1
|
Dentovskaya SV, Vagaiskaya AS, Trunyakova AS, Kartseva AS, Ivashchenko TA, Gerasimov VN, Platonov ME, Firstova VV, Anisimov AP. Genetically Engineered Bacterial Ghosts as Vaccine Candidates Against Klebsiella pneumoniae Infection. Vaccines (Basel) 2025; 13:59. [PMID: 39852838 PMCID: PMC11768506 DOI: 10.3390/vaccines13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives Bacterial ghosts (BGs), non-living empty envelopes of bacteria, are produced either through genetic engineering or chemical treatment of bacteria, retaining the shape of their parent cells. BGs are considered vaccine candidates, promising delivery systems, and vaccine adjuvants. The practical use of BGs in vaccine development for humans is limited because of concerns about the preservation of viable bacteria in BGs. Methods: To increase the efficiency of Klebsiella pneumoniae BG formation and, accordingly, to ensure maximum killing of bacteria, we exploited previously designed plasmids with the lysis gene E from bacteriophage φX174 or with holin-endolysin systems of λ or L-413C phages. Previously, this kit made it possible to generate bacterial cells of Yersinia pestis with varying degrees of hydrolysis and variable protective activity. Results: In the current study, we showed that co-expression of the holin and endolysin genes from the L-413C phage elicited more rapid and efficient K. pneumoniae lysis than lysis mediated by only single gene E or the low functioning holin-endolysin system of λ phage. The introduction of alternative lysing factors into K. pneumoniae cells instead of the E protein leads to the loss of the murein skeleton. The resulting frameless cell envelops are more reminiscent of bacterial sacs or bacterial skins than BGs. Although such structures are less naive than classical bacterial ghosts, they provide effective protection against infection by a hypervirulent strain of K. pneumoniae and can be recommended as candidate vaccines. For our vaccine candidate generated using the O1:K2 hypervirulent K. pneumoniae strain, both safety and immunogenicity aspects were evaluated. Humoral and cellular immune responses were significantly increased in mice that were intraperitoneally immunized compared with subcutaneously vaccinated animals (p < 0.05). Conclusions: Therefore, this study presents novel perspectives for future research on K. pneumoniae ghost vaccines.
Collapse
Affiliation(s)
- Svetlana V. Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| | - Anastasia S. Vagaiskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| | - Alexandra S. Trunyakova
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| | - Alena S. Kartseva
- Laboratory of Molecular Biology, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.K.); (T.A.I.); (V.V.F.)
| | - Tatiana A. Ivashchenko
- Laboratory of Molecular Biology, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.K.); (T.A.I.); (V.V.F.)
| | - Vladimir N. Gerasimov
- Department of Disinfectology, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| | - Mikhail E. Platonov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| | - Victoria V. Firstova
- Laboratory of Molecular Biology, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (A.S.K.); (T.A.I.); (V.V.F.)
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (S.V.D.); (A.S.V.); (A.S.T.); (M.E.P.)
| |
Collapse
|
2
|
Peptidoglycan-Free Bacterial Ghosts Confer Enhanced Protection against Yersinia pestis Infection. Vaccines (Basel) 2021; 10:vaccines10010051. [PMID: 35062712 PMCID: PMC8777944 DOI: 10.3390/vaccines10010051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
To develop a modern plague vaccine, we used hypo-endotoxic Yersinia pestis bacterial ghosts (BGs) with combinations of genes encoding the bacteriophage ɸX174 lysis-mediating protein E and/or holin-endolysin systems from λ or L-413C phages. Expression of the protein E gene resulted in the BGs that retained the shape of the original bacterium. Co-expression of this gene with genes coding for holin-endolysin system of the phage L-413C caused formation of structures resembling collapsed sacs. Such structures, which have lost their rigidity, were also formed as a result of the expression of only the L-413C holin-endolysin genes. A similar holin-endolysin system from phage λ containing mutated holin gene S and intact genes R-Rz coding for the endolysins caused generation of mixtures of BGs that had (i) practically preserved and (ii) completely lost their original rigidity. The addition of protein E to the work of this system shifted the equilibrium in the mixture towards the collapsed sacs. The collapse of the structure of BGs can be explained by endolysis of peptidoglycan sacculi. Immunizations of laboratory animals with the variants of BGs followed by infection with a wild-type Y. pestis strain showed that bacterial envelopes protected only cavies. BGs with maximally hydrolyzed peptidoglycan had a greater protectivity compared to BGs with a preserved peptidoglycan skeleton.
