common receptor protein.
Collapse
Affiliation(s)
- Lisheng Peng
- Department of Microbiology and Molecular Genetics, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - William H. Tepp
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric A. Johnson
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Min Dong
- Department of Microbiology and Molecular Genetics, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Dux MP, Huang J, Barent R, Inan M, Swanson ST, Sinha J, Ross JT, Smith LA, Smith TJ, Henderson I, Meagher MM. Purification of a recombinant heavy chain fragment C vaccine candidate against botulinum serotype C neurotoxin [rBoNTC(Hc)] expressed in Pichia pastoris. Protein Expr Purif 2011; 75:177-85. [DOI: 10.1016/j.pep.2010.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/23/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
|
28
|
Moura H, Terilli RR, Woolfitt AR, Gallegos-Candela M, McWilliams LG, Solano MI, Pirkle JL, Barr JR. Studies on botulinum neurotoxins type /C1 and mosaic/DC using Endopep-MS and proteomics. ACTA ACUST UNITED AC 2011; 61:288-300. [PMID: 21205003 DOI: 10.1111/j.1574-695x.2010.00774.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Botulinum neurotoxins (BoNTs) are very potent toxins and category A biological threat agents. BoNT serotypes /C1 and /D affect birds and mammals and can be potentially lethal to humans. We have previously described the usefulness of the Endopep-MS method to detect the activity of BoNT A through G. This report was followed by the application of the method to clinical samples. The activity of the BoNT serotypes associated with human disease (/A, /B, /E, and /F) was successfully detected. However, BoNT/C and /D require different conditions for fast substrate cleavage, and a comprehensive description of a method to study BoNT/C and /D has not yet been reported. This work describes a new, optimized version of the Endopep-MS method to detect BoNTs /C1 and /DC either spiked directly in 20 μL of reaction buffer or spiked in a larger volume of buffer and further extracted using antibody-coated magnetic beads. It was found that the incubation temperature at 42 °C was more effective for both toxin serotypes, but each toxin serotype has an optimum cleavage pH. Additionally, we describe for the first time a proteomics study using a fast trypsin digestion method and label-free quantification of these toxin serotypes.
Collapse
Affiliation(s)
- Hercules Moura
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ramasamy S, Liu CQ, Tran H, Gubala A, Gauci P, McAllister J, Vo T. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. Br J Pharmacol 2010; 161:721-48. [PMID: 20860656 DOI: 10.1111/j.1476-5381.2010.00939.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The use of biological agents has generally been confined to military-led conflicts. However, there has been an increase in non-state-based terrorism, including the use of asymmetric warfare, such as biological agents in the past few decades. Thus, it is becoming increasingly important to consider strategies for preventing and preparing for attacks by insurgents, such as the development of pre- and post-exposure medical countermeasures. There are a wide range of prophylactics and treatments being investigated to combat the effects of biological agents. These include antibiotics (for both conventional and unconventional use), antibodies, anti-virals, immunomodulators, nucleic acids (analogues, antisense, ribozymes and DNAzymes), bacteriophage therapy and micro-encapsulation. While vaccines are commercially available for the prevention of anthrax, cholera, plague, Q fever and smallpox, there are no licensed vaccines available for use in the case of botulinum toxins, viral encephalitis, melioidosis or ricin. Antibiotics are still recommended as the mainstay treatment following exposure to anthrax, plague, Q fever and melioidosis. Anti-toxin therapy and anti-virals may be used in the case of botulinum toxins or smallpox respectively. However, supportive care is the only, or mainstay, post-exposure treatment for cholera, viral encephalitis and ricin - a recommendation that has not changed in decades. Indeed, with the difficulty that antibiotic resistance poses, the development and further evaluation of techniques and atypical pharmaceuticals are fundamental to the development of prophylaxis and post-exposure treatment options. The aim of this review is to present an update on prophylaxis and post-exposure treatment recommendations and research initiatives for biological agents in the open literature from 2007 to 2009.
