1
|
Yu Z, Wang W, Yu C, He L, Ding K, Shang K, Chen S. Molecular Characterization of Feline Parvovirus from Domestic Cats in Henan Province, China from 2020 to 2022. Vet Sci 2024; 11:292. [PMID: 39057976 PMCID: PMC11281718 DOI: 10.3390/vetsci11070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Carnivore protoparvovirus-1, feline parvovirus (FPV), and canine parvovirus (CPV) continue to spread in companion animals all over the world. As a result, FPV and CPV underwent host-to-host transfer in carnivorous wild-animal hosts. Here, a total of 82 fecal samples of suspected cat FPV infections were collected from Henan Province from 2020 to 2022. The previously published full-length sequence primers of VP2 and NS1 genes were used to amplify the targeted genes of these samples, and the complete gene sequences of 11 VP2 and 21 NS1 samples were obtained and analyzed. Analysis showed that the amino acid homology of the VP2 and NS1 genes of these isolates was 96.1-100% and 97.6-100%, respectively. The phylogenetic results showed that the VP2 and NS1 genes of the local isolates were mainly concentrated in the G1 subgroup, while the vaccine strains were distributed in the G3 subgroup. Finally, F81 cells were inoculated with the local endemic isolate Luoyang-01 (FPV-LY strain for short) for virus amplification, purification, and titer determination, and the pathogenesis of FPV-LY was detected. After five generations of blind transmission in F81 cells, cells infected with FPV-LY displayed characteristic morphological changes, including a round, threadlike, and wrinkled appearance, indicative of viral infection. The virus titer associated with this cytopathic effect (CPE) was measured at 1.5 × 106 TCID50/mL. Subsequent animal regression tests confirmed that the virus titer of the PFV-LY isolate remained at 1.5 × 106 TCID50/mL, indicating its highly pathogenic nature. Cats exposed to the virus exhibited typical clinical symptoms and pathological changes, ultimately succumbing to the infection. These results suggest that the gene mutation rate of FPV is increasing, resulting in a complex pattern of gene evolution in terms of host preference, geographical selection, and novel genetic variants. The data also indicate that continuous molecular epidemiological surveillance is required to understand the genetic diversity of FPV isolates.
Collapse
Affiliation(s)
- Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenjie Wang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chuan Yu
- Pet & Human Health Engineering Technology Center, Luoyang Polytechnic, Luoyang 471900, China
| | - Lei He
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Areewong C, Rittipornlertrak A, Nambooppha B, Fhaikrue I, Singhla T, Sodarat C, Prachasilchai W, Vongchan P, Sthitmatee N. Evaluation of an in-house indirect enzyme-linked immunosorbent assay of feline panleukopenia VP2 subunit antigen in comparison to hemagglutination inhibition assay to monitor tiger antibody levels by Bayesian approach. BMC Vet Res 2020; 16:275. [PMID: 32762697 PMCID: PMC7409676 DOI: 10.1186/s12917-020-02496-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022] Open
Abstract
Background Feline panleukopenia virus (FPV) is an etiologic pathogen of feline panleukopenia that infects all members of Felidae including tigers (Panthera tigris). Vaccinations against FPV among wild felid species have long been practiced in zoos worldwide. However, few studies have assessed the tiger immune response post-vaccination due to the absence of a serological diagnostic tool. To address these limitations, this study aimed to develop an in-house indirect enzyme-linked immunosorbent assay (ELISA) for the monitoring of tiger antibody levels against the feline panleukopenia vaccine by employing the synthesized subunit capsid protein VP2. An in-house horseradish peroxidase (HRP) conjugated rabbit anti-tiger immunoglobulin G (IgG) polyclonal antibody (HRP-anti-tiger IgG) was produced in this study and employed in the assay. It was then compared to a commercial HRP-conjugated goat anti-cat IgG (HRP-anti-cat IgG). Sensitivity and specificity were evaluated using the Bayesian model with preferential conditional dependence between HRP-conjugated antibody-based ELISAs and hemagglutination-inhibition (HI) tests. Results The posterior estimates for sensitivity and specificity of two indirect ELISA HRP-conjugated antibodies were higher than those of the HI test. The sensitivity and specificity of the indirect ELISA for HRP-anti-tiger IgG and HRP-anti-cat IgG were 86.5, 57.2 and 86.7%, 64.6%, respectively, while the results of the HI test were 79.1 and 54.1%. In applications, 89.6% (198/221) and 89.1% (197/221) of the tiger serum samples were determined to be seropositive by indirect ELISA testing against HRP-anti-tiger and HRP-anti-cat, respectively. Conclusion To the best of our knowledge, the specific serology assays for the detection of the tiger IgG antibody have not yet been established. The HRP-anti-tiger IgG has been produced for the purpose of developing the specific immunoassays for tigers. Remarkably, an in-house indirect ELISA based on VP2 subunit antigen has been successfully developed in this study, providing a potentially valuable serological tool for the effective detection of tiger antibodies.
