1
|
Nuñez-Ortiz N, Díaz-Rosales P, García JA, Serra CR, Enes P, Tafalla C, Gomez-Casado E. Immunostimulant properties of full-length and truncated Marinobacter algicola flagellins, and their effects against viral hemorrhagic septicemia virus (VHSV) in trout. FISH & SHELLFISH IMMUNOLOGY 2022; 128:695-702. [PMID: 35981702 DOI: 10.1016/j.fsi.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Adjuvants that would help optimize fish vaccines against bacterial and viral pathogens are highly demanded by the aquaculture sector. Flagellin has been proposed as an immunostimulant and an adjuvant for more than a decade. However, the adjuvant ability of flagellins with hypervariable region deleted is still unclear in fish. In this study, we evaluated the immune-stimulating capacity of two recombinant flagellins, the wild-type flagellin F from Marinobacter algicola and a version with the hypervariable region deleted (FredV2), to induce the transcription of a wide range of immune genes using two rainbow trout cell lines: a monocyte/macrophage-cell line (RTS-11) and an epithelial cell line from intestine (RTgutGC). Additionally, we studied the capacity of both flagellins to limit the replication of viral hemorrhagic septicemia virus (VHSV) on the RTgutGC cell line. Our results demonstrated that both recombinant flagellins can significantly increase the transcription of IL-1β1, IL-6, and IL-8 in both cell lines. However, other cytokines such as IFNγ1, and TNFα or antimicrobial peptides such as hepcidin were induced by both flagellins in RTgutGC but not in RTS-11 cells. Furthermore, both flagellins were capable of reducing the replication of VHSV in RTgutGC cells. Although the immunostimulatory and the antiviral capacities exerted by F were slightly more potent than those obtained with FredV2, the effects were retained after losing the hypervariable region. Our results provide new information on the immunostimulating and antiviral capacities of flagellins that point to their potential as suitable adjuvants for the future optimization of vaccines in aquaculture.
Collapse
Affiliation(s)
- Noelia Nuñez-Ortiz
- Animal Health Research Center (CISA), INIA-CSIC, Valdeolmos-Alalpardo, 28130, Madrid, Spain; Department of Biotechnology, INIA-CSIC, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Patricia Díaz-Rosales
- Animal Health Research Center (CISA), INIA-CSIC, Valdeolmos-Alalpardo, 28130, Madrid, Spain
| | - Jose A García
- Animal Health Department, Faculty of Veterinary, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Claudia R Serra
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Paula Enes
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Carolina Tafalla
- Animal Health Research Center (CISA), INIA-CSIC, Valdeolmos-Alalpardo, 28130, Madrid, Spain
| | - Eduardo Gomez-Casado
- Department of Biotechnology, INIA-CSIC, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain.
| |
Collapse
|
2
|
Rezaei A, Shahabi G, Faezi S, Shafiee Ardestani M, Shirzad H, Azadmanesh K, Mirzajani E, Shajiei A, Mahdavi M. Adjuvant Effects of Pseudomonas aeruginosa Flagellin on the Immunological Patterns of the HIV-1 Vaccine Candidate: Vaccine Formulations Versus Different Routes of Immunization. Viral Immunol 2022; 35:150-158. [PMID: 35319970 DOI: 10.1089/vim.2021.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
New strategies to increase the immune response to HIV-1 vaccine using immunological adjuvants such as Toll-like receptor agonists are needed. In this study, HIV-1 p24-Nef and conjugated form of the vaccine candidate to type-A flagellin (FLA) were injected in the BALB/c mice in different routes. Two weeks after the last immunization, lymphocyte proliferation was measured by the BrdU method. The IL-4 and IFN-γ levels, as well as the total IgG antibody and its isotypes titer, were evaluated by the enzyme-linked immunosorbent assay method. The IFN-γ ELISPOT was also performed. Our data showed that the HIV-1 p24-Nef alone and conjugated to type-A flagellin (FLA) significantly increased lymphocyte proliferation responses as well as higher levels of cytokines and IFN-γ producing lymphocytes and the level of humoral immune responses compared with the control groups. The cell-mediated immune responses through the subcutaneous route and humoral immune responses through the intramuscular route were significantly higher in the conjugated form than in the mere vaccine candidate. In conclusion, when the FLA as an adjuvant is constructed in the HIV-1 vaccine candidate, it could effectively improve both humoral and cellular immune responses. Furthermore, modification in the vaccine formulation could change the optimal route of vaccine inoculation.
