1
|
Singh AK, Wang R, Lombardo KA, Praharaj M, Bullen CK, Um P, Gupta M, Srikrishna G, Davis S, Komm O, Illei PB, Ordonez AA, Bahr M, Huang J, Gupta A, Psoter KJ, Creisher PS, Li M, Pekosz A, Klein SL, Jain SK, Bivalacqua TJ, Yegnasubramanian S, Bishai WR. Intravenous BCG vaccination reduces SARS-CoV-2 severity and promotes extensive reprogramming of lung immune cells. iScience 2023; 26:107733. [PMID: 37674985 PMCID: PMC10477068 DOI: 10.1016/j.isci.2023.107733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/31/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) confers heterologous immune protection against viral infections and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here, we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model. BCG vaccination conferred a modest reduction on lung SCV2 viral load, bronchopneumonia scores, and weight loss, accompanied by a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes. BCG uniquely recruited immunoglobulin-producing plasma cells to the lung suggesting accelerated local antibody production. BCG vaccination also recruited elevated levels of Th1, Th17, Treg, CTLs, and Tmem cells, with a transcriptional shift away from exhaustion markers and toward antigen presentation and repair. Similarly, BCG enhanced recruitment of alveolar macrophages and reduced key interstitial macrophage subsets, that show reduced IFN-associated gene expression. Our observations indicate that BCG vaccination protects against SCV2 immunopathology by promoting early lung immunoglobulin production and immunotolerizing transcriptional patterns among key myeloid and lymphoid populations.
Collapse
Affiliation(s)
- Alok K. Singh
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Rulin Wang
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, MD, USA
| | - Monali Praharaj
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - C. Korin Bullen
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Manish Gupta
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Geetha Srikrishna
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Stephanie Davis
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Oliver Komm
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter B. Illei
- Johns Hopkins University, School of Medicine, Department of Pathology, Baltimore, MD, USA
| | - Alvaro A. Ordonez
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Melissa Bahr
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Anuj Gupta
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kevin J. Psoter
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of General Pediatrics, Baltimore, MD, USA
| | - Patrick S. Creisher
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Maggie Li
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Andrew Pekosz
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Sabra L. Klein
- Johns Hopkins University, Bloomberg School of Public Health, The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Sanjay K. Jain
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore, MD, USA
| | - Trinity J. Bivalacqua
- Perelman School of Medicine at the University of Pennsylvania, Division of Urology, Department of Surgery, Philadelphia, PA, USA
| | | | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| |
Collapse
|
2
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Singh AK, Wang R, Lombardo KA, Praharaj M, Bullen CK, Um P, Davis S, Komm O, Illei PB, Ordonez AA, Bahr M, Huang J, Gupta A, Psoter KJ, Jain SK, Bivalacqua TJ, Yegnasubramanian S, Bishai WR. Dynamic single-cell RNA sequencing reveals BCG vaccination curtails SARS-CoV-2 induced disease severity and lung inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.15.484018. [PMID: 35313583 PMCID: PMC8936112 DOI: 10.1101/2022.03.15.484018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
COVID-19 continues to exact a toll on human health despite the availability of several vaccines. Bacillus Calmette Guérin (BCG) has been shown to confer heterologous immune protection against viral infections including COVID-19 and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model together with immune profiling and single cell RNA sequencing (scRNAseq). We observed that BCG reduced both lung SCV2 viral load and bronchopneumonia. This was accompanied by an increase in lung alveolar macrophages, a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes. Single cell transcriptome profiling showed that BCG uniquely recruits immunoglobulin-producing plasma cells to the lung suggesting accelerated antibody production. BCG vaccination also recruited elevated levels of Th1, Th17, Treg, CTLs, and Tmem cells, and differentially expressed gene (DEG) analysis showed a transcriptional shift away from exhaustion markers and towards antigen presentation and repair. Similarly, BCG enhanced lung recruitment of alveolar macrophages and reduced key interstitial macrophage subsets, with both cell-types also showing reduced IFN-associated gene expression. Our observations indicate that BCG vaccination protects against SCV2 immunopathology by promoting early lung immunoglobulin production and immunotolerizing transcriptional patterns among key myeloid and lymphoid populations.
