1
|
Yaraghi P, Kheyri A, Mikaeili N, Boroumand A, Abbasifard M, Farhangnia P, Rezagholizadeh F, Khorramdelazad H. Nanoparticle-mediated enhancement of DNA Vaccines: Revolutionizing immunization strategies. Int J Biol Macromol 2025; 302:140558. [PMID: 39900152 DOI: 10.1016/j.ijbiomac.2025.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA vaccines are a novel form of vaccination that aims to harness genetic material to produce targeted immune responses. Nevertheless, their therapeutic application is hampered by low transfection efficacy, immunogenicity, and instability. Nanoparticle (NP) - based delivery systems are beneficial in enhancing DNA stability, increasing DNA uptake by antigen-presenting cells (APCs), and controlling antigen release. Some key progress includes the polymeric, lipid-based, and hybrid NPs and biocompatible carriers with inherent adjuvant effects. These systems have helped to enhance the antigen cross-presentation and T-cell activation significantly. In addition, biocompatible hybrid nanocarriers, antigen cross-presentation strategies, and next-generation sequencing (NGS) technologies are speeding up the identification of new antigens, while AI and machine learning are facilitating the development of efficient delivery systems. This review aims to assess how NPs have contributed to improving the effectiveness of DNA vaccines for treating diseases, cancer, and emerging diseases, as well as advancing the next generation of DNA vaccines.
Collapse
Affiliation(s)
- Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Rezagholizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M, Nazemalhosseini Mojarad E. Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches. Dig Dis Sci 2025; 70:919-942. [PMID: 39869166 PMCID: PMC11919954 DOI: 10.1007/s10620-024-08774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes. This comprehensive review explores the latest clinical trials and advancements, encompassing targeted molecular therapies, immunomodulatory agents, and cell-based therapies. By evaluating the strengths, limitations, and potential synergies of these approaches, this research aims to reshape the treatment landscape and improve clinical outcomes for CRC patients, offering new found hope for those who have exhausted conventional options. The culmination of this work is anticipated to pave the way for transformative clinical trials, ushering in a new era of personalized and effective CRC therapy.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Shabnam Shahrivari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Mandana AmeliMojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Melika Amelimojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Meygol Mirzaei Rezaei
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Parsa Nobaveh
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
3
|
Shariati A, Khezrpour A, Shariati F, Afkhami H, Yarahmadi A, Alavimanesh S, Kamrani S, Modarressi MH, Khani P. DNA vaccines as promising immuno-therapeutics against cancer: a new insight. Front Immunol 2025; 15:1498431. [PMID: 39872522 PMCID: PMC11769820 DOI: 10.3389/fimmu.2024.1498431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention. DNA cancer vaccines are made of plasmid molecules that encode tumor-associated or tumor-specific antigens (TAAs or TSAs), and possibly some other immunomodulatory adjuvants such as pro-inflammatory interleukins. Following the internalization of plasmids into cells, their genes are expressed and the tumor antigens are loaded on major histocompatibility molecules to be presented to T-cells. After the T-cells have been activated, they will look for tumor antigens and destroy the tumor cells upon encountering them. As with any other treatment, there are pros and cons associated with using these vaccines. They are relatively safe, usually well-tolerated, stable, easily mass-produced, cost-effective, and easily stored and transported. They can induce a systemic immune response effective on both the primary tumor and metastases. The main disadvantage of DNA vaccines is their poor immunogenicity. Several approaches including structural modification, combination therapy with conventional and novel cancer treatments (such as chemotherapy, radiotherapy, and immune checkpoint blockade (ICB)), and the incorporation of adjuvants into the plasmid structure have been studied to enhance the vaccine's immunogenicity and improve the clinical outcome of cancer patients. In this review, we will discuss some of the most promising optimization strategies and examine some of the important trials regarding these vaccines.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
4
|
Oelkrug C. Analysis of physical and biological delivery systems for DNA cancer vaccines and their translation to clinical development. Clin Exp Vaccine Res 2024; 13:73-82. [PMID: 38752006 PMCID: PMC11091436 DOI: 10.7774/cevr.2024.13.2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
DNA cancer vaccines as an approach in tumor immunotherapy are still being investigated in preclinical and clinical settings. Nevertheless, only a small number of clinical studies have been published so far and are still active. The investigated vaccines show a relatively stable expression in in-vitro transfected cells and may be favorable for developing an immunologic memory in patients. Therefore, DNA vaccines could be suitable as a prophylactic or therapeutic approach against cancer. Due to the low efficiency of these vaccines, the administration technique plays an important role in the vaccine design and its efficacy. These DNA cancer vaccine delivery systems include physical, biological, and non-biological techniques. Although the pre-clinical studies show promising results in the application of the different delivery systems, further studies in clinical trials have not yet been successfully proven.
