1
|
Singh AK, Majumder S, Wang X, Song R, Sun W. Lung Resident Memory T Cells Activated by Oral Vaccination Afford Comprehensive Protection against Pneumonic Yersinia pestis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:259-270. [PMID: 36480265 PMCID: PMC9851976 DOI: 10.4049/jimmunol.2200487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/17/2022] [Indexed: 01/03/2023]
Abstract
A growing body of evidence has shown that resident memory T (TRM) cells formed in tissue after mucosal infection or vaccination are crucial for counteracting reinfection by pathogens. However, whether lung TRM cells activated by oral immunization with Yptb1(pYA5199) play a protective role against pneumonic plague remains unclear. In this study, we demonstrated that lung CD4+ and CD8+ TRM cells significantly accumulated in the lungs of orally Yptb1(pYA5199)-vaccinated mice and dramatically expanded with elevated IL-17A, IFN-γ, and/or TNF-α production after pulmonary Yersinia pestis infection and afforded significant protection. Short-term or long-term treatment of immunized mice with FTY720 did not affect lung TRM cell formation and expansion or protection against pneumonic plague. Moreover, the intratracheal transfer of both lung CD4+ and CD8+ TRM cells conferred comprehensive protection against pneumonic plague in naive recipient mice. Lung TRM cell-mediated protection was dramatically abolished by the neutralization of both IFN-γ and IL-17A. Our findings reveal that lung TRM cells can be activated via oral Yptb1(pYA5199) vaccination, and that IL-17A and IFN-γ production play an essential role in adaptive immunity against pulmonary Y. pestis infection. This study highlights an important new target for developing an effective pneumonic plague vaccine.
Collapse
Affiliation(s)
- Amit K. Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Renjie Song
- Immunology Core at Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| |
Collapse
|
2
|
Alexander-Floyd J, Bass AR, Harberts EM, Grubaugh D, Buxbaum JD, Brodsky IE, Ernst RK, Shin S. Lipid A Variants Activate Human TLR4 and the Noncanonical Inflammasome Differently and Require the Core Oligosaccharide for Inflammasome Activation. Infect Immun 2022; 90:e0020822. [PMID: 35862709 PMCID: PMC9387229 DOI: 10.1128/iai.00208-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 01/16/2023] Open
Abstract
Detection of Gram-negative bacterial lipid A by the extracellular sensor, myeloid differentiation 2 (MD2)/Toll-like receptor 4 (TLR4), or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically its phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all tetra-, penta-, and hexa-acylated LOS variants examined activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation. In contrast, both core oligosaccharide and lipid A were required for robust CASP4/5 inflammasome activation in human macrophages, whereas core oligosaccharide was not required to activate mouse macrophages expressing CASP4. Our findings show that human TLR4 and CASP4/5 detect both shared and nonoverlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A and would thereby be expected to constrain the ability of pathogens to evade innate immune detection.
Collapse
Affiliation(s)
- Jasmine Alexander-Floyd
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Antonia R. Bass
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Erin M. Harberts
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph D. Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Wang X, Li P, Singh AK, Zhang X, Guan Z, Curtiss R, Sun W. Remodeling Yersinia pseudotuberculosis to generate a highly immunogenic outer membrane vesicle vaccine against pneumonic plague. Proc Natl Acad Sci U S A 2022; 119:e2109667119. [PMID: 35275791 PMCID: PMC8931243 DOI: 10.1073/pnas.2109667119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/21/2022] [Indexed: 01/22/2023] Open
Abstract
SignificanceYersinia pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. This plague bacillus has been used as a biological weapon during human history and is currently one of the deadliest biological threats. Currently, no licensed plague vaccines are available in the Western world. Since an array of immunogens are enclosed in outer membrane vesicles (OMVs), immune responses elicited by OMVs against a diverse range of antigens may reduce the likelihood of antigen circumvention. Therefore, self-adjuvanting OMVs from a remodeled Yersinia pseudotuberculosis strain as a type of plague vaccine could diversify prophylactic choices and solve current vaccine limitations.
Collapse
Affiliation(s)
- Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Amit K. Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI 48201
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| |
Collapse
|
4
|
Cote CK, Biryukov SS, Klimko CP, Shoe JL, Hunter M, Rosario-Acevedo R, Fetterer DP, Moody KL, Meyer JR, Rill NO, Dankmeyer JL, Worsham PL, Bozue JA, Welkos SL. Protection Elicited by Attenuated Live Yersinia pestis Vaccine Strains against Lethal Infection with Virulent Y. pestis. Vaccines (Basel) 2021; 9:vaccines9020161. [PMID: 33669472 PMCID: PMC7920443 DOI: 10.3390/vaccines9020161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
The etiologic agent of plague, Yersinia pestis, is a globally distributed pathogen which poses both a natural and adversarial threat. Due largely to the rapid course and high mortality of pneumonic plague, vaccines are greatly needed. Two-component protein vaccines have been unreliable and potentially vulnerable to vaccine resistance. We evaluated the safety and efficacy of eight live Y. pestis strains derived from virulent strains CO92 or KIM6+ and mutated in one or more virulence-associated gene(s) or cured of plasmid pPst. Stringent, single-dose vaccination allowed down-selection of the two safest and most protective vaccine candidates, CO92 mutants pgm- pPst- and ΔyscN. Both completely protected BALB/c mice against subcutaneous and aerosol challenge with Y. pestis. Strain CD-1 outbred mice were more resistant to bubonic (but not pneumonic) plague than BALB/c mice, but the vaccines elicited partial protection of CD-1 mice against aerosol challenge, while providing full protection against subcutaneous challenge. A ΔyscN mutant of the nonencapsulated C12 strain was expected to display antigens previously concealed by the capsule. C12 ΔyscN elicited negligible titers to F1 but comparable antibody levels to whole killed bacteria, as did CO92 ΔyscN. Although one dose of C12 ΔyscN was not protective, vaccination with two doses of either CO92 ΔyscN, or a combination of the ΔyscN mutants of C12 and CO92, protected optimally against lethal bubonic or pneumonic plague. Protection against encapsulated Y. pestis required inclusion of F1 in the vaccine and was associated with high anti-F1 titers.
