1
|
Li T, Wang J, Wang H, Zhang B, Duan L. Therapeutic potential of natural arginase modulators: mechanisms, challenges, and future directions. Front Pharmacol 2025; 16:1514400. [PMID: 40331197 PMCID: PMC12052709 DOI: 10.3389/fphar.2025.1514400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Arginase (Arg) plays a pivotal role in numerous pathological processes, with its dysregulated expression being intricately associated with tumor progression and immune evasion. This review comprehensively examines the diversity, mechanisms, and clinical potential of natural Arg modulators, encompassing polyphenols, flavonoids, and terpenoids. These bioactive compounds exert their modulatory effects on Arg activity through multiple mechanisms, including direct enzyme interaction, regulation of signaling pathways, and modulation of cellular metabolism. The therapeutic potential of these metabolites spans across various medical domains, notably in cardiovascular diseases, oncology, neurological disorders, and inflammatory conditions. Specifically, polyphenol metabolites such as resveratrol and curcumin have demonstrated significant benefits in cardiovascular health and neuroprotection, while flavonoids including rutin and quercetin have shown promising effects on intracellular inflammatory factors and tumor cell proliferation. Similarly, terpenoids like perillyl alcohol and triptolide have been found to influence cell polarization processes. However, despite their substantial therapeutic potential demonstrated in experimental studies, the development of natural Arg modulators faces several significant challenges. These include complexities in drug design attributed to the intricate structure and multiple isoforms of Arg, difficulties in elucidating precise mechanisms due to Arg's multifaceted roles in various metabolic pathways, and limitations in current drug delivery systems. To overcome these challenges, future research should focus on continuous optimization of experimental design paradigms, enhancement of experimental models and data quality, thorough evaluation of therapeutic efficacy, and strategic integration of natural Arg modulators with precision medicine approaches.
Collapse
Affiliation(s)
- Ting Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Jieying Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowei Zhang
- Southwest Institute of Technical Physics, Chengdu, China
| | - Lijuan Duan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Moine L, Canali MM, Salinas SR, Bianco ID, Porporatto C, Correa SG. Role of chitosan in intestinal integrity: TLR4 and IFNAR signaling in the induction of E-cadherin and CD103 in mice. Int J Biol Macromol 2024; 267:131334. [PMID: 38582475 DOI: 10.1016/j.ijbiomac.2024.131334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Chitin and its derivative chitosan (Q) are abundant structural elements in nature. Q has modulatory and anti-inflammatory effects and also regulates the expression of adhesion molecules. The interaction between cells expressing the αEβ7 integrin and E-cadherin facilitates tolerogenic signal transmission and localization of lymphocytes at the frontline for interaction with luminal antigens. In this study we evaluated the ability of orally administered Q to stimulate E-cadherin and CD103 expression in vitro and in vivo. Our findings show that Q promoted epithelial cell migration, accelerated wound healing and increased E-cadherin expression in IEC-18 cells and isolated intestinal epithelial cells (IECs) after Q feeding. The upregulation of E-cadherin was dependent on TLR4 and IFNAR signaling, triggering CD103 expression in lymphocytes. Q reinforced the E-cadherin-αEβ7 axis, crucial for intestinal barrier integrity and contributed to the localization of lymphocytes on the epithelium.
Collapse
Affiliation(s)
- Luciana Moine
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | - Silvina R Salinas
- Centro de Excelencia en Productos Y Procesos de Córdoba (CEPROCOR), CONICET, Córdoba, Argentina
| | - Ismael D Bianco
- Centro de Excelencia en Productos Y Procesos de Córdoba (CEPROCOR), CONICET, Córdoba, Argentina.
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Córdoba, Argentina.
