1
|
Efficacy of a novel avian metapneumovirus live vaccine candidate based on vaccination route and age. Poult Sci 2020; 100:100528. [PMID: 33518307 PMCID: PMC7936137 DOI: 10.1016/j.psj.2020.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022] Open
Abstract
This article describes a series of animal studies for the development of an avian metapneumovirus (aMPV) live vaccine. Although aMPV causes continual economic loss in the poultry industry, there are no live aMPV vaccines available in Korea. Furthermore, information is limited with respect to standard field practices for vaccinations at an early age. Here, the development of an aMPV live vaccine was attempted, and its efficacy was investigated with respect to the vaccination route and age to develop a method for controlling aMPV. Before vaccine development, an animal challenge model was established using the aMPV field isolate to identify the most effective time and site for collecting samples for evaluation. After attenuation of the virulent aMPV in Vero cells, a safety and efficacy test was conducted for the vaccine candidate. As a novel aMPV live vaccine candidate, aMPV K655/07HP displayed sufficient safety in day-old chicks with 10 vaccine doses. The efficacy test using 1-week-old chicks showed weaker humoral immune response than that in 4-week-old chicks. However, the candidate vaccine provided complete protection against infection caused by the challenge virus for all ages of vaccinated chicks. In conclusion, an effective aMPV challenge model was established for studying aMPV in chickens, which offered important, insightful information. The safety and efficacy study suggested that the new aMPV candidate vaccine could be used to effectively reduce the economic losses incurred because of aMPV infection.
Collapse
|
2
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
3
|
Brown PA, Lemaitre E, Briand FX, Courtillon C, Guionie O, Allée C, Toquin D, Bayon-Auboyer MH, Jestin V, Eterradossi N. Molecular comparisons of full length metapneumovirus (MPV) genomes, including newly determined French AMPV-C and -D isolates, further supports possible subclassification within the MPV Genus. PLoS One 2014; 9:e102740. [PMID: 25036224 PMCID: PMC4103871 DOI: 10.1371/journal.pone.0102740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023] Open
Abstract
Four avian metapneumovirus (AMPV) subgroups (A-D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus "clusters" HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II.
Collapse
Affiliation(s)
- Paul A. Brown
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Evelyne Lemaitre
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - François-Xavier Briand
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Céline Courtillon
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Olivier Guionie
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Chantal Allée
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Didier Toquin
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Marie-Hélène Bayon-Auboyer
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Véronique Jestin
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| | - Nicolas Eterradossi
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, Ploufragan, France
| |
Collapse
|