Collapse
|
5
|
Wang X, Singh AK, Zhang X, Sun W. Induction of Protective Antiplague Immune Responses by Self-Adjuvanting Bionanoparticles Derived from Engineered Yersinia pestis. Infect Immun 2020; 88:e00081-20. [PMID: 32152195 PMCID: PMC7171232 DOI: 10.1128/iai.00081-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
A Yersinia pestis mutant synthesizing an adjuvant form of lipid A (monophosphoryl lipid A, MPLA) displayed increased biogenesis of bacterial outer membrane vesicles (OMVs). To enhance the immunogenicity of the OMVs, we constructed an Asd-based balanced-lethal host-vector system that oversynthesized the LcrV antigen of Y. pestis, raised the amounts of LcrV enclosed in OMVs by the type II secretion system, and eliminated harmful factors like plasminogen activator (Pla) and murine toxin from the OMVs. Vaccination with OMVs containing MPLA and increased amounts of LcrV with diminished toxicity afforded complete protection in mice against subcutaneous challenge with 8 × 105 CFU (80,000 50% lethal dose [LD50]) and intranasal challenge with 5 × 103 CFU (50 LD50) of virulent Y. pestis This protection was significantly superior to that resulting from vaccination with LcrV/alhydrogel or rF1-V/alhydrogel. At week 4 postimmunization, the OMV-immunized mice showed more robust titers of antibodies against LcrV, Y. pestis whole-cell lysate (YPL), and F1 antigen and more balanced IgG1:IgG2a/IgG2b-derived Th1 and Th2 responses than LcrV-immunized mice. Moreover, potent adaptive and innate immune responses were stimulated in the OMV-immunized mice. Our findings demonstrate that self-adjuvanting Y. pestis OMVs provide a novel plague vaccine candidate and that the rational design of OMVs could serve as a robust approach for vaccine development.
Collapse
Affiliation(s)
- Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
6
|
Wang X, Singh AK, Sun W. Protection and Safety Evaluation of Live Constructions Derived from the Pgm - and pPCP1 - Yersinia pestis Strain. Vaccines (Basel) 2020; 8:E95. [PMID: 32098032 PMCID: PMC7157699 DOI: 10.3390/vaccines8010095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Based on a live attenuated Yersinia pestis KIM10(pCD1Ap) strain (Pgm-, pPCP1-), we attempted to engineer its lipid A species to achieve improvement of immunogenicity and safety. A mutant strain designated as YPS19(pCD1Ap), mainly synthesizing the hexa-acylated lipid A, and another mutant strain designated as YPS20(pCD1Ap), synthesizing 1-dephosphalated hexa-acylated lipid A (detoxified lipid A), presented relatively low virulence in comparison to KIM10(pCD1Ap) by intramuscular (i.m.) or subcutaneous (s.c.) administration. The i.m. administration with either the KIM10(pCD1Ap) or YPS19(pCD1Ap) strain afforded significant protection against bubonic and pneumonic plague compared to the s.c. administration, while administration with completely attenuated YPS20(pCD1Ap) strain failed to afford significant protection. Antibody analysis showed that i.m. administration induced balanced Th1 and Th2 responses but s.c. administration stimulated Th2-biased responses. Safety evaluation showed that YPS19(pCD1Ap) was relatively safer than its parent KIM10(pCD1Ap) in Hfe-/- mice manifesting iron overload in tissues, which also did not impair its protection. Therefore, the immune activity of hexa-acylated lipid A can be harnessed for rationally designing bacteria-derived vaccines.
Collapse
Affiliation(s)
| | | | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (X.W.); (A.K.S.)