Collapse
|
5
|
Bhagat A, Lyerly HK, Morse MA, Hartman ZC. CEA vaccines. Hum Vaccin Immunother 2023; 19:2291857. [PMID: 38087989 PMCID: PMC10732609 DOI: 10.1080/21645515.2023.2291857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Carcinoembryonic antigen (CEA) is a glycosylated cell surface oncofetal protein involved in adhesion, proliferation, and migration that is highly upregulated in multiple carcinomas and has long been a promising target for cancer vaccination. This review summarizes the progress to date in the development of CEA vaccines, examining both pre-clinical and clinical studies across a variety of vaccine platforms that in aggregate, begin to reveal some critical insights. These studies demonstrate the ability of CEA vaccines to break immunologic tolerance and elicit CEA-specific immunity, which associates with improved clinical outcomes in select individuals. Approaches that have combined replicating viral vectors, with heterologous boosting and different adjuvant strategies have been particularly promising but, these early clinical trial results will require confirmatory studies. Collectively, these studies suggest that clinical efficacy likely depends upon harnessing a potent vaccine combination in an appropriate clinical setting to fully realize the potential of CEA vaccination.
Collapse
Affiliation(s)
- Anchit Bhagat
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Michael A. Morse
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|
7
|
Azadi A, Golchini A, Delazar S, Abarghooi Kahaki F, Dehnavi SM, Payandeh Z, Eyvazi S. Recent Advances on Immune Targeted Therapy of Colorectal Cancer Using bi-Specific Antibodies and Therapeutic Vaccines. Biol Proced Online 2021; 23:13. [PMID: 34193050 PMCID: PMC8245152 DOI: 10.1186/s12575-021-00147-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a universal heterogeneous disease that is characterized by genetic and epigenetic alterations. Immunotherapy using monoclonal antibodies (mAb) and cancer vaccines are substitute strategies for CRC treatment. When cancer immunotherapy is combined with chemotherapy, surgery, and radiotherapy, the CRC treatment would become excessively efficient. One of the compelling immunotherapy approaches to increase the efficiency of CRC therapy is the deployment of therapeutic mAbs, nanobodies, bi-specific antibodies and cancer vaccines, which improve clinical outcomes in patients. Also, among the possible therapeutic approaches for CRC patients, gene vaccines in combination with antibodies are recently introduced as a new perspective. Here, we aimed to present the current progress in CRC immunotherapy, especially using Bi-specific antibodies and dendritic cells mRNA vaccines. For this aim, all data were extracted from Google Scholar, PubMed, Scopus, and Elsevier, using keywords cancer vaccines; CRC immunotherapy and CRC mRNA vaccines. About 97 articles were selected and investigated completely based on the latest developments and novelties on bi-specific antibodies, mRNA vaccines, nanobodies, and MGD007.
Collapse
Affiliation(s)
- Ali Azadi
- Department of Medicine, De La Salle Health Sciences Institute, Dasmariñas, Philippines
| | - Alireza Golchini
- Cancer surgery Department; Shiraz Medical School, Shiraz University of medical Sciences, Shiraz, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
8
|
Qin F, Xia F, Chen H, Cui B, Feng Y, Zhang P, Chen J, Luo M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front Cell Dev Biol 2021; 9:633776. [PMID: 34113610 PMCID: PMC8185206 DOI: 10.3389/fcell.2021.633776] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Faced with the challenges posed by infectious diseases and cancer, nucleic acid vaccines present excellent prospects in clinical applications. Compared with traditional vaccines, nucleic acid vaccines have the characteristics of high efficiency and low cost. Therefore, nucleic acid vaccines have potential advantages in disease prevention and treatment. However, the low immunogenicity and instability of nucleic acid vaccines have limited their development. Therefore, a large number of studies have been conducted to improve their immunogenicity and stability by improving delivery methods, thereby supporting progress and development for clinical applications. This article mainly reviews the advantages, disadvantages, mechanisms, delivery methods, and clinical applications of nucleic acid vaccines.
Collapse
Affiliation(s)
- Furong Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ye X, Li W, Huang J, Zhang L, Zhang Y. Cytotoxic T Cell Responses Induced by CS1/CRT Fusion DNA Vaccine in a Human Plasmacytoma Model. Front Oncol 2020; 10:587237. [PMID: 33330069 PMCID: PMC7714938 DOI: 10.3389/fonc.2020.587237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022] Open
Abstract
To date, multiple myeloma remains an incurable disease. Immunotherapy is an encouraging option in the development of multiple myeloma (MM) therapy. CS1 is a specific myeloma antigen, which is highly expressed in myeloma cells. Calreticulin (CRT) is a key determinant of cell death, which can influence antigen presentation and promote cellular phagocytic uptake. In the current study, we constructed a DNA vaccine encoding both CS1 and CRT. Our results show that the PcDNA3.1-CS1/CRT vaccine was able to induce cytotoxic T cell responses against myeloma cells in vivo, and the tumor growth was significantly suppressed in mice immunized with this vaccine. Therefore, our findings indicate that the CS1/CRT fusion DNA vaccine may represent a promising novel myeloma therapy, and the potential for combining the CS1/CRT vaccine with other myeloma treatments.