Collapse
Affiliation(s)
- Chanakan Areewong
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.,Tiger Kingdom, Mae Rim, Chiang Mai, 50180, Thailand
| | - Amarin Rittipornlertrak
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Boondarika Nambooppha
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Itsarapan Fhaikrue
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Tawatchai Singhla
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chollada Sodarat
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Worapat Prachasilchai
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Preeyanat Vongchan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattawooti Sthitmatee
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
3
|
Liu C, Liu Y, Qian P, Cao Y, Wang J, Sun C, Huang B, Cui N, Huo N, Wu H, Wang L, Xi X, Tian K. Molecular and serological investigation of cat viral infectious diseases in China from 2016 to 2019. Transbound Emerg Dis 2020; 67:2329-2335. [PMID: 32511839 DOI: 10.1111/tbed.13667] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
In order to analyse the prevalence of cat viral diseases in China, including feline parvovirus (FPV), feline calicivirus (FCV), feline herpesvirus 1 (FHV-1), feline leukaemia virus (FeLV), feline immunodeficiency virus (FIV) and feline infectious peritonitis virus (FIPV), a total of 1,326 samples of cats from 16 cities were investigated from 2016 to 2019. Collectively, 1,060 (79.9%) cats were tested positive for at least one virus in nucleotide detection, and the positive rates of cat exposure to FeLV, FPV, FHV-1, FCV, FIV and FIPV were 59.6%, 19.2%, 16.3%, 14.2%, 1.5% and 0.5%, respectively. The prevalence of FHV-1 and FPV was dominant in winter and spring. Cats from north China showed a higher positive rate of viral infection than that of cats from south China. The virus infection is not highly correlated with age, except that FPV is prone to occur within the age of 12 months. In the serological survey, the seroprevalences of 267 vaccinated cats to FPV, FCV and FHV-1 were 83.9%, 58.3% and 44.0%, respectively. Meanwhile, the seroprevalences of 39 unvaccinated cats to FPV, FCV and FHV-1 were 76.9% (30/39), 82.4% (28/34) and 58.6% (17/29), respectively. This study demonstrated that a high prevalence of the six viral diseases in China and the insufficient serological potency of FCV and FHV-1 remind the urgency for more effective vaccines.
Collapse
Affiliation(s)
- Caihong Liu
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Yuxiu Liu
- National Research Center for Veterinary Medicine, Luoyang, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | | | - Yujiao Cao
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Jie Wang
- National Research Center for Veterinary Medicine, Luoyang, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - ChunYan Sun
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Baicheng Huang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Ningning Cui
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Ningning Huo
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Hongchao Wu
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Lingxiao Wang
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Xiangfeng Xi
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Construction and Immunogenicity of Virus-Like Particles of Feline Parvovirus from the Tiger. Viruses 2020; 12:v12030315. [PMID: 32188011 PMCID: PMC7150758 DOI: 10.3390/v12030315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/13/2023] Open
Abstract
Feline panleukopenia, caused by feline parvovirus (FPV), is a highly infectious disease characterized by leucopenia and hemorrhagic gastroenteritis that severely affects the health of large wild Felidae. In this study, tiger FPV virus-like particles (VLPs) were developed using the baculovirus expression system. The VP2 gene from an infected Siberian tiger (Panthera tigris altaica) was used as the target gene. The key amino acids of this gene were the same as those of FPV, whereas the 101st amino acid was the same as that of canine parvovirus. Indirect immunofluorescence assay (IFA) results demonstrated that the VP2 protein was successfully expressed. SDS-PAGE and Western blotting (WB) results showed that the target protein band was present at approximately 65 kDa. Electron micrograph analyses indicated that the tiger FPV VLPs were successfully assembled and were morphologically similar to natural parvovirus particles. The hemagglutination (HA) titer of the tiger FPV VLPs was as high as 1:218. The necropsy and tissue sections at the cat injection site suggested that the tiger FPV VLPs vaccine was safe. Antibody production was induced in cats after subcutaneous immunization, with a >1:210 hemagglutination inhibition (HI) titer that persisted for at least 12 months. These results demonstrate that tiger FPV VLPs might provide a vaccine to prevent FPV-associated disease in the tiger.
