1
|
Boettiger DC, An VT, Lumbiganon P, Wittawatmongkol O, Truong KH, Do VC, Van Nguyen L, Ly PS, Kinikar A, Ounchanum P, Puthanakit T, Kurniati N, Kumarasamy N, Wati DK, Chokephaibulkit K, Jamal Mohamed TA, Sudjaritruk T, Yusoff NKN, Fong MS, Nallusamy RA, Kariminia A. Severe Recurrent Bacterial Pneumonia Among Children Living With HIV. Pediatr Infect Dis J 2022; 41:e208-e215. [PMID: 35185140 PMCID: PMC10140183 DOI: 10.1097/inf.0000000000003494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Bacterial pneumonia imparts a major morbidity and mortality burden on children living with HIV, yet effective prevention and treatment options are underutilized. We explored clinical factors associated with severe recurrent bacterial pneumonia among children living with HIV. METHODS Children enrolled in the TREAT Asia Pediatric HIV Observational Database were included if they started antiretroviral therapy (ART) on or after January 1st, 2008. Factors associated with severe recurrent bacterial pneumonia were assessed using competing-risk regression. RESULTS A total of 3,944 children were included in the analysis; 136 cases of severe recurrent bacterial pneumonia were reported at a rate of 6.5 [95% confidence interval (CI): 5.5-7.7] events per 1,000 patient-years. Clinical factors associated with severe recurrent bacterial pneumonia were younger age [adjusted subdistribution hazard ratio (aHR): 4.4 for <5 years versus ≥10 years, 95% CI: 2.2-8.4, P < 0.001], lower weight-for-age z-score (aHR: 1.5 for <-3.0 versus >-2.0, 95% CI: 1.1-2.3, P = 0.024), pre-ART diagnosis of severe recurrent bacterial pneumonia (aHR: 4.0 versus no pre-ART diagnosis, 95% CI: 2.7-5.8, P < 0.001), past diagnosis of symptomatic lymphoid interstitial pneumonitis or chronic HIV-associated lung disease, including bronchiectasis (aHR: 4.8 versus no past diagnosis, 95% CI: 2.8-8.4, P < 0.001), low CD4% (aHR: 3.5 for <10% versus ≥25%, 95% CI: 1.9-6.4, P < 0.001) and detectable HIV viral load (aHR: 2.6 versus undetectable, 95% CI: 1.2-5.9, P = 0.018). CONCLUSIONS Children <10-years-old and those with low weight-for-age, a history of respiratory illness, low CD4% or poorly controlled HIV are likely to gain the greatest benefit from targeted prevention and treatment programs to reduce the burden of bacterial pneumonia in children living with HIV.
Collapse
Affiliation(s)
- David C. Boettiger
- The Kirby Institute, UNSW Sydney, Australia
- Institute for Health and Aging, University of California, San Francisco, USA
- Biostatistics Excellence Centre, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Vu Thien An
- Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Pagakrong Lumbiganon
- Division of Infectious Disease, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orasri Wittawatmongkol
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | - Penh Sun Ly
- National Centre for HIV/AIDS, Dermatology and STDs, Phnom Penh, Cambodia
| | - Aarti Kinikar
- BJ Medical College and Sassoon General Hospitals, Maharashtra, India
| | | | - Thanyawee Puthanakit
- Department of Pediatrics and Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nia Kurniati
- Cipto Mangunkusumo – Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Nagalingeswaran Kumarasamy
- Chennai Antiviral Research and Treatment Clinical Research Site (CART CRS), VHS-Infectious Diseases Medical Centre, VHS, Chennai, India
| | | | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thahira A. Jamal Mohamed
- Department of Pediatrics, Women and Children Hospital Kuala Lumpur (WCHKL), Kuala Lumpur, Malaysia
| | - Tavitiya Sudjaritruk
- Department of Pediatrics, Faculty of Medicine, and Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | |
Collapse
|
2
|
Chen YC, Zhou JH, Tian JM, Li BH, Liu LH, Wei K. Adjuvanted-influenza vaccination in patients infected with HIV: a systematic review and meta-analysis of immunogenicity and safety. Hum Vaccin Immunother 2019; 16:612-622. [PMID: 31567058 DOI: 10.1080/21645515.2019.1672492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Adjuvanted-influenza vaccination is an efficient method for enhancing the immunogenicity of influenza split-virus vaccines for preventing influenza. However, the medical community's understanding of its performance in patients infected with HIV remains limited. To identify the advantages, we conducted a systematic review and meta-analysis with randomized controlled trials (RCTs) and cohort and case-control studies that have the immunogenicity and safety of influenza vaccines in patients infected with HIV as outcomes. We searched six different databases, and 1698 patients infected with HIV in 11 studies were included. Statistical analysis was performed to calculate the pooled standardized mean differences (SMD) or relative risk (RR) and 95% confidence interval (CI). Regarding immunogenicity, the pooled SMD of GMT (Geometric mean titer) for A/H1N1 was 0.61 (95%CI (0.40,0.82)), the pooled RR of seroconversion was 1.34 (95%CI (0.91,1.98)) for the H1N1 vaccine, 1.27(95%CI (0.64,2.52)) for the H3N2 vaccine, 1.19(95%CI (0.97,1.46)) for the B-type influenza vaccine. The pooled RR of seroprotection was 1.61 (95%CI (1.00,2.58)) for the H1N1 vaccine, 1.06 (95%CI(0.83,1.35)) for the H3N2 vaccine, and 1.13(95%CI(0.91,1.41)) for the B-type vaccine. Adjuvanted-influenza vaccination showed good general tolerability in patients infected with HIV, with the only significant increase being the rate of local pain at the injection site (RR = 2.03, 95%CI (1.06,3.86)). In conclusion, all studies evaluating injected adjuvanted influenza vaccination among patients infected with HIV showed acceptable levels of safety and immunogenicity.