Collapse
Affiliation(s)
- Xueshi Ye
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanli Li
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwen Huang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifei Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
11
|
Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020; 12:cancers12051121. [PMID: 32365838 PMCID: PMC7281593 DOI: 10.3390/cancers12051121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccination). In addition, we will outline other forms of treatment (e.g., radiotherapy, chemotherapy, oncolytic viruses) that also cause the release of antigens through immunogenic tumor cell death and can thus be considered unconventional vaccination methods (i.e., in situ vaccination). Finally, we focus on the potential additive value that vaccination strategies may have for improving the effect immunotherapy. Overall, a picture will emerge that although the field has made substantial progress, successful immunotherapy through the combination with cancer antigen vaccination, including that for gastrointestinal cancers, is still in its infancy, prompting further intensification of the research effort in this respect.
Collapse
|
12
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Rezaei-Kalat A, Parizadeh SMR, Javanbakht A, Hassanian SM, Ferns GA, Khazaei M, Avan A. Personalized Peptide-based Vaccination for Treatment of Colorectal Cancer: Rational and Progress. Curr Drug Targets 2019; 20:1486-1495. [DOI: 10.2174/1389450120666190619121658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with
a high rate of morbidity and mortality. A large proportion of patients with early stage CRC, who undergo
conventional treatments develop local recurrence or distant metastasis and in this group of advanced
disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated
with chemotherapy and chemo-resistance may limit continuing conventional treatment alone.
Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features
of tumors in combination with conventional therapeutic approach could be used to eradicate residual
micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-
based vaccination therapy is one class of cancer treatment that could be used to induce tumorspecific
immune responses, through the recognition of specific antigen-derived peptides in tumor
cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was
to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy
in CRC patients as a novel therapeutic approach in the treatment of CRC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Javanbakht
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Shrestha AC, Wijesundara DK, Masavuli MG, Mekonnen ZA, Gowans EJ, Grubor-Bauk B. Cytolytic Perforin as an Adjuvant to Enhance the Immunogenicity of DNA Vaccines. Vaccines (Basel) 2019; 7:vaccines7020038. [PMID: 31052178 PMCID: PMC6630607 DOI: 10.3390/vaccines7020038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
DNA vaccines present one of the most cost-effective platforms to develop global vaccines, which have been tested for nearly three decades in preclinical and clinical settings with some success in the clinic. However, one of the major challenges for the development of DNA vaccines is their poor immunogenicity in humans, which has led to refinements in DNA delivery, dosage in prime/boost regimens and the inclusion of adjuvants to enhance their immunogenicity. In this review, we focus on adjuvants that can enhance the immunogenicity of DNA encoded antigens and highlight the development of a novel cytolytic DNA platform encoding a truncated mouse perforin. The application of this innovative DNA technology has considerable potential in the development of effective vaccines.
Collapse
Affiliation(s)
- Ashish C Shrestha
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Danushka K Wijesundara
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Makutiro G Masavuli
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Zelalem A Mekonnen
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Eric J Gowans
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Branka Grubor-Bauk
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| |
Collapse
|
14
|
Abstract
Metastatic colorectal cancer (mCRC) is a leading cause of cancer-related mortality with a 5-year overall survival rate of 13%. Despite recent advances in cancer immunotherapy, only the minority of CRC patients (<15%) with microsatellite instability can potentially benefit from immune checkpoint inhibitors, the only immunotherapy currently approved for mCRC. In that context, there is an unmet need to improve survival in mCRC. Our ever-increasing understanding of the immune system and its interactions with cancer has allowed development of multiple strategies to potentially improve outcomes in the majority of mCRC patients. Various approaches to manipulate patient immunity to recognize and kill colorectal cancer cells are being explored simultaneously, with combination therapies likely being the most effective. Ideally, therapies would target tumor-restricted antigens selectively found in tumors, but shielded from immune attack in normal tissues, to mount an effective cytotoxic T-cell response, while also overcoming cellular and molecular inhibitory pathways, self-tolerance, and T-cell exhaustion. Here, we provide a brief overview of the most promising immunotherapy candidates in mCRC and their strategies to produce a lasting immune response and clinical benefit in patients with mCRC.