| |
Collapse
|
7
|
Singh AK, Curtiss R, Sun W. A Recombinant Attenuated Yersinia pseudotuberculosis Vaccine Delivering a Y. pestis YopE Nt138-LcrV Fusion Elicits Broad Protection against Plague and Yersiniosis in Mice. Infect Immun 2019; 87:e00296-19. [PMID: 31331960 PMCID: PMC6759313 DOI: 10.1128/iai.00296-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, a novel recombinant attenuated Yersinia pseudotuberculosis PB1+ strain (χ10069) engineered with ΔyopK ΔyopJ Δasd triple mutations was used to deliver a Y. pestis fusion protein, YopE amino acid 1 to 138-LcrV (YopENt138-LcrV), to Swiss Webster mice as a protective antigen against infections by yersiniae. χ10069 bacteria harboring the pYA5199 plasmid constitutively synthesized the YopENt138-LcrV fusion protein and secreted it via the type 3 secretion system (T3SS) at 37°C under calcium-deprived conditions. The attenuated strain χ10069(pYA5199) was manifested by the establishment of controlled infection in different tissues without developing conspicuous signs of disease in histopathological analysis of microtome sections. A single-dose oral immunization of χ10069(pYA5199) induced strong serum antibody titers (log10 mean value, 4.2), secretory IgA in bronchoalveolar lavage (BAL) fluid from immunized mice, and Yersinia-specific CD4+ and CD8+ T cells producing high levels of tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and interleukin 2 (IL-2), as well as IL-17, in both lungs and spleens of immunized mice, conferring comprehensive Th1- and Th2-mediated immune responses and protection against bubonic and pneumonic plague challenges, with 80% and 90% survival, respectively. Mice immunized with χ10069(pYA5199) also exhibited complete protection against lethal oral infections by Yersinia enterocolitica WA and Y. pseudotuberculosis PB1+. These findings indicated that χ10069(pYA5199) as an oral vaccine induces protective immunity to prevent bubonic and pneumonic plague, as well as yersiniosis, in mice and would be a promising oral vaccine candidate for protection against plague and yersiniosis for human and veterinary applications.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
8
|
Molecular alterations induced by Yersinia pestis, dengue virus and Staphylococcal enterotoxin B under severe stress. Brain Behav Immun 2019; 80:725-741. [PMID: 31100372 DOI: 10.1016/j.bbi.2019.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Severe stress can have drastic and systemic effects with dire implications on the health and wellbeing of exposed individuals. Particularly, the effect of stress on the immune response to infection is of interest to public health because of its implications for vaccine efficacy and treatment strategies during stressful scenarios. Severe stress has previously been shown to cause an anergic state in the immune system that persists following exposure to a potent mitogen. METHODS Transcriptome and microRNA changes were characterized using blood samples collected from U.S. Army Ranger candidates immediately before and after training, followed by exposure to representative pathogenic agents: Yersinia pestis, dengue virus 2, and Staphylococcal enterotoxin B (SEB). We employed experimental and computational approaches to characterize altered gene expression, processes, pathways, and regulatory networks mediating the host's response towards severe stress; to assess the protective immunity status of the stressed host towards infection; and to identify pathogen-induced biomarkers under severe stress conditions. RESULTS We observed predicted inhibition of pathways significantly associated with lymphopoiesis, wound healing, inflammatory response, lymphocyte activation, apoptosis, and predicted activation of oxidative stress. Using weighted correlation network analyses, we demonstrated preservation of these pathways across infection and stress combinations. Regulatory networks comprising a common set of upstream regulators: transcription factors, microRNAs and post-translational regulators (kinases and phosphatases) may be drivers of molecular alterations leading to compromised protective immunity. Other sets of transcripts were persistently altered in both the pre- and post-stress conditions due to the host's response to each pathogenic agent, forming specific molecular signatures with the potential to distinguish infection from that of severe stress. CONCLUSIONS Our results suggest that severe stress alters molecules implicated in the development of leukopoietic stem cells, thereby leading to depletion of cellular and molecular repertoires of protective immunity. Suppressed molecules mediating membrane trafficking of recycling endosomes, membrane translocation and localization of the antigen processing mechanisms and cell adhesions indicate suboptimal antigen presentation, impaired formation of productive immunological synapses, and inhibited T-cell activations. These factors may collectively be responsible for compromised protective immunity (infection susceptibility, delayed wound healing, and poor vaccine response) observed in people under severe stress.
Collapse
|
9
|
A Dopamine-Responsive Signal Transduction Controls Transcription of Salmonella enterica Serovar Typhimurium Virulence Genes. mBio 2019; 10:mBio.02772-18. [PMID: 30992361 PMCID: PMC6469979 DOI: 10.1128/mbio.02772-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that the ligand-responsive MarR family member SlyA plays an important role in transcription activation of multiple virulence genes in Salmonella enterica serovar Typhimurium by responding to guanosine tetraphosphate (ppGpp). Here, we demonstrate that another MarR family member, EmrR, is required for virulence of S. Typhimurium and another enteric bacterium, Yersinia pestis EmrR is found to activate transcription of an array of virulence determinants, including Salmonella pathogenicity island 2 (SPI-2) genes and several divergent operons, which have been shown to be activated by SlyA and the PhoP/PhoQ two-component system. We studied the regulatory effect of EmrR on one of these genetic loci, i.e., the pagC-pagD divergent operon, and characterized a catecholamine neurotransmitter, dopamine, as an EmrR-sensed signal. Dopamine acts on EmrR to reduce its ability to bind to the target promoters, thus functioning as a negative signal to downregulate this EmrR-activated transcription. EmrR can bind to AT-rich sequences, which particularly overlap the SlyA and PhoP binding sites in the pagC-pagD divergent promoter. EmrR is a priming transcription regulator that binds its target promoters prior to successive transcription activators, by which it displaces universal silencer H-NS from these promoters and facilitates successive regulators to bind these regions. Regulation of the Salmonella-specific gene in Escherichia coli and Y. pestis reveals that EmrR-dependent regulation is conserved in enteric bacteria. These observations suggest that EmrR is a transcription activator to control the expression of virulence genes, including the SPI-2 genes. Dopamine can act on the EmrR-mediated signal transduction, thus downregulating expression of these virulence factors.IMPORTANCE In this study, MarR family regulator EmrR is identified as a novel virulence factor of enteric bacteria, here exemplified by Salmonella enterica serovar Typhimurium and Yersinia pestis EmrR exerts an essential effect as a transcription activator for expression of virulence determinants, including Salmonella pathogenicity island 2 genes and a set of horizontally acquired genetic loci that formed divergent operons. EmrR senses the neurotransmitter dopamine and is subsequently released from target promoters, resulting in downregulation of the virulence gene expression. Through this action on EmrR, dopamine can weaken Salmonella resistance against host defense mechanisms. This provides an explanation for the previous observation that dopamine inhibits bacterial infection in animal gastrointestinal tracts. Our findings provide evidence that this neurotransmitter can modulate bacterial gene expression through interaction with virulence regulator EmrR.