Collapse
Affiliation(s)
- S Ramasamy
- Defence Science & Technology Organisation, Human Protection and Performance Division, Fishermans Bend, Vic., Australia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Karalewitz APA, Kroken AR, Fu Z, Baldwin MR, Kim JJP, Barbieri JT. Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA . Biochemistry 2010; 49:8117-26. [PMID: 20731382 PMCID: PMC2939319 DOI: 10.1021/bi100865f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross antiserum neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype C or D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical and cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information about how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins.
Collapse
Affiliation(s)
- Andrew P-A. Karalewitz
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Abby R. Kroken
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zhuji Fu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael R. Baldwin
- Department of Microbiology and Immunology at the University of Missouri, Columbia, Missouri
| | - Jung-Ja P. Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph T. Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
31
|
Yu YZ, Zhang SM, Ma Y, Zhu HQ, Wang WB, Du Y, Zhou XW, Wang RL, Wang S, Yu WY, Huang PT, Sun ZW. Development and evaluation of candidate vaccine and antitoxin against botulinum neurotoxin serotype F. Clin Immunol 2010; 137:271-80. [PMID: 20696619 DOI: 10.1016/j.clim.2010.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 11/29/2022]
Abstract
To produce a vaccine suitable for human use, a recombinant non His-tagged isoform of the Hc domain of botulinum neurotoxin serotype F (rFHc) was expressed in Escherichia coli and purified by sequential chromatography. The rFHc was evaluated as a subunit vaccine candidate in mouse model of botulism. A dose-response was observed in both antibody titer and protective efficacy with increasing dosage of rFHc and number of vaccinations. These findings suggest that the rFHc is an effective botulism vaccine candidate. Further, we developed a new antitoxin against botulinum neurotoxin serotype F (BoNT/F) by purifying F(ab')(2) fragments from pepsin digested serum IgGs of horses inoculated with rFHc. The protective effect of the F(ab')(2) antitoxin against BoNT/F was determined both in vitro and in vivo. The results showed that the F(ab')(2) antitoxin could prevent botulism in mice challenged with BoNT/F and effectively delayed progression of paralysis from botulism in the therapeutic setting. Thus, our results provide valuable experimental data for this new antitoxin as a potential candidate for treatment of botulism caused by BoNT/F.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vaccination of rabbits with an alkylated toxoid rapidly elicits potent neutralizing antibodies against botulinum neurotoxin serotype B. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:930-6. [PMID: 20410329 DOI: 10.1128/cvi.00493-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
New Zealand White (NZW) rabbits were immunized with several different nontoxic botulinum neurotoxin serotype B (BoNT/B) preparations in an effort to optimize the production of a rapid and highly potent, effective neutralizing antibody response. The immunogens included a recombinant heavy chain (rHc) protein produced in Escherichia coli, a commercially available formaldehyde-inactivated toxoid, and an alkylated toxoid produced by urea-iodoacetamide inactivation of the purified active toxin. All three immunogens elicited an antibody response to BoNT/B, detected by enzyme-linked immunosorbent assay (ELISA) and by toxin neutralization assay, by the use of two distinct mouse toxin challenge models. The induction period and the ultimate potency of the observed immune response varied for each immunogen, and the ELISA titer was not reliably predictive of the potency of toxin neutralization. The kinetics of the BoNT/B-specific binding immune response were nearly identical for the formaldehyde toxoid and alkylated toxoid immunogens, but immunization with the alkylated toxoid generated an approximately 10-fold higher neutralization potency that endured throughout the study, and after just 49 days, each milliliter of serum was capable of neutralizing 10(7) 50% lethal doses of the toxin. Overall, the immunization of rabbits with alkylated BoNT/B toxoid appears to have induced a neutralizing immune response more rapid and more potent than the responses generated by vaccination with formaldehyde toxoid or rHc preparations.