Collapse
|
5
|
Wang K, Du S, Wang Y, Wang S, Luo X, Zhang Y, Liu C, Wang H, Pei Z, Hu G. Isolation and identification of tiger parvovirus in captive siberian tigers and phylogenetic analysis of VP2 gene. INFECTION GENETICS AND EVOLUTION 2019; 75:103957. [PMID: 31299323 DOI: 10.1016/j.meegid.2019.103957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 01/03/2023]
Abstract
To better understand the prevalence and molecular epidemiology of parvovirus, this study reports the isolation and characterization of a tiger parvovirus (TPV) named CHJL-Siberian Tiger-01/2017 from a captive Siberian tiger in Jilin Province, China. A phylogenetic tree based on the full-length VP2 nucleotide sequence was constructed using the isolated strain in this study and 56 reference strains. The results showed that all the parvoviruses can be grouped into two large branches: the canine parvovirus (CPV) branch and the feline parvovirus (FPV) branch. FPV strains comprised TPVs, FPVs, blue fox parvoviruses (BFPVs), mink enteritis viruses (MEVs), and raccoon feline parvoviruses (RFPVs), and CPV strains comprised CPVs and raccoon dog parvoviruses (RDPVs). RFPVs are also often very closely related to those sampled from other carnivorous species, and raccoons may represent conduits for parvovirus transmission to other hosts. The results of amino acid changes in the VP2 protein of the isolated strain showed that amino acid Ile 101 was mutated to Thr (I 101T). Taken together, a field TPV strain CHJL-Siberian Tiger-01/2017 was isolated, which may be suitable for future studies on FPV infection, replication and vaccine development. This study provided new important findings about the evolution of parvovirus infection in tigers.
Collapse
Affiliation(s)
- Kai Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China.
| | - Shuaishuai Du
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Yiqi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Shaoying Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Xiaoqing Luo
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Cunfa Liu
- Wildlife Ambulance Breeding Center of Jilin Province, Jingyue Street No.10500, Changchun, PR China
| | - Haijun Wang
- Wildlife Ambulance Breeding Center of Jilin Province, Jingyue Street No.10500, Changchun, PR China
| | - Zhihua Pei
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| |
Collapse
|
6
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
7
|
Yu Z, Jiang Q, Liu J, Guo D, Quan C, Li B, Qu L. A simplified system for generating recombinant E3-deleted canine adenovirus-2. Plasmid 2014; 77:1-6. [PMID: 25450764 DOI: 10.1016/j.plasmid.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/15/2014] [Accepted: 10/27/2014] [Indexed: 11/15/2022]
Abstract
Canine adenovirus type 2 (CAV-2) has been used extensively as a vector for studying gene therapy and vaccine applications. We describe a simple strategy for generating a replication-competent recombinant CAV-2 using a backbone vector and a shuttle vector. The backbone plasmid containing the full-length CAV-2 genome was constructed by homologous recombination in Escherichia coli strain BJ5183. The shuttle plasmid, which has a deletion of 1478 bp in the nonessential E3 viral genome region, was generated by subcloning a fusion fragment containing the flanking sequences of the CAV-2 E3 region and expression cassette sequences from pcDNA3.1(+) into modified pUC18. To determine system effectiveness, a gene for enhanced green fluorescent protein (EGFP) was inserted into the shuttle plasmid and cloned into the backbone plasmid using two unique NruI and SalI sites. Transfection of Madin-Darby canine kidney (MDCK) cells with the recombinant adenovirus genome containing the EGFP expression cassette resulted in infectious viral particles. This strategy provides a solid foundation for developing candidate vaccines using CAV-2 as a delivery vector.