Collapse
|
10
|
Current State of the Problem of Vaccine Development for Specific Prophylaxis of Plague. ПРОБЛЕМЫ ОСОБО ОПАСНЫХ ИНФЕКЦИЙ 2019. [DOI: 10.21055/0370-1069-2019-1-50-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emergence of large-scale plague outbreaks in Africa and South America countries in the modern period, characterized by high frequency of pneumonic plague development (including with lethal outcome) keeps up the interest of scientists to the matters of development and testing of means for specific prophylaxis of this particularly dangerous infectious disease. WHO workshop that was held in 2018 identified the general principles of optimization of design and testing of new-generation vaccines effectively protecting the population from plague infection. Application of the achievements of biological and medical sciences for outlining rational strategy for construction of immunobiological preparations led to a certain progress in the creation of not only sub-unit vaccines based on recombinant antigens, but also live and vector preparations on the platform of safe bacterial strains and replicating and non-replicating viruses in recent years. The review comprehensively considers the relevant trends in vaccine construction for plague prevention, describes advantages of the state-of-the art methodologies for their safety and efficiency enhancement.
Collapse
|
11
|
Sun W, Singh AK. Plague vaccine: recent progress and prospects. NPJ Vaccines 2019; 4:11. [PMID: 30792905 PMCID: PMC6379378 DOI: 10.1038/s41541-019-0105-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/19/2018] [Indexed: 01/14/2023] Open
Abstract
Three great plague pandemics, resulting in nearly 200 million deaths in human history and usage as a biowarfare agent, have made Yersinia pestis as one of the most virulent human pathogens. In late 2017, a large plague outbreak raged in Madagascar attracted extensive attention and caused regional panics. The evolution of local outbreaks into a pandemic is a concern of the Centers for Disease Control and Prevention (CDC) in plague endemic regions. Until now, no licensed plague vaccine is available. Prophylactic vaccination counteracting this disease is certainly a primary choice for its long-term prevention. In this review, we summarize the latest advances in research and development of plague vaccines.
Collapse
Affiliation(s)
- Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208 USA
| | - Amit K. Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208 USA
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
13
|
Abstract
This chapter summarizes researches on genome and evolution features of Yersinia pestis, the young pathogen that evolved from Y. pseudotuberculosis at least 5000 years ago. Y. pestis is a highly clonal bacterial species with closed pan-genome. Comparative genomic analysis revealed that genome of Y. pestis experienced highly frequent rearrangement and genome decay events during the evolution. The genealogy of Y. pestis includes five major branches, and four of them seemed raised from a "big bang" node that is associated with the Black Death. Although whole genome-wide variation of Y. pestis reflected a neutral evolutionary process, the branch length in the genealogical tree revealed over dispersion, which was supposedly caused by varied historical molecular clock that is associated with demographical effect by alternate cycles of enzootic disease and epizootic disease in sylvatic plague foci. In recent years, palaeomicrobiology researches on victims of the Black Death, and Justinian's plague verified that two historical pandemics were indeed caused by Y. pestis, but the etiological lineages might be extinct today.
Collapse
|
14
|
Abstract
Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.
Collapse
Affiliation(s)
- Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
15
|
Sun W, Sanapala S, Rahav H, Curtiss R. Oral administration of a recombinant attenuated Yersinia pseudotuberculosis strain elicits protective immunity against plague. Vaccine 2015; 33:6727-35. [PMID: 26514425 DOI: 10.1016/j.vaccine.2015.10.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 10/14/2015] [Indexed: 01/14/2023]
Abstract
A Yersinia pseudotuberculosis PB1+ (Yptb PB1+) mutant strain combined with chromosome insertion of the caf1R-caf1A-caf1M-caf1 operon and deletions of yopJ and yopK, χ10068 [pYV-ω2 (ΔyopJ315 ΔyopK108) ΔlacZ044::caf1R-caf1M-caf1A-caf1] was constructed. Results indicated that gene insertion and deletion did not affect the growth rate of χ10068 compared to wild-type Yptb cultured at 26 °C. In addition, the F1 antigen in χ10068 was synthesized and secreted on the surface of bacteria at 37 °C (mammalian body temperature), not at ambient culture temperature (26 °C). Immunization with χ10068 primed antibody responses and specific T-cell responses to F1 and YpL (Y. pestis whole cell lysate). Oral immunization with a single dose of χ10068 provided 70% protection against a subcutaneous (s.c.) challenge with ∼ 2.6 × 10(5) LD50 of Y. pestis KIM6+ (pCD1Ap) (KIM6+Ap) and 90% protection against an intranasal (i.n.) challenge with ∼ 500 LD50 of KIM6+Ap in mice. Our results suggest that χ10068 can be used as an effective precursor to make a safe vaccine to prevent plague in humans and to eliminate plague circulation among humans and animals.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Shilpa Sanapala
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hannah Rahav
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Roy Curtiss
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
16
|