Collapse
Affiliation(s)
- Alok K. Singh
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Rulin Wang
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kara A. Lombardo
- Johns Hopkins University, School of Medicine, Department of Urology, Baltimore, MD, USA
| | - Monali Praharaj
- Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, USA
| | - C. Korin Bullen
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter Um
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Stephanie Davis
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Oliver Komm
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Peter B. Illei
- Johns Hopkins University, School of Medicine, Department of Pathology, Baltimore, MD, USA
| | - Alvaro A. Ordonez
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore MD, USA
| | - Melissa Bahr
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore MD, USA
| | - Joy Huang
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - Anuj Gupta
- Sydney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kevin J. Psoter
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of General Pediatrics, Baltimore, MD, USA
| | - Sanjay K. Jain
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Division of Infectious Diseases, Baltimore MD, USA
| | - Trinity J. Bivalacqua
- Perelman School of Medicine at the University of Pennsylvania, Division of Urology, Department of Surgery, Philadelphia, PA, USA
| | | | - William R. Bishai
- Johns Hopkins University, School of Medicine, Department of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| |
Collapse
|
4
|
Ivanyi J. Tuberculosis vaccination needs to avoid 'decoy' immune reactions. Tuberculosis (Edinb) 2020; 126:102021. [PMID: 33254012 DOI: 10.1016/j.tube.2020.102021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Current search for a new effective vaccine against tuberculosis involves selected antigens, vectors and adjuvants. These are being evaluated usually by their booster inoculation following priming with Bacillus Calmette-Guerin. The purpose of this article is to point out, that despite being attenuated of virulence, priming with BCG may still involve immune mechanisms, which are not favourable for protection against active disease. It is postulated, that the responsible 'decoy' constituents selected during the evolution of pathogenic tubercle bacilli may be involved in the evasion from bactericidal host resistance and stimulate immune responses of a cytokine phenotype, which lead to the transition from latent closed granulomas to reactivation with infectious lung cavities. The decoy mechanisms appear as favourable for most infected subjects but leading in a minority of cases to pathology which can effectively transmit the infection. It is proposed that construction and development of new vaccine candidates could benefit from avoiding decoy-type immune mechanisms.
Collapse
Affiliation(s)
- Juraj Ivanyi
- Centre for Host-Microbiome Interactions, Guy's Campus of Kings College London, SE1, 1UL, United kingdom.
| |
Collapse
|
5
|
Ramos L, Lunney JK, Gonzalez-Juarrero M. Neonatal and infant immunity for tuberculosis vaccine development: importance of age-matched animal models. Dis Model Mech 2020; 13:dmm045740. [PMID: 32988990 PMCID: PMC7520460 DOI: 10.1242/dmm.045740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neonatal and infant immunity differs from that of adults in both the innate and adaptive arms, which are critical contributors to immune-mediated clearance of infection and memory responses elicited during vaccination. The tuberculosis (TB) research community has openly admitted to a vacuum of knowledge about neonatal and infant immune responses to Mycobacterium tuberculosis (Mtb) infection, especially in the functional and phenotypic attributes of memory T cell responses elicited by the only available vaccine for TB, the Bacillus Calmette-Guérin (BCG) vaccine. Although BCG vaccination has variable efficacy in preventing pulmonary TB during adolescence and adulthood, 80% of endemic TB countries still administer BCG at birth because it has a good safety profile and protects children from severe forms of TB. As such, new vaccines must work in conjunction with BCG at birth and, thus, it is essential to understand how BCG shapes the immune system during the first months of life. However, many aspects of the neonatal and infant immune response elicited by vaccination with BCG remain unknown, as only a handful of studies have followed BCG responses in infants. Furthermore, most animal models currently used to study TB vaccine candidates rely on adult-aged animals. This presents unique challenges when transitioning to human trials in neonates or infants. In this Review, we focus on vaccine development in the field of TB and compare the relative utility of animal models used thus far to study neonatal and infant immunity. We encourage the development of neonatal animal models for TB, especially the use of pigs.