| | - Silvia G Correa
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
3
|
Novotny-Nuñez I, Perdigón G, Matar C, Martínez Monteros MJ, Yahfoufi N, Cazorla SI, Maldonado-Galdeano C. Evaluation of Rouxiella badensis Subsp Acadiensis (Canan SV-53) as a Potential Probiotic Bacterium. Microorganisms 2023; 11:1347. [PMID: 37317321 DOI: 10.3390/microorganisms11051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
The advent of omic platforms revealed the significant benefits of probiotics in the prevention of many infectious diseases. This led to a growing interest in novel strains of probiotics endowed with health characteristics related to microbiome and immune modulation. Therefore, autochthonous bacteria in plant ecosystems might offer a good source for novel next-generation probiotics. The main objective of this study was to analyze the effect of Rouxiella badensis acadiensis Canan (R. acadiensis) a bacterium isolated from the blueberry biota, on the mammalian intestinal ecosystem and its potential as a probiotic microorganism. R. acadiensis, reinforced the intestinal epithelial barrier avoiding bacterial translocation from the gut to deep tissues, even after feeding BALB/c mice for a prolonged period of time. Moreover, diet supplementation with R. acadiensis led to increases in the number of Paneth cells, well as an increase in the antimicrobial peptide α defensin. The anti-bacterial effect of R. acadiensis against Staphylococcus aureus and Salmonella enterica serovar Typhimurium was also reported. Importantly, R. acadiensis-fed animals showed better survival in an in vivo Salmonella enterica serovar Typhimurium challenge compared with those that received a conventional diet. These results demonstrated that R. acadiensis possesses characteristics of a probiotic strain by contributing to the reinforcement and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Ivanna Novotny-Nuñez
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
| | - Gabriela Perdigón
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - María José Martínez Monteros
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
| | - Nour Yahfoufi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Silvia Inés Cazorla
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
| | - Carolina Maldonado-Galdeano
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
| |
Collapse
|
4
|
Xu Y, Li Q, Ge P, Mao H, Yang C. Chitosan nanoparticles attenuate intestinal damage and inflammatory responses in LPS-challenged weaned piglets via prevention of IκB degradation. J Anim Physiol Anim Nutr (Berl) 2023; 107:173-181. [PMID: 34820921 DOI: 10.1111/jpn.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Chitosan nanoparticles (CNP), widely applied as oral drug/gene/vaccine carrier, were found to have anti-inflammatory properties. In this study, the effects of CNP on lipopolysaccharide (LPS)-induced intestinal damage in weaned piglets and the related mechanisms were investigated. Twenty-four weaned piglets (Duroc × Landrace × Yorkshire, 21 ± 2 day of age, initial mass: 8.58 ± 0.59 kg) were randomly assigned into four groups: control, LPS, CNP and CNP + LPS. The control and LPS groups were fed a corn-soybean meal-based control diet, whereas the CNP and CNP + LPS groups were fed a control diet supplemented with 400 mg/kg CNP. After 28 days of feeding, piglets in LPS and CNP + LPS groups were injected with LPS (100 μg/kg); meanwhile, the piglets in control and CNP groups were injected with sterile saline. After 4 h from the LPS challenge, pigs were sacrificed to collect the intestinal samples for analysis. The results showed that CNP could attenuate the intestinal damages and inflammatory response stimulated by LPS treatment. LPS induced dramatically higher levels of CD177+ neutrophils invasion in jejunum mucosa (p < 0.01), which accompanied by increased secretion of marks of inflammation (p < 0.01) compared with the control, whereas CNP administration obviously inhibited LPS-induced CD177+ neutrophils invasion (p < 0.01) and secretion of marks of inflammation, such as interleukin-8 (p < 0.05), intercellular adhesion molecule-1 (p < 0.05) secretion in jejunum mucosa compared with LPS group. Moreover, CNP was shown to inhibit IκB-α degradation in cytoplasm, which resulted in reduced nuclear translocation of NF-κB p65 in LPS-challenged piglets. These findings suggest that CNP attenuates intestinal damage and inflammatory responses in LPS-challenged weaned piglets by impairing the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Pu Ge
- Pathophysiology Department of ChongQing Medical University, Chongqing, China
| | - Huiling Mao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
5
|
Moine L, Canali MM, Porporatto C, Correa SG. Reviewing the biological activity of chitosan in the mucosa: Focus on intestinal immunity. Int J Biol Macromol 2021; 189:324-334. [PMID: 34419549 DOI: 10.1016/j.ijbiomac.2021.08.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is a polymer derived from the partial deacetylation of chitin with particular characteristics, such as mucoadhesiveness, tolerability, biocompatibility and biodegradability. Biomedical uses of chitosan cover a wide spectrum of applications as dietary fiber, immunoadjuvant and regulator of the intestinal microbiota or delivery agent. Chemical modification of chitosan is feasible because its reactive amino and hydroxyl groups can be modified by a diverse array of ligands, functional groups and molecules. This gives rise to numerous derivatives that allow different formulation types influencing their activity. Considering the multiple events resulting from the interaction with mucosal tissues, chitosan is a singular candidate for strategies targeting immune stimulation (i.e., tolerance induction, vaccination). Its role as a prebiotic and probiotic carrier represents an effective option to manage intestinal dysbiosis. In the intestinal scenario where the exposure of the immune system to a wide variety of antigens is permanent, chitosan increases IgA levels and favors a tolerogenic environment, thus becoming a key ally for host homeostasis.