Collapse
Affiliation(s)
- Zuo Yu
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Jiang
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiasen Liu
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongchun Guo
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chuansong Quan
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Botao Li
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liandong Qu
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
8
|
Qin J, Huang H, Ruan Y, Hou X, Yang S, Wang C, Huang G, Wang T, Feng N, Gao Y, Xia X. A novel recombinant Peste des petits ruminants-canine adenovirus vaccine elicits long-lasting neutralizing antibody response against PPR in goats. PLoS One 2012; 7:e37170. [PMID: 22623990 PMCID: PMC3356378 DOI: 10.1371/journal.pone.0037170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 04/17/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is a highly contagious infectious disease of goats, sheep and small wild ruminant species with high morbidity and mortality rates. The Peste des petits ruminants virus (PPRV) expresses a hemagglutinin (H) glycoprotein on its outer envelope that is crucial for viral attachment to host cells and represents a key antigen for inducing the host immune response. METHODOLOGY/PRINCIPAL FINDINGS To determine whether H can be exploited to generate an effective PPRV vaccine, a replication-competent recombinant canine adenovirus type-2 (CAV-2) expressing the H gene of PPRV (China/Tibet strain) was constructed by the in vitro ligation method. The H expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the BGH early mRNA polyadenylation signal, was inserted into the SspI site of the E3 region, which is not essential for proliferation of CAV-2. Infectious recombinant rCAV-2-PPRV-H virus was generated in transfected MDCK cells and used to immunize goats. All vaccinated animals produced antibodies upon primary injection that were effective in neutralizing PPRV in vitro. Higher antibody titer was obtained following booster inoculation, and the antibody was detectable in goats for at least seven months. No serious recombinant virus-related adverse effect was observed in immunized animals and no adenovirus could be isolated from the urine or feces of vaccinated animals. Results showed that the recombinant virus was safe and could stimulate a long-lasting immune response in goats. CONCLUSIONS/SIGNIFICANCE This strategy not only provides an effective PPR vaccine candidate for goats but may be a valuable mean by which to differentiate infected from vaccinated animals (the so-called DIVA approach).
Collapse
Affiliation(s)
- Junling Qin
- College of Animal Science and Veterinary Medicine, Agricultural Division, Jilin University, Changchun, People’s Republic of China
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
| | - Hainan Huang
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
- Academy of Animal Science and Veterinary Medicine of Jilin Province, Jilin, Changchun, People’s Republic of China
| | - Yang Ruan
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiaoqiang Hou
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
| | - Songtao Yang
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
| | - Chengyu Wang
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
| | - Geng Huang
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
| | - Tiecheng Wang
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
| | - Na Feng
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
| | - Yuwei Gao
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
- * E-mail: (XX); (YG)
| | - Xianzhu Xia
- College of Animal Science and Veterinary Medicine, Agricultural Division, Jilin University, Changchun, People’s Republic of China
- Veterinary Institute, Academy of Military Medical Sciences, Changchun, People’s Republic of China
- * E-mail: (XX); (YG)
| |
Collapse
|
9
|
Roldão A, Silva A, Mellado M, Alves P, Carrondo M. Viruses and Virus-Like Particles in Biotechnology. COMPREHENSIVE BIOTECHNOLOGY 2011. [PMCID: PMC7151966 DOI: 10.1016/b978-0-08-088504-9.00072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this article, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitorization, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
10
|
Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 2009; 26:6508-28. [PMID: 18838097 PMCID: PMC7131726 DOI: 10.1016/j.vaccine.2008.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/21/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
Collapse
|
11
|
Szelechowski M, Fournier A, Richardson J, Eloit M, Klonjkowski B. Functional organization of the major late transcriptional unit of canine adenovirus type 2. J Gen Virol 2009; 90:1215-1223. [PMID: 19264594 DOI: 10.1099/vir.0.007773-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vectors derived from canine adenovirus type 2 (CAV-2) are attractive candidates for gene therapy and live recombinant vaccines. CAV-2 vectors described thus far have been generated by modifying the virus genome, most notably early regions 1 and 3 or the fiber gene. Modification of these genes was underpinned by previous descriptions of their mRNA and protein-coding sequences. Similarly, the construction of new CAV-2 vectors bearing changes in other genomic regions, in particular many of those expressed late in the viral cycle, will require prior characterization of the corresponding transcriptional units. In this study, we provide a detailed description of the late transcriptional organization of the CAV-2 genome. We examined the major late transcription unit (MLTU) and determined its six families of mRNAs controlled by the putative major late promoter (MLP). All mRNAs expressed from the MLTU had a common non-coding tripartite leader (224 nt) at their 5' end. In transient transfection assays, the predicted MLP sequence was able to direct luciferase gene expression and the TPL sequence yielded a higher amount of transgene product. Identification of viral transcriptional products following in vitro infection confirmed most of the predicted protein-coding regions that were deduced from computer analysis of the CAV-2 genome. These findings contribute to a better understanding of gene expression in CAV-2 and lay the foundation required for genetic modifications aimed at vector optimization.
Collapse
Affiliation(s)
- Marion Szelechowski
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| | - Annie Fournier
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| | - Jennifer Richardson
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| | - Marc Eloit
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRA AFSSA ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 av. du Général de Gaulle, 94700 Maisons Alfort, France
| |
Collapse
|
12
|
Gag-specific immune enhancement of lentiviral infection after vaccination with an adenoviral vector in an animal model of AIDS. Vaccine 2009; 27:928-39. [DOI: 10.1016/j.vaccine.2008.11.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/27/2008] [Accepted: 11/06/2008] [Indexed: 12/22/2022]
|