Collapse
Affiliation(s)
- Babar Bashir
- a Departments of Pharmacology and Experimental Therapeutics , Thomas Jefferson University , Philadelphia , PA , USA.,b Department of Medical Oncology , Thomas Jefferson University , Philadelphia , PA , USA
| | - Adam E Snook
- a Departments of Pharmacology and Experimental Therapeutics , Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
15
|
Affiliation(s)
- Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Chun Wang
- Department
of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo
Hall, 312 Church Street S. E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Ohtake J, Wada S, Yada E, Fujimoto Y, Uchiyama H, Yoshida S, Itoh K, Sasada T. Personalized immunotherapy in colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1174060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Generation of Large Numbers of Antigen-Expressing Human Dendritic Cells Using CD14-ML Technology. PLoS One 2016; 11:e0152384. [PMID: 27050553 PMCID: PMC4822879 DOI: 10.1371/journal.pone.0152384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
We previously reported a method to expand human monocytes through lentivirus-mediated introduction of cMYC and BMI1, and we named the monocyte-derived proliferating cells, CD14-ML. CD14-ML differentiated into functional DC (CD14-ML-DC) upon addition of IL-4, resulting in the generation of a large number of DC. One drawback of this method was the extensive donor-dependent variation in proliferation efficiency. In the current study, we found that introduction of BCL2 or LYL1 along with cMYC and BMI1 was beneficial. Using the improved method, we obtained CD14-ML from all samples, regardless of whether the donors were healthy individuals or cancer patients. In vitro stimulation of peripheral blood T cells with CD14-ML-DC that were loaded with cancer antigen-derived peptides led to the establishment of CD4+ and CD8+ T cell lines that recognized the peptides. Since CD14-ML was propagated for more than 1 month, we could readily conduct genetic modification experiments. To generate CD14-ML-DC that expressed antigenic proteins, we introduced lentiviral antigen-expression vectors and subjected the cells to 2 weeks of culture for drug-selection and expansion. The resulting antigen-expressing CD14-ML-DC successfully induced CD8+ T cell lines that were reactive to CMVpp65 or MART1/MelanA, suggesting an application in vaccination therapy. Thus, this improved method enables the generation of a sufficient number of DC for vaccination therapy from a small amount of peripheral blood from cancer patients. Information on T cell epitopes is not necessary in vaccination with cancer antigen-expressing CD14-ML-DC; therefore, all patients, irrespective of HLA type, will benefit from anti-cancer therapy based on this technology.
Collapse
|
19
|
Singh PP, Sharma PK, Krishnan G, Lockhart AC. Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol Rep (Oxf) 2015; 3:289-97. [PMID: 26510455 PMCID: PMC4650981 DOI: 10.1093/gastro/gov053] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of death worldwide, despite steady improvement in early detection and overall survival over the past decade. Current treatment paradigms, with chemotherapy and biologics, appear to have reached their maximum benefit. Immunotherapy, especially with checkpoint inhibitors, has shown considerable clinical benefit in various cancers, including mismatch-repair-deficient CRC. This has led to the planning and initiation of several clinical trials evaluating novel immunotherapy agents—as single agents, combinations and in conjunction with chemotherapy—in patients with CRC. This article reviews biological and preclinical data for checkpoint inhibitors and discusses various immunotherapy trials in CRC, as well as current efforts in CRC immunotherapy.
Collapse
Affiliation(s)
- Preet Paul Singh
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA and
| | - Piyush K Sharma
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gayathri Krishnan
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA and
| | - A Craig Lockhart
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA and
| |
Collapse
|
20
|
Abstract
DNA vaccination has emerged as an attractive immunotherapeutic approach against cancer
due to its simplicity, stability, and safety. Results from numerous clinical trials have
demonstrated that DNA vaccines are well tolerated by patients and do not trigger major
adverse effects. DNA vaccines are also very cost effective and can be administered
repeatedly for long-term protection. Despite all the practical advantages, DNA vaccines
face challenges in inducing potent antigen specific cellular immune responses as a result
of immune tolerance against endogenous self-antigens in tumors. Strategies to enhance
immunogenicity of DNA vaccines against self-antigens have been investigated including
encoding of xenogeneic versions of antigens, fusion of antigens to molecules that activate
T cells or trigger associative recognition, priming with DNA vectors followed by boosting
with viral vector, and utilization of immunomodulatory molecules. This review will focus
on discussing strategies that circumvent immune tolerance and provide updates on findings
from recent clinical trials.