Collapse
Affiliation(s)
- Arezou Rezaei
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Shahabi
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sobhan Faezi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedicine; Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy; Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine; Guilan University of Medical Sciences, Rasht, Iran
| | - Arezoo Shajiei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS); Tehran University of Medical Sciences, Tehran, Iran.,Recombinant Vaccine Research Center, Faculty of Pharmacy; Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Bedekar MK, Kole S. Fundamentals of Fish Vaccination. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:147-173. [PMID: 34816404 DOI: 10.1007/978-1-0716-1888-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fish health management has become a critical component of disease control and is invaluable for improved harvests and sustainable aquaculture. Vaccination is generally accepted as the most effective prophylactic measure for fish disease prevention, on environmental, social, and economic grounds. Although the historical approach for developing fish vaccines was based on the principle of Louis Pasteur's "isolate, inactivate and inject," but their weak immunogenicity and low efficacies in many cases, have shifted the focus of fish vaccine development from traditional to next-generation technologies. However, before any fish vaccine can be successfully commercialized, several hurdles need to be overcome regarding the production cost, immunogenicity, effectiveness, mode of administration, environmental safety, and associated regulatory concerns. In this context, the chapter summarises the basic aspects of fish vaccination such as type of vaccine, modalities of vaccine delivery, the immunological basis of fish immunization as well as different challenges associated with the development process and future opportunities.
Collapse
Affiliation(s)
- Megha Kadam Bedekar
- Department of Aquatic Animal Health, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| | - Sajal Kole
- Department of Aquatic Animal Health, ICAR- Central Institute of Fisheries Education, Mumbai, India.,Department of Aqualife Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Ye T, Mu C, Chen J, Pan G, Wang X. The role of UhpA in regulating the virulence gene expression in Edwardsiella piscicida. JOURNAL OF FISH DISEASES 2021; 44:585-590. [PMID: 33245815 DOI: 10.1111/jfd.13298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella piscicida (E. piscicida) is an important fish pathogen. However, the mechanism of Glu6P transport regulatory protein UhpA how to affect the virulence gene expression in E. piscicida is still unclear. The results in this study showed that the metabolism-related gene expression of cysteine synthase (orf 1134) and sulphate transporter (ychM) in the uhpA mutant strain ΔuhpA was 0.76-fold and 0.68-fold lower than the ones in the wild strains (p < .05). The gene expression of ethA and ethB in the ΔuhpA strain was 0.80-fold and 0.72-fold lower than the ones in the wild strains (p < .05). However, the gene expression of fliC and flgN in the ΔuhpA was 1.51-fold and 1.21-fold higher than the ones in the wild strains (p < .05). The gene expression of T3SS (esrB and esrC) and T6SS (evpB and evpC) in the ΔuhpA was 1.27-fold, 1.13-fold, 1.28-fold and 1.23-fold higher than the ones in the wild strains (p < .05). This suggested that the uhpA gene could regulate the key virulence gene expression, and the uhpA gene was associated with the pathogenicity of E. piscicida in fish.
Collapse
Affiliation(s)
- Tingqi Ye
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Cuimin Mu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Jiakang Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Guangchen Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Xuepeng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
5
|
González-Stegmaier R, Peña A, Villarroel-Espíndola F, Aguila P, Oliver C, MacLeod-Carey D, Rozas-Serri M, Enriquez R, Figueroa J. Full recombinant flagellin B from Vibrio anguillarum (rFLA) and its recombinant D1 domain (rND1) promote a pro-inflammatory state and improve vaccination against P. salmonis in Atlantic salmon (S. salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103988. [PMID: 33359361 DOI: 10.1016/j.dci.2020.103988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Flagellin is the major component of the flagellum, and a ligand for Toll-like receptor 5. As reported, recombinant flagellin (rFLA) from Vibrio anguillarum and its D1 domain (rND1) are able to promote in vitro an upregulation of pro-inflammatory genes in gilthead seabream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss) macrophages. This study evaluated the in vitro and in vivo stimulatory/adjuvant effect for rFLA and rND1 during P. salmonis vaccination in Atlantic salmon (Salmo salar). We demonstrated that rFLA and rND1 are molecules able to generate an acute upregulation of pro-inflammatory cytokines (IL-1β, IL-8, IL-12β), allowing the expression of genes associated with T-cell activation (IL-2, CD4, CD8β), and differentiation (IFNγ, IL-4/13, T-bet, Eomes, GATA3), in a differential manner, tissue/time dependent way. Altogether, our results suggest that rFLA and rND1 are valid candidates to be used as an immuno-stimulant or adjuvants with existing vaccines in farmed salmon.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Laboratorio Medicina Traslacional. Instituto Clínico Oncológico. Fundación Arturo López Pérez, Santiago, Chile.