Collapse
Affiliation(s)
- L Moine
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina
| | - M M Canali
- Université Côte d'Azur, INSERM, CNRS, IPMC, France
| | - C Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900 Villa María, Córdoba, Argentina
| | - S G Correa
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina.
| |
Collapse
|
6
|
Monteros MJM, Galdeano CM, Balcells MF, Weill R, De Paula JA, Perdigón G, Cazorla SI. Probiotic lactobacilli as a promising strategy to ameliorate disorders associated with intestinal inflammation induced by a non-steroidal anti-inflammatory drug. Sci Rep 2021; 11:571. [PMID: 33436961 PMCID: PMC7803994 DOI: 10.1038/s41598-020-80482-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Damage to the small intestine caused by non-steroidal anti-inflammatory drugs (NSAIDs) occurs more frequently than in the upper gastrointestinal tract, is more difficult to diagnose and no effective treatments exist. Hence, we investigated whether probiotics can control the onset of this severe condition in a murine model of intestinal inflammation induced by the NSAID, indomethacin. Probiotic supplementation to mice reduce the body weight loss, anemia, shortening of the small intestine, cell infiltration into the intestinal tissue and the loss of Paneth and Goblet cells associated with intestinal inflammation. Furthermore, a high antimicrobial activity in the intestinal fluids of mice fed with probiotics compared to animals on a conventional diet was elicited against several pathogens. Interestingly, probiotics dampened the oxidative stress and several local and systemic markers of an inflammatory process, as well as increased the secretion of IL-10 by regulatory T cells. Even more importantly, probiotics induced important changes in the large intestine microbiota characterized by an increase in anaerobes and lactobacilli, and a significant decrease in total enterobacteria. We conclude that oral probiotic supplementation in NSAID-induced inflammation increases intestinal antimicrobial activity and reinforces the intestinal epithelial barrier in order to avoid pathogens and commensal invasion and maintain intestinal homeostasis.
Collapse
Affiliation(s)
- María José Martínez Monteros
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | - Carolina Maldonado Galdeano
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - María Florencia Balcells
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | | | | | - Gabriela Perdigón
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | - Silvia Inés Cazorla
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina.
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina.
| |
Collapse
|
7
|
Park J, Ramanathan R, Pham L, Woodrow KA. Chitosan enhances nanoparticle delivery from the reproductive tract to target draining lymphoid organs. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2015-2025. [PMID: 28435136 DOI: 10.1016/j.nano.2017.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
To prime adaptive immune responses from the female reproductive tract (FRT), particulate antigens must be transported to draining lymph nodes (dLNs) since there are no local organized lymphoid structures equivalent to those found in the respiratory or gastrointestinal tracts. However, little is known about how to safely and effectively navigate successive barriers to transport such as crossing the epithelium and gaining access to migratory cells and lymphatic drainage that provide entry into dLNs. Here, we demonstrate that intravaginal pre-treatment with chitosan significantly facilitates translocation of nanoparticles (NPs) across the multilayered vaginal epithelium to target dLNs. In addition, chitosan pre-treatment was found to enhance NP associations with immunogenic antigen presenting cells in the vaginal submucosa. These observations indicate that chitosan may have great potential as an adjuvant for both local and systemic protective immunity against viral infections in the FRT.
Collapse
Affiliation(s)
- Jaehyung Park
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Renuka Ramanathan
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Linhchi Pham
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Natarajan SB, Kim YS, Hwang JW, Park PJ. Immunomodulatory properties of shellfish derivatives associated with human health. RSC Adv 2016. [DOI: 10.1039/c5ra26375a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Some vital components of marine shellfish are documented as an important source for both nutritional and pharmacological applications.