Collapse
|
3
|
Fu LX, Gong JS, Gao B, Ji DJ, Han XG, Zeng LB. Controlled expression of lysis gene E by a mutant of the promoter pL of the thermo-inducible λcI857-pL system. J Appl Microbiol 2020; 130:2008-2017. [PMID: 32358825 DOI: 10.1111/jam.14690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 11/27/2022]
Abstract
AIMS To identify a lambda promoter pL mutant that could extend the thermal stability of the thermo-inducible λcI857-pR/pL system and to evaluate the effects of the modified system for the controlled expression of lysis gene E during the production of bacterial ghosts (BGs). METHODS AND RESULTS The promoter pL mutant was identified by random mutagenesis and site-directed mutagenesis. The results showed that a T → 35C mutation in the pL promoter was responsible for the phenotype alteration. Under the same induction conditions, the lysis rates of the modified lytic system on Escherichia coli and Salmonella enteritidis were significantly lower than that of the control, while the lysis rates of Escherichia coli with the thermo-inducible lytic system were significantly higher than that of S. enteritidis with the corresponding plasmid (P < 0·05). CONCLUSIONS Increasing the heat stability of the thermo-inducible lytic systems decreased lysis efficiency during the production of BGs. There exist differences in the lysis efficiency of thermo-inducible lytic systems between different bacterial strains. SIGNIFICANCE AND IMPACT OF THE STUDY These findings enrich current knowledge about modifications to thermo-inducible systems and provide a reference for the application of these modified systems for the production of BGs and controlled gene expression in bacteria.
Collapse
Affiliation(s)
- L X Fu
- Jiangsu Key Laboratory of Zoonosis, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - J S Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - B Gao
- Jiangsu Key Laboratory of Zoonosis, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - D J Ji
- Jiangsu Key Laboratory of Zoonosis, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - X G Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - L B Zeng
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
4
|
Abstract
INTRODUCTION Bacterial ghosts are intact bacterial cell envelopes that are emptied of their content by gentle biological or chemical poring methods. Ghost techniques increase the safety of the killed vaccines, while maintaining their antigenicity due to mild preparation procedures. Moreover, ghost-platforms may express and/or carry several antigens or plasmid-DNA encoding for protein epitopes. AREAS COVERED In this review, the development in ghost-vaccine production over the last 30 years is classified and discussed. The different applications of ghost-vaccines, how they trigger the immune system, their advantages and limitations are displayed. The phage-mediated lysis, molecular manipulation of the lysis-genes, and the biotechnological production of ghosts are described. The trials are classified according to the pattern of lysis and to the type of bacteria. Further subdivision includes chronological ordered application of the ghost as alternative-killed vaccine, recombinant antigen platform, plasmid DNA carrier, adjuvants, and dendritic cell inducer. Particular trials for specific pathogens or from distinct research schools are gathered. EXPERT OPINION Ghosts are highly qualified to act as immune-presenting platforms that express and/or carry several recombinant and DNA vaccines, as well as, being efficient alternative-killed vaccines. The coming years will show more molecular advances to develop ghost-production and to express more antigens.
Collapse
Affiliation(s)
- Ali M Batah
- Tropical Disease Research Center, University of Science and Technology , Sana'a, Yemen
| | - Tarek A Ahmad
- Morehouse School of Medicine , Atlanta, GA, USA.,Library Sector, Bibliotheca Alexandrina , Alexandria, Egypt
| |
Collapse
|
5
|
Xue Y, Zhai S, Wang Z, Ji Y, Wang G, Wang T, Wang X, Xi H, Cai R, Zhao R, Zhang H, Bi L, Guan Y, Guo Z, Han W, Gu J. The Yersinia Phage X1 Administered Orally Efficiently Protects a Murine Chronic Enteritis Model Against Yersinia enterocolitica Infection. Front Microbiol 2020; 11:351. [PMID: 32210942 PMCID: PMC7067902 DOI: 10.3389/fmicb.2020.00351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Yersinia enterocolitica is generally considered an important food-borne pathogen worldwide, especially in the European Union. A lytic Yersinia phage X1 (Viruses; dsDNA viruses, no RNA stage; Caudovirales; and Myoviridae) was isolated. Phage X1 showed a broad host range and could effectively lyse 27/51 Y. enterocolitica strains covering various serotypes that cause yersiniosis in humans and animals (such as serotype O3 and serotype O8). The genome of this phage was sequenced and analyzed. No toxin, antibiotic-resistance or lysogeny related modules were found in the genome of phage X1. Studies of phage stability confirmed that X1 had a high tolerance toward a broad range of temperatures (4–60°C) and pH values (4–11) for 1 h. The ability to resist harsh acidic conditions and enzymatic degradation in vitro demonstrated that phage X1 is suitable for oral administration, and in particular, that this phage can pass the stomach barrier and efficiently reach the intestine in vivo without losing infectious ability. The potential of this phage against Y. enterocolitica infection in vitro was studied. In animal experiments, a single oral administration of phage X1 at 6 h post infection was sufficient to eliminate Y. enterocolitica in 33.3% of mice (15/45). In addition, the number of Y. enterocolitica strains in the mice was also dramatically reduced to approximately 103 CFU/g after 18 h compared with 107 CFU/g in the mice without phage treatment. Treatment with phage X1 showed significant improvement by intestinal histopathologic observations. Moreover, proinflammatory cytokine levels (IL-6, TNF-α, and IL-1β) were significantly reduced (P < 0.05). These results indicate that phage X1 is a promising candidate to control infection by Y. enterocolitica in vivo.