Collapse
Affiliation(s)
- Laylaa Ramos
- Mycobacteria Research Laboratories, Microbiology Immunology and Pathology Department, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA Building 1040, Room 103, Beltsville, MD 20705, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Microbiology Immunology and Pathology Department, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Aagaard C, Knudsen NPH, Sohn I, Izzo AA, Kim H, Kristiansen EH, Lindenstrøm T, Agger EM, Rasmussen M, Shin SJ, Rosenkrands I, Andersen P, Mortensen R. Immunization with Mycobacterium tuberculosis-Specific Antigens Bypasses T Cell Differentiation from Prior Bacillus Calmette-Guérin Vaccination and Improves Protection in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:2146-2155. [PMID: 32887748 DOI: 10.4049/jimmunol.2000563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023]
Abstract
Despite the fact that the majority of people in tuberculosis (TB)-endemic areas are vaccinated with the Bacillus Calmette-Guérin (BCG) vaccine, TB remains the leading infectious cause of death. Data from both animal models and humans show that BCG and subunit vaccines induce T cells of different phenotypes, and little is known about how BCG priming influences subsequent booster vaccines. To test this, we designed a novel Mycobacterium tuberculosis-specific (or "non-BCG") subunit vaccine with protective efficacy in both mice and guinea pigs and compared it to a known BCG boosting vaccine. In naive mice, this M. tuberculosis-specific vaccine induced similar protection compared with the BCG boosting vaccine. However, in BCG-primed animals, only the M. tuberculosis-specific vaccine added significantly to the BCG-induced protection. This correlated with the priming of T cells with a lower degree of differentiation and improved lung-homing capacity. These results have implications for TB vaccine design.
Collapse
Affiliation(s)
- Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Niels Peter Hell Knudsen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Iben Sohn
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Angelo A Izzo
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80523
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Emma Holsey Kristiansen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Michael Rasmussen
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, DK-2300 Copenhagen, Denmark; and
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark;
| |
Collapse
|
7
|
Damjanovic D, Khera A, Afkhami S, Lai R, Zganiacz A, Jeyanathan M, Xing Z. Age at Mycobacterium bovis BCG Priming Has Limited Impact on Anti-Tuberculosis Immunity Boosted by Respiratory Mucosal AdHu5Ag85A Immunization in a Murine Model. PLoS One 2015; 10:e0131175. [PMID: 26098423 PMCID: PMC4476612 DOI: 10.1371/journal.pone.0131175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) remains a global pandemic despite the use of Bacillus Calmette-Guérin (BCG) vaccine, partly because BCG fails to effectively control adult pulmonary TB. The introduction of novel boost vaccines such as the human Adenovirus 5-vectored AdHu5Ag85A could improve and prolong the protective immunity of BCG immunization. Age at which BCG immunization is implemented varies greatly worldwide, and research is ongoing to discover the optimal stage during childhood to administer the vaccine, as well as when to boost the immune response with potential novel vaccines. Using a murine model of subcutaneous BCG immunization followed by intranasal AdHu5Ag85A boosting, we investigated the impact of age at BCG immunization on protective efficacy of BCG prime and AdHu5Ag85A boost immunization-mediated protection. Our results showed that age at parenteral BCG priming has limited impact on the efficacy of BCG prime-AdHu5Ag85A respiratory mucosal boost immunization-enhanced protection. However, when BCG immunization was delayed until the maturity of the immune system, longer sustained memory T cells were generated and resulted in enhanced boosting effect on T cells of AdHu5Ag85A respiratory mucosal immunization. Our findings hold implications for the design of new TB immunization protocols for humans.