Collapse
Affiliation(s)
- Yong-Chao Chen
- Medical school, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jia-Hao Zhou
- Medical school, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jia-Ming Tian
- Medical school, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bai-Hui Li
- Medical school, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li-Hui Liu
- Medical school, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ke Wei
- Medical school, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Leahy TR, Goode M, Lynam P, Gavin PJ, Butler KM. HIV virological suppression influences response to the AS03-adjuvanted monovalent pandemic influenza A H1N1 vaccine in HIV-infected children. Influenza Other Respir Viruses 2014; 8:360-6. [PMID: 24548473 PMCID: PMC4181485 DOI: 10.1111/irv.12243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/29/2023] Open
Abstract
Design Children with HIV are especially susceptible to complications from influenza infection, and effective vaccines are central to reducing disease burden in this population. We undertook a prospective, observational study to investigate the safety and immunogenicity of the inactivated split-virion AS03-adjuvanted pandemic H1N1(2009) vaccine in children with HIV. Setting National referral centre for Paediatric HIV in Ireland. Sample Twenty four children with HIV were recruited consecutively and received two doses of the vaccine. The serological response was measured before each vaccine dose (Day 0 and Day 28) and 2 months after the booster dose. Antibody titres were measured using a haemagglutination inhibition (HAI) assay. Seroprotection was defined as a HAI titre ≥ 1:40; seroconversion was defined as a ≥ fourfold increase in antibody titre and a postvaccination titre ≥ 1:40. Main outcome measures The seroconversion rates after prime and booster doses were 75% and 71%, respectively. HIV virological suppression at the time of immunization was associated with a significantly increased seroconversion rate (P = 0·009), magnitude of serological response (P = 0·02) and presence of seroprotective HAI titres (P = 0·017) two months after the booster dose. No other factor was significantly associated with the seroconversion/seroprotection rate. No serious adverse effects were reported. Vaccination had no impact on HIV disease progression. The AS03-adjuvanted pandemic H1N1 vaccine appears to be safe and immunogenic among HIV-infected children. A robust serological response appears to be optimized by adherence to a HAART regimen delivering virological suppression.
Collapse
Affiliation(s)
- Timothy R Leahy
- Department of Paediatric Infectious Diseases and Immunology, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
4
|
Abstract
During the 2009 influenza A (H1N1) pandemic several pandemic H1N1 vaccines were licensed using fast track procedures, with relatively limited data on the safety in children and adolescents. Different extensive safety monitoring efforts were put in place to ensure timely detection of adverse events following immunization. These combined efforts have generated large amounts of data on the safety of the different pandemic H1N1 vaccines, also in children and adolescents. In this overview we shortly summarize the safety experience with seasonal influenza vaccines as a background and focus on the clinical and post marketing safety data of the pandemic H1N1 vaccines in children. We identified 25 different clinical studies including 10,505 children and adolescents, both healthy and with underlying medical conditions, between the ages of 6 months and 23 years. In addition, large monitoring efforts have resulted in large amounts of data, with almost 13,000 individual case reports in children and adolescents to the WHO. However, the diversity in methods and data presentation in clinical study publications and publications of spontaneous reports hampered the analysis of safety of the different vaccines. As a result, relatively little has been learned on the comparative safety of these pandemic H1N1 vaccines - particularly in children. It should be a collective effort to give added value to the enormous work going into the individual studies by adhering to available guidelines for the collection, analysis, and presentation of vaccine safety data in clinical studies and to guidance for the clinical investigation of medicinal products in the pediatric population. Importantly the pandemic has brought us the beginning of an infrastructure for collaborative vaccine safety studies in the EU, USA and globally.
Collapse
|