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines 2015; 14:861-76. [PMID: 25797360 DOI: 10.1586/14760584.2015.1026808] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipopolysaccharide (LPS), a dominant component of the Gram-negative bacterial outer membrane, is a strong activator of the innate immune system, and thereby an important determinant in the adaptive immune response following bacterial infection. This adjuvant activity can be harnessed following immunization with bacteria-derived vaccines that naturally contain LPS, and when LPS or molecules derived from it are added to purified vaccine antigens. However, the downside of the strong biological activity of LPS is its ability to contribute to vaccine reactogenicity. Modification of the LPS structure allows triggering of a proper immune response needed in a vaccine against a particular pathogen while at the same time lowering its toxicity. Extensive modifications to the basic structure are possible by using our current knowledge of bacterial genes involved in LPS biosynthesis and modification. This review focuses on biosynthetic engineering of the structure of LPS and implications of these modifications for generation of safe adjuvants.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | |
Collapse
|
17
|
LcrV delivered via type III secretion system of live attenuated Yersinia pseudotuberculosis enhances immunogenicity against pneumonic plague. Infect Immun 2014; 82:4390-404. [PMID: 25114109 DOI: 10.1128/iai.02173-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we constructed a Yersinia pseudotuberculosis mutant strain with arabinose-dependent regulated and delayed shutoff of crp expression (araC P(BAD) crp) and replacement of the msbB gene with the Escherichia coli msbB gene to attenuate it. Then, we inserted the asd mutation into this construction to form χ10057 [Δasd-206 ΔmsbB868::P(msbB) msbB(EC) ΔP(crp21)::TT araC P(BAD) crp] for use with a balanced-lethal Asd-positive (Asd(+)) plasmid to facilitate antigen synthesis. A hybrid protein composed of YopE (amino acids [aa]1 to 138) fused with full-length LcrV (YopE(Nt138)-LcrV) was synthesized in χ10057 harboring an Asd(+) plasmid (pYA5199, yopE(Nt138)-lcrV) and could be secreted through a type III secretion system (T3SS) in vitro and in vivo. Animal studies indicated that mice orally immunized with χ10057(pYA5199) developed titers of IgG response to whole-cell lysates of Y. pestis (YpL) and subunit LcrV similar to those seen with χ10057(pYA3332) (χ10057 plus an empty plasmid). However, only immunization of mice with χ10057(pYA5199) resulted in a significant secretory IgA response to LcrV. χ10057(pYA5199) induced a higher level of protection (80% survival) against intranasal (i.n.) challenge with ~240 median lethal doses (LD50) (2.4 × 10(4) CFU) of Y. pestis KIM6+(pCD1Ap) than χ10057(pYA3332) (40% survival). Splenocytes from mice vaccinated with χ10057(pYA5199) produced significant levels of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-17 (IL-17) after restimulation with LcrV and YpL antigens. Our results suggest that it is possible to use an attenuated Y. pseudotuberculosis strain delivering the LcrV antigen via the T3SS as a potential vaccine candidate against pneumonic plague.
Collapse
|
18
|
Galen JE, Curtiss R. The delicate balance in genetically engineering live vaccines. Vaccine 2014; 32:4376-4385. [PMID: 24370705 PMCID: PMC4069233 DOI: 10.1016/j.vaccine.2013.12.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 11/24/2022]
Abstract
Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health.
Collapse
Affiliation(s)
- James E Galen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
19
|
Wang X, Zhang X, Zhou D, Yang R. Live-attenuatedYersinia pestisvaccines. Expert Rev Vaccines 2014; 12:677-86. [DOI: 10.1586/erv.13.42] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
21
|
Dowhan W, Nikaido H, Stubbe J, Kozarich JW, Wickner WT, Russell DW, Garrett TA, Brozek K, Modrich P. Christian Raetz: scientist and friend extraordinaire. Annu Rev Biochem 2013; 82:1-24. [PMID: 23472605 DOI: 10.1146/annurev-biochem-012512-091530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chris Raetz passed away on August 16, 2011, still at the height of his productive years. His seminal contributions to biomedical research were in the genetics, biochemistry, and structural biology of phospholipid and lipid A biosynthesis in Escherichia coli and other gram-negative bacteria. He defined the catalytic properties and structures of many of the enzymes responsible for the "Raetz pathway for lipid A biosynthesis." His deep understanding of chemistry, coupled with knowledge of medicine, biochemistry, genetics, and structural biology, formed the underpinnings for his contributions to the lipid field. He displayed an intense passion for science and a broad interest that came from a strong commitment to curiosity-driven research, a commitment he imparted to his mentees and colleagues. What follows is a testament to both Chris's science and humanity from his friends and colleagues.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Synthesis of Escherichia coli LpxL, which transfers a secondary laurate chain to the 2' position of lipid A, in Yersinia pestis produced bisphosphoryl hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Our previous observations also indicated that strain χ10015(pCD1Ap) (ΔlpxP32::P(lpxL) lpxL) stimulated a strong inflammatory reaction but sickened mice before recovery and retained virulence via intranasal (i.n.) infection. The development of live, attenuated Y. pestis vaccines may be facilitated by detoxification of its lipopolysaccharide (LPS). Heterologous expression of the lipid A 1-phosphatase, LpxE, from Francisella tularensis in Y. pestis yields predominantly 1-dephosphorylated lipid A, as confirmed by mass spectrometry. Results indicated that expression of LpxE on top of LpxL provided no significant reduction in virulence of Y. pestis in mice when it was administered i.n. but actually reduced the 50% lethal dose (LD(50)) by 3 orders of magnitude when the strain was administered subcutaneously (s.c.). Additionally, LpxE synthesis in wild-type Y. pestis KIM6+(pCD1Ap) led to slight attenuation by s.c. inoculation but no virulence change by i.n. inoculation in mice. In contrast to Salmonella enterica, expression of LpxE does not attenuate the virulence of Y. pestis.