Collapse
Affiliation(s)
- Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shengjie Zhai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tianqi Wang
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rihong Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lanting Bi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuan Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Hou R, Li M, Tang T, Wang R, Li Y, Xu Y, Tang L, Wang L, Liu M, Jiang Y, Cui W, Qiao X. Construction of Lactobacillus casei ghosts by Holin-mediated inactivation and the potential as a safe and effective vehicle for the delivery of DNA vaccines. BMC Microbiol 2018; 18:80. [PMID: 30055567 PMCID: PMC6064150 DOI: 10.1186/s12866-018-1216-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial ghosts (BGs) are empty bacterial cell envelopes generated by releasing the cellular contents. In this study, a phage infecting Lactobacillus casei ATCC 393 (L. casei 393) was isolated and designated Lcb. We aimed at using L. casei 393 as an antigen delivery system to express phage-derived holin for development of BGs. RESULTS A gene fragment encoding holin of Lcb (hocb) was amplified by polymerase chain reaction (PCR). We used L. casei 393 as an antigen delivery system to construct the recombinant strain pPG-2-hocb/L. casei 393. Then the recombinants were induced to express hocb. The immunoreactive band corresponding to hocb was observed by western-blotting, demonstrating the efficiency and specificity of hocb expression in recombinants. The measurements of optical density at 600 nm (OD600) after induction showed that expression of hocb can be used to convert L. casei cells into BGs. TEM showed that the cytomembrane and cell walls of hocb expressing cells were partially disrupted, accompanied by the loss of cellular contents, whereas control cells did not show any morphological changes. SEM showed that lysis pores were distributed in the middle or at the poles of the cells. To examine where the plasmid DNA was associated, we analyzed the L. casei ghosts loading SYBR Green I labeled pCI-EGFP by confocal microscopy. The result demonstrated that the DNA interacted with the inside rather than with the outside surface of the BGs. To further analyze where the DNA were loaded, we stained BGs with MitoTracker Green FM and the loaded plasmids were detected using EGFP-specific Cy-3-labeled probes. Z-scan sections through the BGs revealed that pCI-EGFP (red) was located within the BGs (green), but not on the outside. Flow cytometry and qPCR showed that the DNA was loaded onto BGs effectively and stably. CONCLUSIONS Our study constructed L. casei BGs by a novel method, which may be a promising technology for promoting the further application of DNA vaccine, providing experimental data to aid the development of other Gram-positive BGs.