Collapse
|
33
|
Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:784-92. [PMID: 20357058 DOI: 10.1128/cvi.00496-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni(+) affinity chromatography. Mice immunized with three injections containing 5 microg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 10(5) against the native toxin complex, which enabled protection against a high-dose toxin challenge (10(3) to 10(6) mouse 50% lethal dose [MsLD(50)]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 10(5) MsLD(50) toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.
Collapse
|
34
|
Mansour AA, Mousavi SL, Rasooli I, Nazarian S, Amani J, Farhadi N. Cloning, high level expression and immunogenicity of 1163-1256 residues of C-terminal heavy chain of C. botulinum neurotoxin type E. Biologicals 2010; 38:260-4. [PMID: 19879159 DOI: 10.1016/j.biologicals.2009.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 11/24/2022] Open
|
35
|
Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A. Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS One 2010; 5:e8818. [PMID: 20098614 PMCID: PMC2809108 DOI: 10.1371/journal.pone.0008818] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/23/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There are currently 7 known serotypes of botulinum neurotoxin (BoNT) classified upon non-cross reactivity of neutralizing immunoglobulins. Non-neutralizing immunoglobulins, however, can exhibit cross-reactivities between 2 or more serotypes, particularly mosaic forms, which can hamper the development of highly specific immunoassays, especially if based on polyclonal antisera. Here we employ facile recombinant antibody technology to subtractively select ligands to each of the 7 BoNT serotypes, resulting in populations with very high specificity for their intended serotype. METHODS AND FINDINGS A single llama was immunized with a cocktail of 7 BoNT toxoids to generate a phage display library of single domain antibodies (sdAb, VHH or nanobodies) which were selected on live toxins. Resulting sdAb were capable of detecting both toxin and toxin complex with the best combinations able to detect 100s-10s of pg per 50 microL sample in a liquid bead array. The most sensitive sdAb were combined in a heptaplex assay to identify each of the BoNT serotypes in buffer and milk and to a lesser extent in carrot juice, orange juice and cola. Several anti-A(1) sdAb recognized A2 complex, showing that subtype cross-reactivity within a serotype was evident. Many of our sdAb could act as both captor and tracer for several toxin and toxin complexes suggesting sdAb can be used as architectural probes to indicate BoNT oligomerisation. Six of 14 anti-A clones exhibited inhibition of SNAP-25 cleavage in the neuro-2A assay indicating some sdAb had toxin neutralizing capabilities. Many sdAb were also shown to be refoldable after exposure to high temperatures in contrast to polyclonal antisera, as monitored by circular dichroism. CONCLUSIONS Our panel of molecularly flexible antibodies should not only serve as a good starting point for ruggedizing assays and inhibitors, but enable the intricate architectures of BoNT toxins and complexes to be probed more extensively.