Collapse
|
23
|
Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium. Infect Immun 2012; 81:815-28. [PMID: 23275092 DOI: 10.1128/iai.01067-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain. Although the ΔmsbB single mutant was minimally attenuated, the Δlpp single mutant and the Δlpp ΔmsbB double mutant were significantly more attenuated than the isogenic wild-type (WT) bacterium in bubonic and pneumonic animal models (mouse and rat) of plague. These data correlated with greatly reduced survivability of the aforementioned mutants in murine macrophages. Furthermore, the Δlpp ΔmsbB double mutant was grossly compromised in its ability to disseminate to distal organs in mice and in evoking cytokines/chemokines in infected animal tissues. Importantly, mice that survived challenge with the Δlpp ΔmsbB double mutant, but not the Δlpp or ΔmsbB single mutant, in a pneumonic plague model were significantly protected against a subsequent lethal WT CO92 rechallenge. These data were substantiated by the fact that the Δlpp ΔmsbB double mutant maintained an immunogenicity comparable to that of the WT strain and induced long-lasting T-cell responses against heat-killed WT CO92 antigens. Taken together, the data indicate that deletion of the msbB gene augmented the attenuation of the Δlpp mutant by crippling the spread of the double mutant to the peripheral organs of animals and by inducing cytokine/chemokine responses. Thus, the Δlpp ΔmsbB double mutant could provide a new live-attenuated background vaccine candidate strain, and this should be explored in the future.
Collapse
|
24
|
Heroven AK, Sest M, Pisano F, Scheb-Wetzel M, Steinmann R, Böhme K, Klein J, Münch R, Schomburg D, Dersch P. Crp induces switching of the CsrB and CsrC RNAs in Yersinia pseudotuberculosis and links nutritional status to virulence. Front Cell Infect Microbiol 2012; 2:158. [PMID: 23251905 PMCID: PMC3523269 DOI: 10.3389/fcimb.2012.00158] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022] Open
Abstract
Colonization of the intestinal tract and dissemination into deeper tissues by the enteric pathogen Yersinia pseudotuberculosis demands expression of a special set of virulence factors important for the initiation and the persistence of the infection. In this study we demonstrate that many virulence-associated functions are coregulated with the carbohydrate metabolism. This link is mediated by the carbon storage regulator (Csr) system, including the regulatory RNAs CsrB and CsrC, and the cAMP receptor protein (Crp), which both control virulence gene expression in response to the nutrient composition of the medium. Here, we show that Crp regulates the synthesis of both Csr RNAs in an opposite manner. A loss of the crp gene resulted in a strong upregulation of CsrB synthesis, whereas CsrC levels were strongly reduced leading to downregulation of the virulence regulator RovA. Switching of the Csr RNA involves Crp-mediated repression of the response regulator UvrY which activates csrB transcription. To elucidate the regulatory links between virulence and carbon metabolism, we performed comparative metabolome, transcriptome, and phenotypic microarray analyses and found that Crp promotes oxidative catabolism of many different carbon sources, whereas fermentative patterns of metabolism are favored when crp is deleted. Mouse infection experiments further demonstrated that Crp is pivotal for a successful Y. pseudotuberculosis infection. In summary, placement of the Csr system and important virulence factors under control of Crp enables this pathogen to link its nutritional status to virulence in order to optimize biological fitness and infection efficiency through the infectious life cycle.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- Abteilung Molekulare Infektionsbiologie, Helmholtz-Zentrum für Infektionsforschung Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sun W, Curtiss R. Amino acid substitutions in LcrV at putative sites of interaction with Toll-like receptor 2 do not affect the virulence of Yersinia pestis. Microb Pathog 2012; 53:198-206. [PMID: 22841961 DOI: 10.1016/j.micpath.2012.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 11/28/2022]
Abstract
LcrV, a component of the type III secretion system (T3SS) translocon in Yersinia pestis, has been concerned in suppressing inflammation through Toll-like receptor 2 (TLR2) by inducing expression of the anti-inflammatory cytokine interleukin-10 (IL-10). Previous studies have reported that LcrV aa E33, E34, K42 and/or E204 and E205 were important for interactions with TLR2 in vitro. While, recently there have been conflicting reports doubting this interaction and its importance in vivo. To further investigate the role of these residues, we replaced the wild-type lcrV gene on the pCD1Ap virulence plasmid of Y. pestis with lcrV2345 gene, which encodes a mutant protein by substituting all five of the amino acid residues with glutamine. The characteristics of the wild-type LcrV and mutant LcrV2345 were evaluated in tissue culture and mice. When purified protein was incubated with HEK293 cells synthesizing human TLR2 with or without CD14, LcrV2345 induced higher levels of IL-8 than wild-type LcrV, indicating that the LcrV2345 was not impaired in its ability to interact with TLR2. LcrV2345 stimulated higher levels of tumor necrosis factor-alpha (TNF-α) production than LcrV in J774A.1 cells, while neither protein elicited significant levels of IL-10. We also found there was no statistically significant difference in virulence between strains with wild-type LcrV and with mutated LcrV2345 administered by either subcutaneous or intranasal route in mice. Additionally, there were no discernible differences in survival kinetics. Serum levels of cytokines, such as IL-10 and TNF-α, bacterial burden, and the extent of organ inflammation were also indistinguishable in both strains. Our data confirm that immunomodulation mediated by LcrV/TLR2 interactions does not play a significant role in the pathogenicity of Y. pestis.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, P.O. Box 875401, 1001 S. McAllister Avenue, Tempe, AZ 85287-5401, USA.