| | - Andrea Peña
- Laboratorio Pathovet Ltda, Puerto Montt, Chile
| | - Franz Villarroel-Espíndola
- Laboratorio Medicina Traslacional. Instituto Clínico Oncológico. Fundación Arturo López Pérez, Santiago, Chile
| | - Patricia Aguila
- Escuela de Tecnología Médica, Universidad Austral de Chile, Sede Puerto Montt, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Departamento de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Desmond MacLeod-Carey
- Universidad Autónoma de Chile, Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Polymers and Macromolecules Center, El Llano Subercaseaux, 2801, Santiago, Chile
| | | | - Ricardo Enriquez
- Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Figueroa
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Song L, Xiong D, Kang X, Jiao Y, Zhou X, Wu K, Zhou Y, Jiao X, Pan Z. The optimized fusion protein HA1-2-FliCΔD2D3 promotes mixed Th1/Th2 immune responses to influenza H7N9 with low induction of systemic proinflammatory cytokines in mice. Antiviral Res 2018; 161:10-19. [PMID: 30389471 DOI: 10.1016/j.antiviral.2018.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/17/2023]
Abstract
H7N9 influenza virus has an unusually high fatality rate of approximately 40%, and a safe and effective vaccine against this subtype is urgently needed. Flagellin, a Toll-like receptor (TLR) 5 agonist, has been deemed as a potent adjuvant candidate. However, its high antigenicity and potential for causing inflammatory injury might restrict its clinical application. Previously, we demonstrated that a fusion protein, HA1-2-FliC, comprising the hemagglutinin globular head protein (HA1-2) of H7N9 influenza virus and the full-length Salmonella typhimurium flagellin protein (FliC), had high efficiency against H7N9 in mouse and chicken models. Here, we constructed an improved fusion protein, HA1-2-FliCΔD2D3, with HA1-2 fused to the FliCΔD2D3 (lacking the hypervariable-region domains D2 and D3 of FliC). HA1-2-FliCΔD2D3 exhibited efficient immunoreactivity and TLR5 agonist efficacy, and promoted innate immune-response activation in mouse macrophages, peripheral blood mononuclear cells, and splenocytes, based on cytokine- and chemokine-expression profiles. Mice immunized with HA1-2-FliCΔD2D3 showed significantly lower systemic inflammatory responses (compared with HA1-2-FliC) and highly reduced flagellin-specific antibody production, without affecting HA1-2-specific antibody production and cellular immune responses. Enhanced IFN-γ/IL-4 generation suggested that HA1-2-FliCΔD2D3 maintained balanced Th1/Th2 immune responses. Furthermore, virus challenge was performed in a chicken model. The results showed that chickens receiving FliCΔD2D3 adjuvant vaccine induced high levels of serum neutralizing antibodies, and exhibited a significant reduction of viral loads in throat and cloaca compared to chickens receiving only HA1-2. In conclusion, we constructed the H7N9 influenza subunit vaccine candidate HA1-2-FliCΔD2D3, with reduced immunogenicity against FliC and lower adverse events. The improved adjuvant FliCΔD2D3 can potentially help in developing safe and effective universal protein-based influenza vaccines for humans.