Collapse
Affiliation(s)
- Jerry O. Conway
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Laura J. Sherwood
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - M. Thelma Collazo
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - John A. Garza
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Andrew Hayhurst
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan. Vet Microbiol 2010; 140:147-54. [DOI: 10.1016/j.vetmic.2009.07.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 07/10/2009] [Accepted: 07/31/2009] [Indexed: 11/17/2022]
|
37
|
Botulism and vaccines for its prevention. Vaccine 2009; 27 Suppl 4:D33-9. [DOI: 10.1016/j.vaccine.2009.08.059] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022]
|
38
|
Immune response of horses to vaccination with the recombinant Hc domain of botulinum neurotoxin types C and D. Vaccine 2009; 27:5661-6. [DOI: 10.1016/j.vaccine.2009.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 11/18/2022]
|
39
|
Yu YZ, Sun ZW, Li N, Wang S, Wang RL, Yu WY. Protection with a recombinant Hc ofClostridium Botulinumneurotoxin serotype A fromEscherichia colias an effective subunit vaccine. Immunopharmacol Immunotoxicol 2009; 31:261-6. [DOI: 10.1080/08923970802438433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Webb RP, Smith TJ, Wright P, Brown J, Smith LA. Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 2009; 27:4490-7. [PMID: 19450643 DOI: 10.1016/j.vaccine.2009.05.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/20/2009] [Accepted: 05/10/2009] [Indexed: 11/28/2022]
Abstract
A recombinant, catalytically inactive Clostridium botulinum neurotoxin A1 holoprotein (ciBoNT/A1 HP) was constructed by introducing amino acid substitutions H223A, E224A, and H227A in the active site to ablate proteolytic activity. ciBoNT/A1 HP was produced in the yeast Pichia pastoris and the purified product was evaluated as a vaccine candidate by comparison against recombinant BoNT/A1 LC, LC-belt, LC-H(n), and H(c) antigens and a LC-H(n)+H(c) combination in mouse potency and efficacy bioassays when challenged with BoNT/A subtypes /A1, /A2, and /A3. A single dose of ciBoNT/A1 HP provided equivalent or greater protective immunity, not only against the homologous toxin, but also against two distinct toxin subtypes with significant amino acid divergence. Only the LC-H(n)+H(c) combination provided comparable protection against /A1; however, it was less effective against subtypes /A2 and /A3. Differences in protective immunity diminished after multiple vaccinations with either ciBoNT/A1 HP or BoNT/A1 H(c), and the survival rates were more comparable at the toxin levels used to challenge.
Collapse
Affiliation(s)
- Robert P Webb
- United States Army Medical Research Institute for Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, United States
| | | | | | | | | |
Collapse
|
41
|
Yu YZ, Li N, Zhu HQ, Wang RL, Du Y, Wang S, Yu WY, Sun ZW. The recombinant Hc subunit of Clostridium botulinum neurotoxin serotype A is an effective botulism vaccine candidate. Vaccine 2009; 27:2816-22. [DOI: 10.1016/j.vaccine.2009.02.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/09/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|
42
|
Xu Q, Pichichero ME, Simpson LL, Elias M, Smith LA, Zeng M. An adenoviral vector-based mucosal vaccine is effective in protection against botulism. Gene Ther 2009; 16:367-75. [PMID: 19129860 PMCID: PMC7094725 DOI: 10.1038/gt.2008.181] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/22/2008] [Accepted: 11/03/2008] [Indexed: 01/06/2023]
Abstract
A replication-incompetent adenoviral vector encoding the heavy chain C-fragment (H(C)50) of botulinum neurotoxin type C (BoNT/C) was evaluated as a mucosal vaccine against botulism in a mouse model. Single intranasal inoculation of the adenoviral vector elicited a high level of H(C)50-specific IgG, IgG1 and IgG2a in sera and IgA in mucosal secretions as early as 2 weeks after vaccination. The antigen-specific serum antibodies were maintained at a high level at least until the 27th week. Immune sera showed high potency in neutralizing BoNT/C as indicated by in vitro toxin neutralization assay. The mice receiving single dose of 2 x 10(7) p.f.u. (plaque-forming unit) of adenoviral vector were completely protected against challenge with up to 10(4) x MLD(50) of BoNT/C. The protective immunity showed vaccine dose dependence from 10(5) to 2 x 10(7) p.f.u. of adenoviral vector. In addition, animals receiving single intranasal dose of 2 x 10(7) p.f.u. adenoviral vector could be protected against 100 x MLD(50) 27 weeks after vaccination. Animals with preexisting immunity to adenovirus could also be vaccinated intranasally and protected against lethal challenge with BoNT/C. These results suggest that the adenoviral vector is a highly effective gene-based mucosal vaccine against botulism.