| | | |
Collapse
|
27
|
Knirel Y, Anisimov A. Lipopolysaccharide of Yersinia pestis, the Cause of Plague: Structure, Genetics, Biological Properties. Acta Naturae 2012; 4:46-58. [PMID: 23150803 PMCID: PMC3492934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present review summarizes data pertaining to the composition and structure of the carbohydrate moiety (core oligosaccharide) and lipid component (lipid A) of the various forms of lipopolysaccharide (LPS), one of the major pathogenicity factors ofYersinia pestis, the cause of plague. The review addresses the functions and the biological significance of genes for the biosynthesis of LPS, as well as the biological properties of LPS in strains from various intraspecies groups ofY. pestis and their mutants, including the contribution of LPS to the resistance of bacteria to factors of the innate immunity of both insect-vectors and mammal-hosts. Special attention is paid to temperature-dependent variations in the LPS structure, their genetic control and roles in the pathogenesis of plague. The evolutionary aspect is considered based on a comparison of the structure and genetics of the LPS ofY. pestis and other enteric bacteria, including otherYersinia species. The prospects of development of live plague vaccines created on the basis ofY. pestis strains with the genetically modified LPS are discussed.
Collapse
Affiliation(s)
- Y.A. Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky
prospect, 47, Moscow, Russia, 119991
| | - A.P. Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk,
Moscow Region, Russia, 142279
| |
Collapse
|
28
|
Enhanced humoral and mucosal immune responses after intranasal immunization with chimeric multiple antigen peptide of LcrV antigen epitopes of Yersinia pestis coupled to palmitate in mice. Vaccine 2011; 29:9352-60. [PMID: 22001881 DOI: 10.1016/j.vaccine.2011.09.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 11/21/2022]
Abstract
Yersinia pestis is the causative agent of the most deadly disease plague. F1 and V antigens are the major vaccine candidates. Six protective epitopes of V antigen of varying length (15-25aa) were assembled on a lysine backbone as multiple antigen peptide (MAP) using standard Fmoc chemistry. Palmitate was coupled at amino terminus end. Amino acid analysis, SDS-PAGE, immunoblot and immunoreactivity proved the authenticity of MAP. MAP was immunized intranasally encapsulated in PLGA (polylactide-co-glycolide) microspheres and with/without/adjuvants murabutide and CpG ODN 1826 (CpG), in three strains of mice. Humoral and mucosal immune responses were studied till day 120 and memory response was checked after immunization with native V antigen on day 120. Epitope specific serum and mucosal washes IgG, IgA, IgG subclasses and specific activity were measured by indirect ELISA and sandwich ELISA, respectively. IgG and IgA peak antibody titers of all the MAP construct formulations in sera were ranging from 71,944 to 360,578 and 4493 to 28,644, respectively. MAP with CpG showed significantly high (p<0.0001) antibody titers ranging from 101,690 to 360,578 for IgG and 28,644 for IgA. Mucosal peak IgG and IgA titers were ranging from 1425 to 8072 and 1425 to 7183, respectively in intestinal washes and 799-4528 and 566-4027, respectively in lung washes. MAP with CpG showed significantly high (p<0.001) SIgA titers of 8000 in lung and 16,000 in intestinal washes. IgG isotyping revealed IgG2a/IgG1 ratio>1 with CpG. Serum and mucosal antipeptide IgG and IgA specific activities correlated well with antibody titers. All the constituent peptides contributed towards immune response. Structural analysis of MAP revealed little or no interaction between the peptides. Present study showed MAP to be highly immunogenic with high and long lasting antibody titers in serum and mucosal washes with good recall response with/without CpG as an adjuvant which can be used for vaccine development for plague.
Collapse
|
29
|
The role of immune correlates and surrogate markers in the development of vaccines and immunotherapies for plague. Adv Prev Med 2011; 2012:365980. [PMID: 21991451 PMCID: PMC3182760 DOI: 10.1155/2012/365980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/08/2011] [Indexed: 01/28/2023] Open
Abstract
One of the difficulties in developing countermeasures to biothreat agents is the challenge inherent in demonstrating their efficacy in man. Since the first publication of the Animal Rule by the FDA, there has been increased discussion of potential correlates of protection in animal models and their use to establish surrogate markers of efficacy in man. The latter need to be relatively easy to measure in assays that are at least qualified, if not validated, in order to derive a quantitative assessment of the clinical benefit conferred. The demonstration of safety and clinical benefit is essential to achieve regulatory approval for countermeasures for which clinical efficacy cannot be tested directly, as is the case for example, for biodefence vaccines. Plague is an ancient, serious infectious disease which is still endemic in regions of the modern world and is a potential biothreat agent. This paper discusses potential immune correlates of protection for plague, from which it may be possible to derive surrogate markers of efficacy, in order to predict the clinical efficacy of candidate prophylaxes and therapies.