Collapse
Key Words
- APCs, antigen presenting cells
- CEA, carcinoembryonic antigen
- CIN, cervical intraepithelial neoplasia
- CT antigens, cancer-testis antigens
- CTLs, cytotoxic lymphocytes
- DNA vaccines
- DOM, fragment c domain
- EP, electroporation
- GITR, glucocorticoid-induced tumor necrosis factor receptor family-related genes
- HER2, Her2/neu
- HSP70, heat shock protein 70
- IFNs, interferons
- IRF, interferon regulatory factor
- Id, idiotype
- MHC, major histocompatibility complex
- Mam-A, Mammaglobin-A
- NHP, non-human primate
- PAP, Prostatic acid phosphatase
- PMED, particle mediated epidermal delivery
- PSMA, prostate-specific membrane antigen
- SCT, single-chain trimer
- STING, stimulator of interferon genes
- TAAs, tumor-associated antigens
- TBK1, Tank-binding kinase 1
- TLRs, Toll-like receptors
- TT, tetanus toxin
- Trp2, tyrosinase related protein 2
- cellular immune response
- hTERT, human telomerase reverse transcriptase
- humoral immune response
- immune tolerance
- phTERT, optimized full-length hTERT
- tumor antigens
- vaccine delivery
Collapse
Affiliation(s)
- Benjamin Yang
- a Department of Pathology ; Johns Hopkins University ; Baltimore , MD USA
| | | | | | | | | |
Collapse
|
21
|
Li Z, Wang G, Wang Y, Zhang C, Huang B, Li Q, Li L, Xue B, Ding P, Cai X, Wang C, Zhou EM. Immune responses of pigs immunized with a recombinant porcine reproductive and respiratory syndrome virus expressing porcine GM-CSF. Vet Immunol Immunopathol 2015; 168:40-8. [PMID: 26300317 DOI: 10.1016/j.vetimm.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has spread worldwide, causing huge economic losses to the swine industry. The current PRRSV vaccines have failed to provide broad protection against various strains. Granulocyte macrophage colony-stimulating factor (GM-CSF), an efficacious adjuvant, has been shown to enhance the immunogenicity of various vaccines. The purpose of this study was to construct a recombinant live attenuated PRRSV that expresses porcine GM-CSF (pGM-CSF) and evaluate the immune responses of pigs immunized with the recombinant virus. The results showed that the recombinant PRRSV was successfully rescued and had similar growth properties to parental virus grown in Marc-145 cells. The recombinant virus was stable for 10 passages in cell culture. Pigs intramuscularly immunized with the recombinant virus produced a similar humoral response to that elicited using parental virus. With regard to cell-mediated immunity assessed in peripheral blood, the recombinant virus induced higher proportion of CD4(+)CD8(+) double-positive T cells (DPT), higher IFN-γ level at 0 and 7 days post-challenge (DPC), and lower viremia at 21 DPC than pigs immunized with parental virus. These results indicate that recombinant PRRSV expressing pGM-CSF can induce a significant higher cellular immune response and reduce the persistent infection compared pigs vaccinated with the parental virus. This is first report of evaluation of immune response in pigs elicited by a recombinant live attenuated PRRSV expressing porcine GM-CSF. It may represent a novel strategy for future development of genetic engineered vaccines against PRRSV infection.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chong Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peiyang Ding
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Chengbao Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Patel SP, Osada T, Lyerly HK, Morse MA. Designing effective vaccines for colorectal cancer. Immunotherapy 2015; 6:913-26. [PMID: 25313570 DOI: 10.2217/imt.14.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Achieving long-term control of colorectal cancers with therapeutic vaccines that generate potent anti-tumor T cell and antibody responses has been a goal for more than two decades. To date, clinical trials of these vaccines have demonstrated induction of immune responses, but clinical benefit has been limited. Improved vector delivery systems with enhanced immunostimulatory properties, decreased immunogenicity against vector and improved antigen presentation are some of the key features of modern tumor vaccines. Furthermore, an improved understanding of the various immunosuppressive factors in the tumor microenvironment and regional lymph nodes, coupled with a burgeoning ability to impair inhibitory immune synapses, highlights a growing opportunity to induce beneficial antigen-specific responses against tumor. The combination of improved antigenic delivery systems, coupled with therapeutic immune activation, represents state-of-the-art colorectal vaccine design concepts with the goal of augmenting immune responses against tumor and improving clinical outcomes.