Collapse
Affiliation(s)
- Q Xu
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - M E Pichichero
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - L L Simpson
- Department of Medicine and Department of Biochemistry and Molecular Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA USA
| | - Md Elias
- Department of Medicine and Department of Biochemistry and Molecular Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA USA
| | - L A Smith
- Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD USA
| | - M Zeng
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| |
Collapse
|
43
|
Willis B, Eubanks LM, Dickerson TJ, Janda KD. The strange case of the botulinum neurotoxin: using chemistry and biology to modulate the most deadly poison. Angew Chem Int Ed Engl 2008; 47:8360-79. [PMID: 18844202 DOI: 10.1002/anie.200705531] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the classic novella "The Strange Case of Dr. Jekyll and Mr. Hyde", Robert Louis Stevenson paints a stark picture of the duality of good and evil within a single man. Botulinum neurotoxin (BoNT), the most potent known toxin, possesses an analogous dichotomous nature: It shows a pronounced morbidity and mortality, but it is used with great effect in much lower doses in a wide range of clinical scenarios. Recently, tremendous strides have been made in the basic understanding of the structure and function of BoNT, which have translated into widespread efforts towards the discovery of biomacromolecules and small molecules that specifically modulate BoNT activity. Particular emphasis has been placed on the identification of inhibitors that can counteract BoNT exposure in the event of a bioterrorist attack. This Review summarizes the current advances in the development of therapeutics, including vaccines, peptides, and small-molecule inhibitors, for the prevention and treatment of botulism.
Collapse
Affiliation(s)
- Bert Willis
- Department of Chemistry, Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
44
|
Willis B, Eubanks L, Dickerson T, Janda K. Der seltsame Fall des Botulinum-Neurotoxins: chemische und biologische Modulierung des tödlichsten aller Gifte. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC, Doggett NA, Smith LA, Marks JD, Xie G, Brettin TS. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS One 2007; 2:e1271. [PMID: 18060065 PMCID: PMC2092393 DOI: 10.1371/journal.pone.0001271] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A-G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression. METHODOLOGY/PRINCIPAL FINDINGS Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid. CONCLUSIONS/SIGNIFICANCE Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.
Collapse
Affiliation(s)
- Theresa J. Smith
- Integrated Toxicology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Karen K. Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Brian T. Foley
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John C. Detter
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - A. Christine Munk
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - David C. Bruce
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Norman A. Doggett
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Leonard A. Smith
- Integrated Toxicology Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - James D. Marks
- Department of Anesthesia and Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, United States of America
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Thomas S. Brettin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
46
|
Zeng M, Xu Q, Elias M, Pichichero ME, Simpson LL, Smith LA. Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine. Vaccine 2007; 25:7540-8. [PMID: 17897756 PMCID: PMC2077857 DOI: 10.1016/j.vaccine.2007.08.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022]
Abstract
Botulinum neurotoxins cause botulism, a neuroparalytic disease in humans and animals. We constructed a replication-incompetent adenovirus encoding a synthesized codon-optimized gene for expression of the heavy chain C-fragment (H(C)50) of botulinum neurotoxin type C (BoNT/C). This recombinant human serotype 5 adenoviral vector (Ad5) was evaluated as a genetic vaccine candidate against botulism caused by BoNT/C in a mouse model. A one-time intramuscular injection with 10(5) to 2 x 10(7)pfu of adenoviral vectors elicited robust serum antibody responses against H(C)50 of BoNT/C as assessed by ELISA. Immune sera showed high potency in neutralizing the active BoNT/C in vitro. After a single dose of 2 x 10(7)pfu adenoviral vectors, the animals were completely protected against intraperitoneal challenge with 100 x MLD(50) of active BoNT/C. The protective immunity appeared to be vaccine dose-dependent. The anti-toxin protective immunity could last for at least 7 months without a booster injection. In addition, we observed that pre-existing immunity to the wild-type Ad5 in the host had no significant influence on the protective efficacy of vaccination. The data suggest that an adenovirus-vectored genetic vaccine is a highly efficient prophylaxis candidate against botulism.
Collapse
Affiliation(s)
- Mingtao Zeng
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|