Collapse
Affiliation(s)
| | - Yon-Suk Kim
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Jin-Woo Hwang
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| | - Pyo-Jam Park
- Department of Biotechnology
- Konkuk University
- Chungju 380-701
- Republic of Korea
- Nokyong Research Centre
| |
Collapse
|
9
|
Brodaczewska K, Donskow-Łysoniewska K, Doligalska M. Chitin, a key factor in immune regulation: lesson from infection with fungi and chitin bearing parasites. Acta Parasitol 2015. [PMID: 26204004 DOI: 10.1515/ap-2015-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The probability of infection with fungi, as well as parasitic nematodes or arthropods may increase in overcrowded population of animals and human. The widespread overuse of drugs and immunosuppressants for veterinary or medical treatment create an opportunity for many pathogenic species. The aim of the review is to present the common molecular characteristics of such pathogens as fungi and nematodes and other chitin bearing animals, which may both activate and downregulate the immune response of the host. Although these pathogens are evolutionary distinct and distant, they may provoke similar immune mechanisms. The role of chitin in these phenomena will be reviewed, highlighting the immune reactions that may be induced in mammals by this natural polymer.
Collapse
|
10
|
Nolte A, Hossfeld S, Post M, Niederlaender J, Walker T, Schlensak C, Wendel HP. Endotoxins affect diverse biological activity of chitosans in matters of hemocompatibility and cytocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2121-2130. [PMID: 24879573 DOI: 10.1007/s10856-014-5244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/18/2014] [Indexed: 06/03/2023]
Abstract
Chitosan is used in several pharmaceutical and medical applications, owing to its good cytocompatibility and hemocompatibility. However, there are conflicting reports regarding the biological activities of chitosan with some studies reporting anti-inflammatory properties while others report pro-inflammatory properties. In this regards we analyzed the endotoxin content in five different chitosans and examined these chitosans with their different deacetylation degrees for their hemocompatibility and cytocompatibility. Therefore, we incubated primary human endothelial cells or whole blood with different chitosan concentrations and studied the protein and mRNA expression of different inflammatory markers or cytokines. Our data indicate a correlation of the endotoxin content and cytokine up-regulation in whole blood for Poly-Morpho-Nuclear (PMN)-Elastase, soluble terminal complement complex SC5b-9, complement component C5/C5a, granulocyte colony-stimulating factor, Interleukin-8 (IL), IL-10, IL-13, IL-17E, Il-32α and monocyte chemotactic protein-1. In contrast, the incubation of low endotoxin containing chitosans with primary endothelial cells resulted in increased expression of E-selectin, intercellular adhesion molecule-1, vascular cell adhesion protein-1, IL-1β, IL-6 and IL-8 in endothelial cells. We suggest that the endotoxin content in chitosan plays a major role in the biological activity of chitosan. Therefore, we strongly recommend analysis of the endotoxin concentration in chitosan, before further determining if it has pro- or anti-inflammatory properties or if it is applicable for pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Andrea Nolte
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, University of Tuebingen, Calwerstr. 7/1, 72076, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Hyun J, Romero L, Riveron R, Flores C, Kanagavelu S, Chung KD, Alonso A, Sotolongo J, Ruiz J, Manukyan A, Chun S, Singh G, Salas P, Targan SR, Fukata M. Human intestinal epithelial cells express interleukin-10 through Toll-like receptor 4-mediated epithelial-macrophage crosstalk. J Innate Immun 2014; 7:87-101. [PMID: 25171731 DOI: 10.1159/000365417] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022] Open
Abstract
In the intestine, interaction between epithelial cells and macrophages (MΦs) create a unique immunoregulatory microenvironment necessary to maintain local immune and tissue homeostasis. Human intestinal epithelial cells (IECs) have been shown to express interleukin (IL)-10, which keeps epithelial integrity. We have demonstrated that bacterial signaling through Toll-like receptor (TLR) 4 induces 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) synthesis in intestinal MΦs by cyclooxygenase (Cox)-2 expression. Here, we show that TLR4 signaling generates crosstalk between IECs and MΦs that enhances IL-10 expression in IECs. Direct stimulation of TLR4 leads to the expression of IL-10 in IECs, while the presence of MΦs in a Transwell system induces another peak in IL-10 expression in IECs at a later time point. The second peak of the IL-10 expression is two times greater than the first peak. This late induction of IL-10 depends on the nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ that is accumulated in IECs by TLR4-mediated inhibition of the ubiquitin-proteasomal pathway. TLR4 signaling in MΦs in turn synthesizes 15d-PGJ2 through p38 and ERK activation and Cox-2 induction, which activates PPARγ in IECs. These results suggest that TLR4 signaling maintains IL-10 production in IECs by generating epithelial-MΦs crosstalk, which is an important mechanism in the maintenance of intestinal homeostasis mediated through host-bacterial interactions.