Collapse
Affiliation(s)
- Li Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yang Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaohui Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| | - Kaiyue Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yi Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
7
|
|
8
|
González-Stegmaier R, Guzmán F, Albericio F, Villarroel-Espíndola F, Romero A, Mulero V, Mercado L. A synthetic peptide derived from the D1 domain of flagellin induced the expression of proinflammatory cytokines in fish macrophages. FISH & SHELLFISH IMMUNOLOGY 2015; 47:239-244. [PMID: 26363237 DOI: 10.1016/j.fsi.2015.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/06/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Flagellin is the main protein component of flagellum in Gram negative and positive bacteria, and it is also the ligand that activates the Toll-like receptor 5 (TLR5) in fish and mammals. In higher vertebrates, flagellin induces the activation of the membrane-bound TLR5 (TLR5M), which promotes the expression of proinflammatory cytokines and chemokines, and other immunological functions. We have previously reported that recombinant flagellin from Vibrio anguillarum and its ND1 domain are able to upregulate the expression of genes encoding major the proinflammatory mediators in gilthead seabream and rainbow trout macrophages. Considering the key role of D1 domain of flagellin for binding to TLR5M and its immunostimulatory activity, we designed and chemically synthesized a peptide derived of this region. The effects of the synthetic peptide were evaluated in vitro using head kidney macrophages from gilthead seabream (Sparus aurata L., Perciformes, Sparidae) and rainbow trout (Oncorhynchus mykiss W., Salmoniformes, Salmonidae). In both species the expression of genes encoding the proinflammatory cytokines interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α), and the chemokine IL-8, was induced upon stimulation of macrophages with the D1 domain synthetic peptide. IL-1β and IL-8 were the most upregulated genes and to a lesser extent TNF-α. Interestingly, however, the induction activity of the synthetic peptide was higher in gilthead seabream than in rainbow trout macrophages. The results were confirmed at the protein levels for IL-8. Collectively, these results suggest that synthetic peptide derived from flagelling could be a promising approach for the immunostimulation and vaccination of farmed fish.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fernando Albericio
- Institute for Research in Biomedicine, and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Barcelona, Spain; Department of Organic Chemistry, University of Barcelona, Barcelona, Spain; School of Chemistry, Yachay Tech, Yachay City of Knowledge, 100199, Urcuqui, Ecuador
| | - Franz Villarroel-Espíndola
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Escuela de Tecnología Médica, Universidad Santo Tomas, Valdivia, Chile
| | - Alex Romero
- Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
9
|
González-Stegmaier R, Romero A, Estepa A, Montero J, Mulero V, Mercado L. Effects of recombinant flagellin B and its ND1 domain from Vibrio anguillarum on macrophages from gilthead seabream (Sparus aurata L.) and rainbow trout (Oncorhynchus mykiss, W.). FISH & SHELLFISH IMMUNOLOGY 2015; 42:144-152. [PMID: 25449380 DOI: 10.1016/j.fsi.2014.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Flagellin is the principal component of flagellum in Gram negative and positive bacteria, and it is also the ligand that activates the Toll-like receptor 5 (TLR5) in mammals and fish. In higher vertebrates, flagellin induces the activation of the membrane-bound TLR5 (TLR5M), which promotes the expression of proinflammatory cytokines and chemokines and the co-stimulatory molecules present in antigen-presenting cells needed for the activation of T cells. In the present study, we report the production of two recombinant proteins of Vibrio anguillarum: i) a full length flagellin B (FlaB) (rFla) and ii) the amino-terminus of the D1 domain (rND1) of the same protein, the region mainly responsible for binding to TLR5 and for the immunostimulatory activity of flagellin. The effects of these recombinant proteins were assessed in vitro using head kidney macrophages of gilthead seabream (Sparus aurata L., Perciformes, Sparidae) and rainbow trout (Oncorhynchus mykiss W., Salmoniformes, Salmonidae). In both species, 3 h of stimulation with rFla and rND1 induced expression of the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and of the chemokine IL-8. In gilthead seabream macrophages stimulated with rFla and rND1, a 900- and 6-fold increase were observed for IL-1β transcription, while a 900- and 3-fold increase were recorded for IL-8 transcription, respectively, as compared to non-stimulated macrophages. In rainbow trout, rFla increased expression of IL-8 40-fold in macrophages, whereas rND1 increased expression of the chemokine 3-fold, as compared to non-stimulated cells. The results obtained for rFla and rND1 demonstrate their modulatory capabilities in vitro, suggesting that rFla and rND1 could be evaluated as immunostimulatory candidates for use in farmed fish. However, further in vivo studies are needed to confirm and expand on the present results.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | - Alex Romero
- Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Amparo Estepa
- Institute of Molecular and Cell Biology, Universidad Miguel Hernandez de Elche, Spain
| | - Jana Montero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
10
|
Montero J, Gómez-Casado E, García-Alcázar A, Meseguer J, Mulero V. Flagellin from Marinobacter algicola and Vibrio vulnificus activates the innate immune response of gilthead seabream. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:160-167. [PMID: 25020195 DOI: 10.1016/j.dci.2014.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/04/2014] [Accepted: 07/06/2014] [Indexed: 06/03/2023]
Abstract
Adjuvants have emerged as the best tools to enhance the efficacy of vaccination. However, the traditional adjuvants used in aquaculture may cause adverse alterations in fish making necessary the development of new adjuvants able to stimulate the immune system and offer strong protection against infectious pathogens with minimal undesirable effects. In this respect, flagellin seems an attractive candidate due to its ability to strongly stimulate the immune response of fish. In the present study, we have evaluated the ability of recombinant flagellin from Marinobacter algicola (MA) and Vibrio vulnificus (Vvul), a non-pathogenic and a pathogenic bacteria, respectively, to stimulate the innate immune system of gilthead seabream (Sparus aurata L.) and compare the effect with that of the classical flagellin from Salmonella enterica serovar Typhimurium (Salmonella Typhimurium, STF). Intraperitoneal injection of MA and Vvul resulted in a strong inflammatory response characterized by increased reactive oxygen species production and the infiltration of acidophilic granulocytes at the injection site. Interestingly, however, only flagellin from MA consistently induced the expression of the gene encoding pro-inflammatory interleukin-1β. These effects were further confirmed in vitro, where a dose-dependent activation of macrophages and acidophilic granulocytes by MA and Vvul flagellins was observed. In contrast, STF flagellin was found to be less potent in both in vivo and in vitro experiments. Our results suggest the potential use of MA and Vvul flagellins as immunostimulants and adjuvants for fish vaccination.
Collapse
Affiliation(s)
- Jana Montero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Eduardo Gómez-Casado
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alicia García-Alcázar
- Oceanographic Centre of Murcia, Spanish Oceanographic Institute (IEO), Puerto de Mazarrón, Murcia, Spain
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia and IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
11
|
Pietretti D, Wiegertjes GF. Ligand specificities of Toll-like receptors in fish: indications from infection studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:205-222. [PMID: 23981328 DOI: 10.1016/j.dci.2013.08.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Toll like receptors (TLRs) are present in many different fish families from several different orders, including cyprinid, salmonid, perciform, pleuronectiform and gadiform representatives, with at least some conserved properties among these species. However, low conservation of the leucine-rich repeat ectodomain hinders predictions of ligand specificities of fish TLRs based on sequence information only. We review the presence of a TLR genes, and changes in their gene expression profiles as result of infection, in the context of different fish orders and fish families. The application of RT-qPCR and availability of increasing numbers of fish genomes has led to numerous gene expression studies, including studies on TLR gene expression, providing the most complete dataset to date. Induced changes of gene expression may provide (in)direct evidence for the involvement of a particular TLR in the reaction to a pathogen. Especially when findings are consistent across different studies on the same fish species or consistent across different fish species, up-regulation of TLR gene expression could be a first indication of functional relevance. We discuss TLR1, TLR2, TLR4, TLR5 and TLR9 as presumed sensors of bacterial ligands and discuss as presumed sensors of viral ligands TLR3 and TLR22, TLR7 and TLR8. More functional studies are needed before conclusions on ligands specific to (groups of) fish TLRs can be drawn, certainly true for studies on non-mammalian TLRs. Future studies on the conservation of function of accessory molecules, in conjunction with TLR molecules, may bring new insight into the function of fish TLRs.