Collapse
Affiliation(s)
- Sandip P Patel
- UCSD Moores Cancer Center, Division of Medical Oncology, Cancer Immunotherapy Program, 3855 Health Sciences Drive #0987, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
23
|
Nand KN, Gupta JC, Panda AK, Jain SK, Talwar GP. Priming with DNA Enhances Considerably the Immunogenicity of hCG β-LTB Vaccine. Am J Reprod Immunol 2015; 74:302-8. [PMID: 25917014 DOI: 10.1111/aji.12388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/16/2015] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Necessity to elicit antibody response above the protective threshold titres by sexually active women immunized to prevent pregnancy. METHOD OF STUDY Recombinant hCGβ-LTB vaccine expressed as both DNA and protein. Balb C mice employed for testing immunogenicity. RESULTS Necessity to give three primary injections of the vaccine to elicit proper antibody response. Immunization twice with DNA form of the vaccine at fortnightly interval followed by the protein elicits a distinctly higher antibody response than proteinic vaccine alone. Antibodies generated are bio-effective against hCG. CONCLUSION Immunization with the DNA form of the recombinant hCGβ-LTB vaccine twice at fortnightly interval followed by the proteinic form of the vaccine induces distinctly higher antibody response.
Collapse
Affiliation(s)
- Kripa N Nand
- The Talwar Research Foundation, New Delhi, India.,Jamia Hamdard, New Delhi, India
| | | | | | | | | |
Collapse
|
24
|
Dillon AB, Lin K, Kwong A, Ortiz S. Immunotherapy in Melanoma, Gastrointestinal (GI), and Pulmonary Malignancies. AIMS Public Health 2015; 2:86-114. [PMID: 29546098 PMCID: PMC5690372 DOI: 10.3934/publichealth.2015.1.86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
Oncologic immunotherapy involves stimulating the immune system to more effectively identify and eradicate tumor cells that have successfully adapted to survive the body's natural immune defenses. Immunotherapy has shown great promise thus far by prolonging the lives of patients with a variety of malignancies, and has added a crucial new set of tools to the oncologists' armamentarium. The aim of this paper is to provide an overview of immunotherapy treatment options that are currently available and under active research for melanoma, gastrointestinal (esophageal, gastric, pancreatic, and colorectal), and pulmonary malignancies. Potential biomarkers that may predict favorable responses to immunotherapies are discussed where applicable, as are future avenues of research in this rapidly evolving field.
Collapse
Affiliation(s)
- Alexander B. Dillon
- Mount Zion Cancer Research Center, Department of Dermatology, University of California San Francisco, CA 94141, USA
| | | | | | | |
Collapse
|
25
|
Abstract
This special issue is focused on DNA vaccines, marking the two decades since the first demonstration of pre-clinical protection was published in Science (Ulmer et al.; Heterologous protection against influenza by injection of DNA encoding a viral protein. 1993). This introductory article provides an overview of the field and highlights the observations of the articles in this special issue while placing them in the context of other recent publications.
Collapse
|
26
|
Amer MH. Gene therapy for cancer: present status and future perspective. MOLECULAR AND CELLULAR THERAPIES 2014; 2:27. [PMID: 26056594 PMCID: PMC4452068 DOI: 10.1186/2052-8426-2-27] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
Abstract
Advancements in human genomics over the last two decades have shown that cancer is mediated by somatic aberration in the host genome. This discovery has incited enthusiasm among cancer researchers; many now use therapeutic approaches in genetic manipulation to improve cancer regression and find a potential cure for the disease. Such gene therapy includes transferring genetic material into a host cell through viral (or bacterial) and non-viral vectors, immunomodulation of tumor cells or the host immune system, and manipulation of the tumor microenvironment, to reduce tumor vasculature or to increase tumor antigenicity for better recognition by the host immune system. Overall, modest success has been achieved with relatively minimal side effects. Previous approaches to cancer treatment, such as retrovirus integration into the host genome with the risk of mutagenesis and second malignancies, immunogenicity against the virus and/or tumor, and resistance to treatment with disease relapse, have markedly decreased with the new generation of viral and non-viral vectors. Several tumor-specific antibodies and genetically modified immune cells and vaccines have been developed, yet few are presently commercially available, while many others are still ongoing in clinical trials. It is anticipated that gene therapy will play an important role in future cancer therapy as part of a multimodality treatment, in combination with, or following other forms of cancer therapy, such as surgery, radiation and chemotherapy. The type and mode of gene therapy will be determined based on an individual's genomic constituents, as well as his or her tumor specifics, genetics, and host immune status, to design a multimodality treatment that is unique to each individual's specific needs.