Collapse
|
30
|
Sun W, Roland KL, Curtiss R. Developing live vaccines against plague. J Infect Dev Ctries 2011; 5:614-27. [PMID: 21918302 PMCID: PMC3932668 DOI: 10.3855/jidc.2030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 12/13/2022] Open
Abstract
Three great plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people and it has been linked to biowarfare in the past. Plague is endemic in many parts of the world. In addition, the risk of plague as a bioweapon has prompted increased research to develop plague vaccines against this disease. Injectable subunit vaccines are being developed in the United States and United Kingdom. However, the live attenuated Y. pestis-EV NIIEG strain has been used as a vaccine for more than 70 years in the former Soviet Union and in some parts of Asia and provides a high degree of efficacy against plague. This vaccine has not gained general acceptance because of safety concerns. In recent years, modern molecular biological techniques have been applied to Y. pestis to construct strains with specific defined mutations designed to create safe, immunogenic vaccines with potential for use in humans and as bait vaccines to reduce the load of Y. pestis in the environment. In addition, a number of live, vectored vaccines have been reported using attenuated viral vectors or attenuated Salmonella strains to deliver plague antigens. Here we summarize the progress of live attenuated vaccines against plagu.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 , USA
| | | | | |
Collapse
|
31
|
Plague: Infections of Companion Animals and Opportunities for Intervention. Animals (Basel) 2011; 1:242-55. [PMID: 26486314 DOI: 10.3390/ani1020242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022] Open
Abstract
Plague is a zoonotic disease, normally circulating in rodent populations, transmitted to humans most commonly through the bite of an infected flea vector. Secondary infection of the lungs results in generation of infectious aerosols, which pose a significant hazard to close contacts. In enzootic areas, plague infections have been reported in owners and veterinarians who come into contact with infected pets. Dogs are relatively resistant, but can import infected fleas into the home. Cats are acutely susceptible, and can present a direct hazard to health. Reducing roaming and hunting behaviours, combined with flea control measures go some way to reducing the risk to humans. Various vaccine formulations have been developed which may be suitable to protect companion animals from contracting plague, and thus preventing onward transmission to man. Since transmission has resulted in a number of fatal cases of plague, the vaccination of domestic animals such as cats would seem a low cost strategy for reducing the risk of infection by this serious disease in enzootic regions.
Collapse
|
32
|
Plague: Infections of Companion Animals and Opportunities for Intervention. Animals (Basel) 2011. [PMID: 26486314 PMCID: PMC4513460 DOI: 10.3390/anil020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plague is a zoonotic disease, normally circulating in rodent populations, transmitted to humans most commonly through the bite of an infected flea vector. Secondary infection of the lungs results in generation of infectious aerosols, which pose a significant hazard to close contacts. In enzootic areas, plague infections have been reported in owners and veterinarians who come into contact with infected pets. Dogs are relatively resistant, but can import infected fleas into the home. Cats are acutely susceptible, and can present a direct hazard to health. Reducing roaming and hunting behaviours, combined with flea control measures go some way to reducing the risk to humans. Various vaccine formulations have been developed which may be suitable to protect companion animals from contracting plague, and thus preventing onward transmission to man. Since transmission has resulted in a number of fatal cases of plague, the vaccination of domestic animals such as cats would seem a low cost strategy for reducing the risk of infection by this serious disease in enzootic regions.
Collapse
|
33
|
Rosenzweig JA, Jejelowo O, Sha J, Erova TE, Brackman SM, Kirtley ML, van Lier CJ, Chopra AK. Progress on plague vaccine development. Appl Microbiol Biotechnol 2011; 91:265-86. [PMID: 21670978 DOI: 10.1007/s00253-011-3380-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022]
Abstract
Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person-person transmission and rapid death if left untreated (50-90% mortality). Despite the potential threat of weaponized YP being employed in bioterrorism and YP infections remaining prevalent in endemic regions of the world where rodent populations are high (including the four corner regions of the USA), an efficacious vaccine that confers immunoprotection has yet to be developed. This review article will describe the current vaccine candidates being evaluated in various model systems and provide an overall summary on the progress of this important endeavor.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kong Q, Six DA, Roland KL, Liu Q, Gu L, Reynolds CM, Wang X, Raetz CRH, Curtiss R. Salmonella synthesizing 1-dephosphorylated [corrected] lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. THE JOURNAL OF IMMUNOLOGY 2011; 187:412-23. [PMID: 21632711 DOI: 10.4049/jimmunol.1100339] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of safe live, attenuated Salmonella vaccines may be facilitated by detoxification of its LPS. Recent characterization of the lipid A 1-phosphatase, LpxE, from Francisella tularensis allowed us to construct recombinant, plasmid-free strains of Salmonella that produce predominantly 1-dephosphorylated lipid A, similar to the adjuvant approved for human use. Complete lipid A 1-dephosphorylation was also confirmed under low pH, low Mg(2+) culture conditions, which induce lipid A modifications. LpxE expression in Salmonella reduced its virulence in mice by five orders of magnitude. Moreover, mice inoculated with these detoxified strains were protected against wild-type challenge. Candidate Salmonella vaccine strains synthesizing pneumococcal surface protein A (PspA) were also confirmed to possess nearly complete lipid A 1-dephosphorylation. After inoculation by the LpxE/PspA strains, mice produced robust levels of anti-PspA Abs and showed significantly improved survival against challenge with wild-type Streptococcus pneumoniae WU2 compared with vector-only-immunized mice, validating Salmonella synthesizing 1-dephosphorylated lipid A as an Ag-delivery system.
Collapse
Affiliation(s)
- Qingke Kong
- Center for Infectious Diseases and Vaccinology, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|