Collapse
Affiliation(s)
- Jinhee Hyun
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Fla., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zha XQ, Zhao HW, Bansal V, Pan LH, Wang ZM, Luo JP. Immunoregulatory activities of Dendrobium huoshanense polysaccharides in mouse intestine, spleen and liver. Int J Biol Macromol 2014; 64:377-82. [PMID: 24370476 PMCID: PMC5941306 DOI: 10.1016/j.ijbiomac.2013.12.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 11/15/2022]
Abstract
To evaluate the immunomodulating responses in intestine, spleen and liver, 50-200mg/kg of DHP was orally administrated to mice without or with methotrexate. The proliferation of marrow cells, which was performed with the addition of the supernatant of small intestinal lymphocytes isolated from the mice administrated orally with DHP, showed that the intestinal immune response was significantly enhanced in all DHP-treated groups. For the immune response in spleen, all tested doses of DHP remarkably promoted the proliferation of splenic cells and increased the secretion of interferon-γ (IFN-γ). For the immune responses in liver, DHP not only significantly stimulated the proliferation of hepatic cells and the secretion of IFN-γ at all tested doses of DHP, but also significantly elevated the secretion interleukin-4 (IL-4) at the doses of 100 and 200mg/kg. Moreover, DHP could recover methotrexate-injured small intestinal immune function (100 and 200mg/kg) and promoted cell proliferation and IFN-γ production (200mg/kg) in spleen and liver of methotrexate-treated mice. These results suggested that DHP after oral administration possessed immunomodulating effects both in small intestine immune system and in systemic immune system, which were further proved by the mRNA expression of IFN-γ and IL-4.
Collapse
Affiliation(s)
- Xue-Qiang Zha
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Hong-Wei Zhao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Vibha Bansal
- Department of Chemistry, University of Puerto Rico at Cayey, No. 225 Antonio R. Barcelo Avenue, Cayey, PR 00736-9997, United States
| | - Li-Hua Pan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Zheng-Ming Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Jian-Ping Luo
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
13
|
Gupta PK, Jaiswal AK, Kumar V, Verma A, Dwivedi P, Dube A, Mishra PR. Covalent Functionalized Self-Assembled Lipo-Polymerosome Bearing Amphotericin B for Better Management of Leishmaniasis and Its Toxicity Evaluation. Mol Pharm 2014; 11:951-63. [DOI: 10.1021/mp400603t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pramod K. Gupta
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Anil K. Jaiswal
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Vivek Kumar
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Ashwni Verma
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Pankaj Dwivedi
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Anuradha Dube
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Prabhat R. Mishra
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| |
Collapse
|
14
|
Liu QY, Zhang ZH, Jin X, Jiang YR, Jia XB. Enhanced dissolution and oral bioavailability of tanshinone IIA base by solid dispersion system with low-molecular-weight chitosan. ACTA ACUST UNITED AC 2013; 65:839-46. [PMID: 23647677 DOI: 10.1111/jphp.12047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/29/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The aim of this study is to improve the dissolution and oral bioavailability of tanshinone IIA (TAN). METHODS Solid dispersions of TAN with low-molecular-weight chitosan (LMC) were prepared and the in-vitro dissolution and in-vivo performance were evaluated. KEY FINDINGS At 1 h, the extent of dissolution of TAN from the LMC-TAN system (weight ratio 9 : 1) increased about 368.2% compared with the pure drug. Increasing the LMC content from 9 : 1 to 12 : 1 in this system did not significantly increase the rate and the extent of dissolution. Differential scanning calorimetry, X-ray diffraction and scanning electron microscopy demonstrated the formation of amorphous tanshinone IIA and the absence of crystallinity in the solid dispersion. Fourier transform infrared spectroscopy revealed that there was no interaction between drug and carrier. In-vivo test showed that LMC-TAN solid dispersion system presented significantly larger AUC0-t , which was 0.67 times that of physical mixtures and 1.17 times that of TAN. Additionally, the solid dispersion generated obviously higher Cmax and shortened Tmax compared with TAN and physical mixtures. CONCLUSIONS In conclusion, the LMC -based solid dispersions could achieve complete dissolution, accelerated absorption rate and superior oral bioavailability.