Collapse
Affiliation(s)
- Rui Hou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Muzi Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Tingting Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Ruichong Wang
- Institute for Radiological Protection, Heilongjiang Province Center for Disease Control and Prevention, 40 Youfang Street, Harbin, 150030, China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Min Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development,Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
7
|
Kraśko JA, Žilionytė K, Darinskas A, Strioga M, Rjabceva S, Zalutsky I, Derevyanko M, Kulchitsky V, Lubitz W, Kudela P, Miseikyte-Kaubriene E, Karaman O, Didenko H, Potebnya H, Chekhun V, Pašukonienė V. Bacterial ghosts as adjuvants in syngeneic tumour cell lysate-based anticancer vaccination in a murine lung carcinoma model. Oncol Rep 2016; 37:171-178. [PMID: 27878261 DOI: 10.3892/or.2016.5252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
Abstract
Instead of relying on external anticancer factors for treatment, immunotherapy utilizes the host's own immune system and directs it against given tumour antigens. This study demonstrated that it is possible to overcome the documented immunosuppressive properties of tumour cell lysate by supplementing it with appropriate adjuvant. Lewis lung carcinoma (LLC)‑challenged C57BL/6 mice were treated with LLC cryo‑lysate mixed with either bacterial ghosts (BGs) generated from E. coli Nissle 1917 or B. subtilis 70 kDa protein as adjuvants. Median and overall survival, the size of metastatic foci in lung tissue and levels of circulating CD8a+ T cells were evaluated and compared to the untreated control mice or mice treated with LLC lysate alone. After primary tumour removal, a course of three subcutaneous vaccinations with LLC lysate supplemented with BGs led to a significant increase in overall survival (80% after 84 days of follow‑up vs. 40% in untreated control mice), a significant increase in circulating CD8a+ T cells (16.57 vs. 12.6% in untreated control mice) and a significant decrease in metastasis foci area and incidence. LLC lysate supplemented with B. subtilis protein also improved the inspected parameters in the treated mice, when compared against the untreated control mice, but not to a significant degree. Therefore, whole cell lysate supplemented with BGs emerges as an immunostimulatory construct with potential clinical applications in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Iosif Zalutsky
- Institute of Physiology, BY-220072 Minsk, Republic of Belarus
| | | | | | | | | | | | - Olha Karaman
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| | - Hennadii Didenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| | - Hryhorii Potebnya
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| | - Vasyl Chekhun
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, 03022 Kyiv, Ukraine
| | | |
Collapse
|
8
|
Guo R, Geng S, Jiao H, Pan Z, Chen X, Jiao X. Evaluation of protective efficacy of a novel inactivated Salmonella Pullorum ghost vaccine against virulent challenge in chickens. Vet Immunol Immunopathol 2016; 173:27-33. [PMID: 27090623 DOI: 10.1016/j.vetimm.2016.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/18/2016] [Accepted: 03/25/2016] [Indexed: 12/14/2022]
Abstract
Salmonella Gallinarum biovar Pullorum is the causative agent of pullorum disease in poultry, an acute systemic disease that results in a high mortality rate in young chickens. Vaccines have been considered in many developing countries where levels of infection are high and eradication is not a realistic option. An attenuated strain combined with protein E-mediated cell lysis was used to generate a safety enhanced Salmonella Pullorum ghost vaccine. Immune responses and protection induced by ghost vaccine in chickens were investigated following a prime-boost immunization administered via intramuscular and oral routes. Chickens from vaccinated groups showed significant increases in antigen-specific IgG, especially after booster immunization. Lymphocyte proliferation responses were also significantly increased in all immunized groups at 2-weeks post-final vaccination. The Salmonella Pullorum ghost vaccine provided satisfactory protection against virulent Salmonella Pullorum infection, as shown by the robust stimulation of both humoral and cell-mediated immune responses as well as the reduction in the number of bacterial recovered post-challenge. Moreover, the immune effects and survival rates indicated intramuscular injection is more efficient than oral vaccination. In conclusion, our results suggest that Salmonella Pullorum ghosts may be used as a safe and effective novel inactivated vaccine candidate to protect against virulent Salmonella Pullorum infection.
Collapse
Affiliation(s)
- Rongxian Guo
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hongmei Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
9
|
Jawale CV, Pawar PS, Eo SK, Park SY, Lee JH. Utilization of a Modified Phage E Protein Lysis System Accounts for Increased Biomass in Salmonella Gallinarum Ghosts. Avian Dis 2015; 59:269-76. [PMID: 26473678 DOI: 10.1637/10977-111114-regr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A major limiting issue of bacterial ghost technology involves the stable maintenance of Phix174 lysis gene E expression. Unwanted leaky expression of gene E in the absence of induction temperature results in reduced biomass production of host bacterium, consequently leading to the lower yield of bacterial ghost. To mitigate the leaky expression status of lysis gene E, we utilized a novel E-lysis system in which gene E is located between sense λpR promoter with a CI857 regulator and antisense ParaBAD promoter with the AraC regulator. In the presence of L-arabinose at 28 C, unwanted transcription of lysis gene E from λpR promoter is repressed by a simultaneous transcription event from ParaBAD promoter by means of anti-sense RNA-mediated inhibition. Tight repression of lysis gene E in the absence of induction temperature resulted in higher bacterial cell number in culture suspension and, consequently, higher production of Salmonella Gallinarum (SG) ghost biomass. The safety and protective efficacy of the SG ghost vaccine were further examined in chickens. All of the immunized chickens showed significantly higher mucosal and systemic antibody responses accompanied by a potent antigen-specific lymphocyte proliferative response. Vaccination of chickens with SG ghost preparation offered efficient protection against wild-type SG challenge.