Collapse
Affiliation(s)
- Magid H Amer
- Department of Medicine, St Rita’s Medical Center, 825 West Market Street, Suite #203, Lima, OH 45805 USA
| |
Collapse
|
27
|
Amer MH. Gene therapy for cancer: present status and future perspective. MOLECULAR AND CELLULAR THERAPIES 2014; 2:27. [PMID: 26056594 PMCID: PMC4452068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/22/2014] [Indexed: 11/21/2023]
Abstract
Advancements in human genomics over the last two decades have shown that cancer is mediated by somatic aberration in the host genome. This discovery has incited enthusiasm among cancer researchers; many now use therapeutic approaches in genetic manipulation to improve cancer regression and find a potential cure for the disease. Such gene therapy includes transferring genetic material into a host cell through viral (or bacterial) and non-viral vectors, immunomodulation of tumor cells or the host immune system, and manipulation of the tumor microenvironment, to reduce tumor vasculature or to increase tumor antigenicity for better recognition by the host immune system. Overall, modest success has been achieved with relatively minimal side effects. Previous approaches to cancer treatment, such as retrovirus integration into the host genome with the risk of mutagenesis and second malignancies, immunogenicity against the virus and/or tumor, and resistance to treatment with disease relapse, have markedly decreased with the new generation of viral and non-viral vectors. Several tumor-specific antibodies and genetically modified immune cells and vaccines have been developed, yet few are presently commercially available, while many others are still ongoing in clinical trials. It is anticipated that gene therapy will play an important role in future cancer therapy as part of a multimodality treatment, in combination with, or following other forms of cancer therapy, such as surgery, radiation and chemotherapy. The type and mode of gene therapy will be determined based on an individual's genomic constituents, as well as his or her tumor specifics, genetics, and host immune status, to design a multimodality treatment that is unique to each individual's specific needs.
Collapse
Affiliation(s)
- Magid H Amer
- Department of Medicine, St Rita’s Medical Center, 825 West Market Street, Suite #203, Lima, OH 45805 USA
| |
Collapse
|
28
|
McNeel DG, Becker JT, Eickhoff JC, Johnson LE, Bradley E, Pohlkamp I, Staab MJ, Liu G, Wilding G, Olson BM. Real-time immune monitoring to guide plasmid DNA vaccination schedule targeting prostatic acid phosphatase in patients with castration-resistant prostate cancer. Clin Cancer Res 2014; 20:3692-704. [PMID: 24850844 DOI: 10.1158/1078-0432.ccr-14-0169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We have previously reported that a DNA vaccine encoding prostatic acid phosphatase (PAP) could elicit PAP-specific T cells in patients with early recurrent prostate cancer. In the current pilot trial, we sought to evaluate whether prolonged immunization with regular booster immunizations, or "personalized" schedules of immunization determined using real-time immune monitoring, could elicit persistent, antigen-specific T cells, and whether treatment was associated with changes in PSA doubling time (PSA DT). EXPERIMENTAL DESIGN Sixteen patients with castration-resistant, nonmetastatic prostate cancer received six immunizations at 2-week intervals and then either quarterly (arm 1) or as determined by multiparameter immune monitoring (arm 2). RESULTS Patients were on study a median of 16 months; four received 24 vaccinations. Only one event associated with treatment >grade 2 was observed. Six of 16 (38%) remained metastasis-free at 2 years. PAP-specific T cells were elicited in 12 of 16 (75%), predominantly of a Th1 phenotype, which persisted in frequency and phenotype for at least 1 year. IFNγ-secreting T-cell responses measured by ELISPOT were detectable in 5 of 13 individuals at 1 year, and this was not statistically different between study arms. The overall median fold change in PSA DT from pretreatment to posttreatment was 1.6 (range, 0.6-7.0; P = 0.036). CONCLUSIONS Repetitive immunization with a plasmid DNA vaccine was safe and elicited Th1-biased antigen-specific T cells that persisted over time. Modifications in the immunization schedule based on real-time immune monitoring did not increase the frequency of patients developing effector and memory T-cell responses with this DNA vaccine.
Collapse
Affiliation(s)
- Douglas G McNeel
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| | - Jordan T Becker
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| | - Jens C Eickhoff
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and Department of Biostatistics, University of Wisconsin, Madison, Wisconsin
| | - Laura E Johnson
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| | - Eric Bradley
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| | - Isabel Pohlkamp
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| | - Mary Jane Staab
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| | - Glenn Liu
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| | - George Wilding
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| | - Brian M Olson
- Authors' Affiliations: University of Wisconsin Carbone Cancer Center; and
| |
Collapse
|
29
|
Abstract
Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.
Collapse
|
30
|
Gameiro SR, Jammeh ML, Hodge JW. Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert Rev Vaccines 2013; 12:617-29. [PMID: 23750792 DOI: 10.1586/erv.13.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Concurrent with the US FDA's approval of the first therapeutic cancer vaccine, and supported by mounting clinical evidence indicating that targeting carcinoembryonic antigen (CEA) can safely overcome pre-existing tolerance, a multitude of novel CEA cancer vaccines are now in various stages of development. Since cancer-driven immune suppression often limits the efficacy of vaccines, numerous strategies are being examined in both preclinical and clinical settings to overcome immunosuppressive elements, including the combined use of vaccines with certain chemotherapies, immune checkpoint inhibitors, small-molecule targeted therapies and radiation. This review discusses the current state and future direction of therapeutic cancer vaccines targeting CEA, based on advances achieved over the last 5 years.