Collapse
Affiliation(s)
- Danilo Pietretti
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
12
|
Tafalla C, Bøgwald J, Dalmo RA. Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1740-1750. [PMID: 23507338 DOI: 10.1016/j.fsi.2013.02.029] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Vaccination is the most adequate method to control infectious diseases that threaten the aquaculture industry worldwide. Unfortunately, vaccines are usually not able to confer protection on their own; especially those vaccines based on recombinant antigens or inactivated pathogens. Therefore, the use of adjuvants or immunostimulants is often necessary to increase the vaccine efficacy. Traditional adjuvants such as mineral oils are routinely used in different commercial bacterial vaccines available for fish; however, important side effects may occur with this type of adjuvants. A search for alternative molecules or certain combinations of them as adjuvants is desirable in order to increase animal welfare without reducing protection levels. Especially, combinations that may target specific cell responses and thus a specific pathogen, with no or minor side effects, should be explored. Despite this, the oil adjuvants currently used are quite friendlier with respect to side effects compared with the oil adjuvants previously used. The great lack of fish antiviral vaccines also evidences the importance of identifying optimal combinations of a vaccination strategy with the use of a targeting adjuvant, especially for the promising fish antiviral DNA vaccines. In this review, we summarise previous studies performed with both traditional adjuvants as well as the most promising new generation adjuvants such as ligands for Toll receptors or different cytokines, focussing mostly on their protective efficacies, and also on what is known concerning their effects on the fish immune system when delivered in vivo.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, 28130 Madrid, Spain.
| | | | | |
Collapse
|
13
|
Pseudomonas aeruginosa Recombinant Flagellin Induced Poly-Isotypic Humoral Immune Responses in the Balb/C Mice. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.6760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Jia PP, Hu YH, Chi H, Sun BG, Yu WG, Sun L. Comparative study of four flagellins of Vibrio anguillarum: vaccine potential and adjuvanticity. FISH & SHELLFISH IMMUNOLOGY 2013; 34:514-520. [PMID: 23253494 DOI: 10.1016/j.fsi.2012.11.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
Vibrio anguillarum is the etiological agent of vibriosis, an aquaculture disease that affects a wide range of farmed fish. The genome of V. anguillarum contains five flagellin genes, i.e. flaA, flaB, flaC, flaD, and flaE. In this study, we analyzed the vaccine potential and adjuvanticity of FlaA, FlaB, FlaD, and FlaE in a model of Japanese flounder (Paralichthys olivaceus). For this purpose, recombinant FlaA, FlaB, FlaD, and FlaE were expressed in and purified from Escherichia coli. In vivo immunogenicity analysis showed that antibodies against rFlaA, rFlaB, rFlaD, and rFlaE were detected in rat antiserum raised against live V. anguillarum, with the highest antibody level being that against rFlaB. When administered into flounder via intraperitoneal injection, rFlaA, rFlaD, and rFlaE induced comparable relative percent survival (RPS) rates, which were significantly lower than that induced by rFlaB. Specific serum antibodies were induced by all flagellins, however, the antibody level induced by rFlaB was significantly higher than those induced by other three flagellins. Compared to sera from fish vaccinated with rFlaA, rFlaD, and rFlaE, serum from fish vaccinated with rFlaB significantly reduced the infectivity of V. anguillarum against host cells. To examine the potential adjuvant effect of the flagellins, flounder were immunized with rEsa1, a D15-like surface antigen that induces protective immunity as a subunit vaccine, in the presence or absence of rFlaA, rFlaB, rFlaD, and rFlaE respectively. The results showed that rFlaE, but not other three flagellins, significantly increased the RPS of rEsa1. Compared to fish vaccinated with rEsa1, fish vaccinated with rEsa1 plus rFlaE exhibited a significantly higher level of serum antibodies and enhanced expression of the genes involved in innate and adaptive immunity. Taken together, these results indicate that FlaA, FlaB, FlaD, and FlaE have different immunological properties and, as a result, differ in vaccine and adjuvant potentials.