Collapse
Affiliation(s)
- Chetan V Jawale
- College of Veterinary Medicine, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Chen J, Li N, She F. Helicobacter pylori outer inflammatory protein DNA vaccine-loaded bacterial ghost enhances immune protective efficacy in C57BL/6 mice. Vaccine 2014; 32:6054-60. [PMID: 25236588 DOI: 10.1016/j.vaccine.2014.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022]
Abstract
Helicobacter pylori (H. pylori) infection is associated with incidents of gastrointestinal diseases in half of the human population. However, management of its infection remains a challenge. Hence, it is necessary to develop an efficient vaccine to fight against this pathogen. In the present study, a novel vaccine based on the production of attenuated Salmonella typhimurium bacterial ghost (SL7207-BG), delivering H. pylori outer inflammatory protein gene (oipA) encoded DNA vaccine was developed, and the efficiency was evaluated in C57BL/6 mice. Significant higher levels of IgG2a/IgG1 antibodies and IFN-γ/IL-4 cytokines were detected after mice were oral administered with oipA DNA vaccine loaded SL7207-BG, indicating that a mixed Th1/Th2 immune response was elicited. When challenged with infective doses H. pylori strain SS1, the ghost based vaccine was capable of reducing bacterium colonization in the vaccinated mice. In addition, codon-optimized oipA plasmid loaded SL7207-BG significantly eliminates H. pylori colonization density in mice model. Thus, it has been demonstrated that this novel bacterial ghost based DNA vaccine could be used as a promising vaccine candidate for the control of H. pylori infection.
Collapse
Affiliation(s)
- Jiansen Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China; Department of Nosocomial Infection Control, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Neng Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, Fujian, China.
| |
Collapse
|
11
|
Jawale CV, Lee JH. Development of a biosafety enhanced and immunogenic Salmonella enteritidis ghost using an antibiotic resistance gene free plasmid carrying a bacteriophage lysis system. PLoS One 2013; 8:e78193. [PMID: 24205152 PMCID: PMC3799721 DOI: 10.1371/journal.pone.0078193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
In the development of genetically inactivated bacterial vaccines, plasmid retention often requires the antibiotic resistance gene markers, the presence of which can cause the potential biosafety hazards such as the horizontal spread of resistance genes. The new lysis plasmid was constructed by utilizing the approach of balanced-lethal systems based on auxotrophic gene Aspartate semialdehyde dehydrogenase (asd). The PhiX174 lysis gene E and λPR37-cI857 temperature-sensitive regulatory system was cloned in the asd gene positive plasmid and this novel approach allowed the production of antibiotic resistance marker free Salmonella Enteritidis (S. Enteritidis) ghost. The immunogenic potential of the biosafety enhanced antibiotic resistance gene free S. Enteritidis ghost was evaluated in chickens by employing the prime-boost vaccination strategy using a combination of oral and intramuscular routes. A total of 75 two-week-old chickens were equally divided into five groups: group A (non-immunized control), group B (intramuscularly primed and boosted), group C (primed intramuscularly and boosted orally), group D (primed and boosted orally), and group E (primed orally and boosted intramuscularly). Chickens from all immunized groups demonstrated significant increases in plasma IgG, intestinal secretory IgA levels, and antigen-specific lymphocyte proliferative response. After a virulent S. Enteritidis challenge, all immunized groups showed fewer gross lesions and decreased bacterial recovery from organs in comparison with the non-immunized control group. Among the immunized chickens, groups B and D chickens showed optimized protection, indicating that the prime-booster immunization with the ghost via intramuscular or oral route is efficient. Taken together, our results demonstrate that an antibiotic resistance gene free lysis plasmid was successfully constructed and utilized for production of safety enhanced S. Enteritidis ghost, which can be used as a safe and effective vaccine against virulent S. Enteritidis infections.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/immunology
- Antibody Formation/immunology
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Bacteriophages/genetics
- Bacteriophages/immunology
- Chickens/immunology
- Chickens/microbiology
- Drug Resistance, Microbial/genetics
- Drug Resistance, Microbial/immunology
- Genes, Bacterial/genetics
- Genes, Bacterial/immunology
- Immunization/methods
- Immunoglobulin A/immunology
- Immunoglobulin G/immunology
- Plasmids/genetics
- Plasmids/immunology
- Poultry Diseases/immunology
- Poultry Diseases/microbiology
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella Vaccines/genetics
- Salmonella Vaccines/immunology
- Salmonella enteritidis/genetics
- Salmonella enteritidis/immunology
- Vaccination/methods
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Chetan V. Jawale
- College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
- * E-mail:
| |
Collapse
|