Collapse
Affiliation(s)
- Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
31
|
Colluru VT, Johnson LE, Olson BM, McNeel DG. Preclinical and clinical development of DNA vaccines for prostate cancer. Urol Oncol 2013; 34:193-204. [PMID: 24332642 DOI: 10.1016/j.urolonc.2013.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens. As such, several therapeutic vaccines have entered clinical trials, with one autologous cellular vaccine (sipuleucel-T) recently gaining Food and Drug Administration approval after demonstrating overall survival benefit in randomized phase III clinical trials. DNA-based vaccines are safe, economical, alternative "off-the-shelf" approaches that have undergone extensive evaluation in preclinical models. In fact, the first vaccine approved in the United States for the treatment of cancer was a DNA vaccine for canine melanoma. Several prostate cancer-specific DNA vaccines have been developed in the last decade and have shown promising results in early phase clinical trials. This review summarizes anticancer human DNA vaccine trials, with a focus on those conducted for prostate cancer. We conclude with an outline of special considerations important for the development and successful translation of DNA vaccines from the laboratory to the clinic.
Collapse
Affiliation(s)
- V T Colluru
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Laura E Johnson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI.
| |
Collapse
|
32
|
Granulocyte–macrophage colony-stimulating factor: not just another haematopoietic growth factor. Med Oncol 2013; 31:774. [DOI: 10.1007/s12032-013-0774-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
|
33
|
New targets for the immunotherapy of colon cancer-does reactive disease hold the answer? Cancer Gene Ther 2013; 20:157-68. [PMID: 23492821 DOI: 10.1038/cgt.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in both men and women, posing a serious demographic and economic burden worldwide. In the United Kingdom, CRC affects 1 in every 20 people and it is often detected once well established and after it has spread beyond the bowel (Stage IIA-C and Stage IIIA-C). A diagnosis at such advanced stages is associated with poor treatment response and survival. However, studies have identified two sub-groups of post-treatment CRC patients--those with good outcome (reactive disease) and those with poor outcome (non-reactive disease). We aim to review the state-of-the-art for CRC with respect to the expression of cancer-testis antigens (CTAs) and their identification, evaluation and correlation with disease progression, treatment response and survival. We will also discuss the relationship between CTA expression and regulatory T-cell (Treg) activity to tumorigenesis and tumor immune evasion in CRC and how this could account for the clinical presentation of CRC. Understanding the molecular basis of reactive CRC may help us identify more potent novel immunotherapeutic targets to aid the effective treatment of this disease. In this review, based on our presentation at the 2012 International Society for the Cell and Gene Therapy of Cancer annual meeting, we will summarize some of the most current advances in CTA and CRC research and their influence on the development of novel immunotherapeutic approaches for this common and at times difficult to treat disease.
Collapse
|
34
|
Becker JT, McNeel DG. Presence of antigen-specific somatic allelic mutations and splice variants do not predict for immunological response to genetic vaccination. J Immunother Cancer 2013; 1:2. [PMID: 24764533 PMCID: PMC3986973 DOI: 10.1186/2051-1426-1-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Antigen-specific anti-tumor vaccines have demonstrated clinical efficacy, but immunological and clinical responses appear to be patient-dependent. We hypothesized that naturally-occurring differences in amino acid sequence of a host’s target antigen might predict for immunological outcome from genetic vaccination by presentation of epitopes different from the vaccine. Methods Using peripheral blood cells from 33 patients who had been treated with a DNA vaccine encoding prostatic acid phosphatase (PAP), we sequenced the exons encoding PAP and PSA genes from somatic DNA to identify single nucleotide polymorphisms. In addition, mRNA was collected to detect alternative splice variants of PAP. Results We detected four synonymous coding mutations of PAP among 33 patients; non-synonymous coding mutations were not identified. Alternative splice variants of PAP were detected in 22/27 patients tested. The presence of detectable splice variants was not predictive of immunological outcome from vaccination. Immune responses to peptides encoded by these splice variants were common (16/27) prior to immunization, but not associated with immune responses elicited with vaccination. Conclusions These results suggest that antigen-specific immune responses detectable after treatment with this genetic vaccine are specific for the host-encoded antigen and not due to epitope differences between the vaccine and a particular individual’s somatic coding sequence.
Collapse
Affiliation(s)
- Jordan T Becker
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
35
|
Soto R, Caspeta L, Barrón B, Gosset G, Ramírez OT, Lara AR. High cell-density cultivation in batch mode for plasmid DNA production by a metabolically engineered E. coli strain with minimized overflow metabolism. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|