Collapse
Affiliation(s)
- Pan-pan Jia
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
15
|
Terron-Exposito R, Dudognon B, Galindo I, Quetglas JI, Coll JM, Escribano JM, Gomez-Casado E. Antibodies against Marinobacter algicola and Salmonella typhimurium flagellins do not cross-neutralize TLR5 activation. PLoS One 2012; 7:e48466. [PMID: 23155384 PMCID: PMC3498291 DOI: 10.1371/journal.pone.0048466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/25/2012] [Indexed: 11/18/2022] Open
Abstract
Flagellins evoke strong innate and adaptive immune responses. These proteins may play a key role as radioprotectors, exert antitumoral activity in certain types of tumor and reduce graft-versus-host disease in allogeneic hematopoietic stem cell transplant recipients. Notwithstanding, flagellins are highly immunogenic, and repeated use leads to their neutralization by systemic antibodies. This neutralization is not prevented by using functional deleted flagellins. These observations led us to explore the possibility of preventing initial neutralization by means of another functional flagellin that does not belong to common pathogenic bacteria but that has the capacity to activate TLR5. Here we characterized the functional capacity of the two-phase Marinobacter algicola (MA)-derived flagellins (F and FR) as systemic and mucosal adjuvants and compared their performance with that of Salmonella typhimurium (STF) flagellins (FljB and FliC). We also report for the first time on the in vitro and in vivo capacity of various flagellins to trigger TLR5 activation in the presence of species-specific anti-flagellin antibodies, the cross-neutralization mediated by these antibodies, and the sequential use of these flagellins for TLR5 activation. Our results showed that MA flagellins behave in a similar way to STF ones, inducing pro-inflammatory cytokines (IL8, CCL20, CCL2) and evoking a strong in vivo antibody response against a model epitope. More importantly, MA flagellins were fully functional, in vitro or in vivo, in the presence of a high concentration of neutralizing anti-flagellin STF antibodies, and STF flagellin was not inhibited by neutralizing anti-flagellin MA antibodies. The use of active flagellins from distinct bacteria could be a useful approach to prevent systemic neutralization of this group of adjuvants and to facilitate the rational design of flagellin-based vaccines and/or other therapeutic treatments (against ischemia, acute renal failure, tumors, ionizing radiations and also to improve the outcome of bone marrow transplants).
Collapse
Affiliation(s)
- Raul Terron-Exposito
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Benoit Dudognon
- Alternative Gene Expression S. L. (ALGENEX S. L.), Madrid, Spain
| | - Inmaculada Galindo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Jose I. Quetglas
- Division of Gene Therapy, Centro de Investigación en Medicina Aplicada, CIMA, Pamplona, Spain
| | - Julio M. Coll
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Jose M. Escribano
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Eduardo Gomez-Casado
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res 2012; 43:67. [PMID: 23035843 PMCID: PMC3479428 DOI: 10.1186/1297-9716-43-67] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/07/2012] [Indexed: 01/29/2023] Open
Abstract
Edwardsiella tarda is one of the serious fish pathogens, infecting both cultured and wild fish species. Research on edwardsiellosis has revealed that E. tarda has a broad host range and geographic distribution, and contains important virulence factors that enhance bacterial survival and pathogenesis in hosts. Although recent progress in edwardsiellosis research has enabled the development of numerous, highly effective vaccine candidates, these efforts have not been translated into a commercialized vaccine. The present review aims to provide an overview of the identification, pathology, diagnosis and virulence factors of E. tarda in fish, and describe recent strategies for developing vaccines against edwardsiellosis. The hope is that this presentation will be useful not only from the standpoint of understanding the pathogenesis of E. tarda, but also from the perspective of facilitating the development of effective vaccines.
Collapse
|
17
|
Zhang M, Wu H, Li X, Yang M, Chen T, Wang Q, Liu Q, Zhang Y. Edwardsiella tarda flagellar protein FlgD: a protective immunogen against edwardsiellosis. Vaccine 2012; 30:3849-56. [PMID: 22521284 DOI: 10.1016/j.vaccine.2012.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/08/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Edwardsiella tarda is a gram-negative bacterium and a causative agent of edwardsiellosis, resulting to severe loss of the aquaculture industry. In this study, based on the reverse vaccinology, sixteen flagellar proteins were selected from highly pathogenic E. tarda EIB202 genome information and in silico analyzed as potential vaccine candidates. Among them, ten recombinant proteins were highly expressed in Escherichia coli and successfully purified. The immunoprotective potentials of these purified recombinant proteins were evaluated in zebrafish model. And recombinant FlgD and FliD were found to lead to a high relative percent survival (RPS, about 70%) against E. tarda EIB202. Furthermore, FlgD required in flagellum hook assembly brought about the similar immune protection in turbot. The immune responses of zebrafish and turbot to recombinant FlgD were also investigated, and the results indicated that its high protection was mainly involved in cellular mediated immune response, corresponding to the intracellular pathogenicity of E. tarda.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu Y, Zhang H, Liu Y, Li H, Peng X. Determination of the heterogeneous interactome between Edwardsiella tarda and fish gills. J Proteomics 2012; 75:1119-28. [DOI: 10.1016/j.jprot.2011.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/13/2011] [Accepted: 10/24/2011] [Indexed: 01/31/2023]
|