Collapse
Affiliation(s)
- Qi-yuan Liu
- Key Laboratory of New Drug Delivery System of Chinese Meteria Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China
| | | | | | | | | |
Collapse
|
15
|
Bahar B, O'Doherty JV, Maher S, McMorrow J, Sweeney T. Chitooligosaccharide elicits acute inflammatory cytokine response through AP-1 pathway in human intestinal epithelial-like (Caco-2) cells. Mol Immunol 2012; 51:283-91. [PMID: 22512945 DOI: 10.1016/j.molimm.2012.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 11/18/2022]
Abstract
Chitooligosaccharides (COSs) are bioactive carbohydrate derivatives that have numerous health benefits, including stimulation of the immune system. The objectives of this study were to evaluate the effect of chitooligosaccharide (COS) on expression of a specific panel of cytokine genes involved in inflammation and to delineate the signal transduction pathway underlying the COS mediated inflammatory response. Human intestinal epithelial-like (Caco-2) cells were treated with COS (5000-10,000Da) and expression of a panel of eighty-four cytokine genes was analyzed by quantitative real-time PCR. COS induced up-regulation of a total of 11 genes including CCL20 and IL8 and concurrent down-regulation of 10 genes including pro-inflammatory mediators CCL15, CCL25 and IL1B. To further establish the signal transduction pathway of COS mediated response in Caco-2 cells, two major inflammatory signal transduction pathways (NF-κB and AP-1) were investigated. COS had inhibitory effect (P<0.01) on TNF-α induced NF-κB binding activity while stimulatory effect (P<0.001) on AP-1 binding activity. COS also inhibited the expression of RELA (P<0.01) and IKBKB (P<0.01) genes of NF-κB pathway while stimulate the expression of JUN (P<0.05) gene of AP-1 pathway. In conclusion, COS elicits an acute inflammatory cytokine response in Caco-2 cells and hence it has the potential to stimulate the immune system in the gut epithelium.
Collapse
Affiliation(s)
- Bojlul Bahar
- School of Agriculture and Food Science, Institute of Food & Health, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
16
|
Canali MM, Pedrotti LP, Balsinde J, Ibarra C, Correa SG. Chitosan enhances transcellular permeability in human and rat intestine epithelium. Eur J Pharm Biopharm 2012; 80:418-25. [DOI: 10.1016/j.ejpb.2011.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/08/2011] [Accepted: 11/10/2011] [Indexed: 01/17/2023]
|
17
|
Bajaj G, Van Alstine WG, Yeo Y. Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS One 2012; 7:e30899. [PMID: 22292072 PMCID: PMC3265529 DOI: 10.1371/journal.pone.0030899] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/23/2011] [Indexed: 12/18/2022] Open
Abstract
Chitosan is a cationic polymer of natural origin and has been widely explored as a pharmaceutical excipient for a broad range of biomedical applications. While generally considered safe and biocompatible, chitosan has the ability to induce inflammatory reactions, which varies with the physical and chemical properties. We hypothesized that the previously reported zwitterionic chitosan (ZWC) derivative had relatively low pro-inflammatory potential because of the aqueous solubility and reduced amine content. To test this, we compared various chitosans with different aqueous solubilities or primary amine contents with respect to the intraperitoneal (i.p.) biocompatibility and the propensity to induce pro-inflammatory cytokine production from macrophages. ZWC was relatively well tolerated in ICR mice after i.p. administration and had no pro-inflammatory effect on naïve macrophages. Comparison with other chitosans indicates that these properties are mainly due to the aqueous solubility at neutral pH and relatively low molecular weight of ZWC. Interestingly, ZWC had a unique ability to suppress cytokine/chemokine production in macrophages challenged with lipopolysaccharide (LPS). This effect is likely due to the strong affinity of ZWC to LPS, which inactivates the pro-inflammatory function of LPS, and appears to be related to the reduced amine content. Our finding warrants further investigation of ZWC as a functional biomaterial.
Collapse
Affiliation(s)
- Gaurav Bajaj
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - William G. Van Alstine
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|