Collapse
Affiliation(s)
- Daniela Damjanovic
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amandeep Khera
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rocky Lai
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Parkash O. T Regulatory Cells and BCG as a Vaccine against Tuberculosis: An Overview. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjv.2015.52012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Smith SG, Lecher S, Blitz R, Locht C, Dockrell HM. Broad heparin-binding haemagglutinin-specific cytokine and chemokine response in infants following Mycobacterium bovis BCG vaccination. Eur J Immunol 2012; 42:2511-22. [PMID: 22653733 DOI: 10.1002/eji.201142297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/13/2012] [Accepted: 05/04/2012] [Indexed: 12/21/2022]
Abstract
Heparin-binding haemagglutinin (HBHA)-specific immune responses have been linked to protection against tuberculosis (TB). We investigated the hypothesis that BCG vaccination of human infants primes an HBHA-specific response, using multiplex to measure secreted cytokines and chemokines following HBHA and Mycobacterium tuberculosis purified protein derivative (PPD) stimulation of diluted whole blood samples from BCG-vaccinated or -unvaccinated infants. Of 42 analytes measured, 24 and 32 significant, BCG-associated increases were detected in response to HBHA and PPD, respectively. Both response profiles included Th-1, Th-2, Th-17 and inflammatory cytokines and chemokines (e.g. IFN-γ, TNF-α, IL-5, IL-10, IL-13, IL-17, MIP-1α and MIP-1β). We also found that six of the seven responses most closely correlated with IFN-γ were common to both HBHA and PPD. Notably, all HBHA-specific secretion of cytokines and chemokines from infant samples was dependent on previous BCG vaccination. Also, long-term persistence of HBHA-specific responses was found in adolescents with evidence of infant BCG vaccination. This study demonstrates for the first time BCG priming of an HBHA-specific immune response in infants that is characterised by a broad cytokine and chemokine signature. It also suggests a number of BCG vaccination associated, HBHA-induced responses that should be useful for future studies of biomarkers of protection against TB.
Collapse
Affiliation(s)
- Steven G Smith
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | |
Collapse
|
10
|
Brennan MJ, Clagett B, Fitzgerald H, Chen V, Williams A, Izzo AA, Barker LF. Preclinical evidence for implementing a prime-boost vaccine strategy for tuberculosis. Vaccine 2012; 30:2811-23. [PMID: 22387630 DOI: 10.1016/j.vaccine.2012.02.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/07/2012] [Accepted: 02/13/2012] [Indexed: 12/23/2022]
Abstract
In this review, published peer-reviewed preclinical studies using prime-boost tuberculosis (TB) vaccine regimens in animal challenge models for tuberculosis have been evaluated. These studies have been divided into groups that describe prime-boost vaccine combinations that performed better than, equivalent to, or worse than the currently used BCG vaccine. Review of the data has revealed interesting findings, including that more than half of the published studies using BCG as a prime combined with a novel boost vaccine give better efficacy than BCG alone and that the greatest reduction in Mycobacterium tuberculosis (M.tb.) colonization of animal tissues is provided by viral vectored vaccines delivered intranasally. Careful evaluation of these data should assist in defining the value of prime-boost regimens for advancement into human TB vaccine trials and stimulate the development of criteria for choosing which vaccine candidates should be studied further.
Collapse
|
11
|
Luo Y, Jiang W, Da Z, Wang B, Hu L, Zhang Y, An R, Yu H, Sun H, Tang K, Tang Z, Wang Y, Jing T, Zhu B. Subunit Vaccine Candidate AMM Down-Regulated the Regulatory T Cells and Enhanced the Protective Immunity of BCG on a Suitable Schedule. Scand J Immunol 2012; 75:293-300. [DOI: 10.1111/j.1365-3083.2011.02666.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Concomitant administration of Mycobacterium bovis BCG with the meningococcal C conjugate vaccine to neonatal mice enhances antibody response and protective efficacy. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1936-42. [PMID: 21900528 DOI: 10.1128/cvi.05247-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mycobacterium bovis BCG is administered to human neonates in many countries worldwide. The objective of the study was to assess if BCG could act as an adjuvant for polysaccharide-protein conjugate vaccines in newborns and thereby induce protective immunity against encapsulated bacteria in early infancy when susceptibility is high. We assessed whether BCG could enhance immune responses to a meningococcal C (MenC) conjugate vaccine, MenC-CRM(197), in mice primed as neonates, broaden the antibody response from a dominant IgG1 toward a mixed IgG1 and IgG2a/IgG2b response, and increase protective efficacy, as measured by serum bactericidal activity (SBA). Two-week-old mice were primed subcutaneously (s.c.) with MenC-CRM(197). BCG was administered concomitantly, a day or a week before MenC-CRM(197). An adjuvant effect of BCG was observed only when it was given concomitantly with MenC-CRM(197), with increased IgG response (P = 0.002) and SBA (8-fold) after a second immunization with MenC-CRM(197) without BCG, indicating increased T-cell help. In neonatal mice (1 week old) primed s.c. with MenC-CRM(197) together with BCG, MenC-polysaccharide (PS)-specific IgG was enhanced compared to MenC-CRM(197) alone (P = 0.0015). Sixteen days after the second immunization with MenC-CRM(197), increased IgG (P < 0.05), IgG1 (P < 0.05), IgG2a (P = 0.06), and IgG2b (P < 0.05) were observed, and only mice primed with MenC-CRM(197) plus BCG showed affinity maturation and detectable SBA (SBA > 128). Thus, vaccination with a meningococcal conjugate vaccine (and possibly with other conjugates) may benefit from concomitant administration of BCG in the neonatal period to accelerate and enhance production of protective antibodies, compared to the current infant administration of conjugate which follows BCG vaccination at birth.
Collapse
|
13
|
Abstract
Given that TB still constitutes a tremendous public health problem at the start of the 21st Century, it may come as a surprise that Bacillus Calmette-Guérin (BCG), developed nearly 100 years ago, is today still the only vaccine available against TB. Owing to its limited efficiency in controlling TB, much effort has been deployed to develop new, improved vaccines, with initial preclinical models showing encouraging results. However, since most individuals worldwide have been vaccinated with BCG, new vaccine developments have to be placed in that context. Consequently, several approaches explore the heterologous prime-boost strategy. In this strategy, BCG-primed immunity will be strengthened or prolonged by the administration of antigens present in BCG but formulated in a different manner; either as purified antigens in the presence of appropriate adjuvants, as DNA vaccines or as viral-encoded mycobacterial antigens.
Collapse
|
14
|
Influence of maternal gestational treatment with mycobacterial antigens on postnatal immunity in an experimental murine model. PLoS One 2010; 5:e9699. [PMID: 20300629 PMCID: PMC2837747 DOI: 10.1371/journal.pone.0009699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/14/2010] [Indexed: 12/23/2022] Open
Abstract
Background It has been proposed that the immune system could be primed as early as during the fetal life and this might have an impact on postnatal vaccination. Therefore, we addressed in murine models whether gestational treatment with mycobacterial antigens could induce better immune responses in the postnatal life. Methods/Findings BALB/c mice were treated subcutaneously (s.c.) at the second week of gestation with antigen (Ag)85A or heparin-binding hemagglutinin (HBHA) in the absence of adjuvant. Following birth, offspring mice were immunized intranasally (i.n.) with the same antigens formulated with the adjuvant cholera toxin (CT) at week 1 and week 4. One week after the last immunization, we assessed antigen-specific recall interferon gamma (IFN-γ) responses by in vitro restimulation of lung-derived lymphocytes. Protection against infection was assessed by challenge with high dose Mycobacterium bovis Bacille Calmette-Guérin (BCG) given i.n. We found that recall IFN-γ responses were higher in the offspring born to the treated mother compared to the untreated-mother. More importantly, we observed that the offspring born to the treated mother controlled infection better than the offspring born to the untreated mother. Since the gestational treatment was done in absence of adjuvant, essentially there was no antibody production observed in the pregnant mice and therefore no influence of maternal antibodies was expected. We hypothesized that the effect of maternal treatment with antigen on the offspring occurred due to antigen transportation through placenta. To trace the antigens, we conjugated fluorescent nanocrystals with Ag85A (Qdot-ITK-Ag85A). After inoculation in the pregnant mice, Qdot-ITK-Ag85A conjugates were detected in the liver, spleen of pregnant females and in all the fetuses and placentas examined. Conclusion The fetal immune system could be primed in utero by mycobacterial antigens transported through the placenta.
Collapse
|