1
|
Jiang Q, Ma Z, Min F, Ding X, Liang Y, Wang J, Liu L, Li N, Sun Y, Zhong Q, Yao G, Ma X. Screening of Bovine Coronavirus Multiepitope Vaccine Candidates: An Immunoinformatics Approach. Transbound Emerg Dis 2024; 2024:5986893. [PMID: 40303060 PMCID: PMC12016961 DOI: 10.1155/2024/5986893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 05/02/2025]
Abstract
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has been reported to cause a variety of animal diseases and is closely related to human coronaviruses; moreover, it has attracted extensive attention from both cattle farmers and researchers. With the rise of BCoV, a vaccine that is prophylactic and immunotherapeutic has to be utilized for a preemptive and adroit therapeutic approach. The aim of this study was to develop a novel multiepitope-based BCoV vaccine that can induce an immune response using a silicon reverse vaccinology approach. In this study, an immunoinformatics approach was employed to identify potential vaccine targets against BCoV, and four candidate antigen proteins were selected to predict B-cell and T-cell epitopes. To identify dominant epitopes, we employed a variety of bioinformatics techniques, including antigenicity prediction, immunogenicity assessment, allergenicity analysis, conservative analysis, and toxicity assessment. Finally, six multiepitope vaccines were developed using dominant epitopes, suitable adjuvants, Pan HLADR-binding epitope (PADRE), and linkers. Then based on the antigenicity score, solubility analysis, allergenicity evaluation, physicochemical property assessment, and tertiary structure verification score, construct 6 was selected as the best candidate vaccine; it was named CY. Molecular modeling and structural validation ensured the high-quality 3D structure of construct CY. The immunogenicity and complex stability of the vaccine were evaluated by molecular docking and kinetic simulation. In silicon clones, the BCoV vaccine had high levels of gene expression in the insect expression system. These results may contribute to the development of experimental BCoV vaccines with higher potency and safety.
Collapse
Affiliation(s)
- Qian Jiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhigang Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Fang Min
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiaojun Ding
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Yumeng Liang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Na Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Yawei Sun
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Qi Zhong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830011, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Shakya R, Jiménez-Meléndez A, Robertson LJ, Myrmel M. Bovine Enteroids as an In Vitro Model for Infection with Bovine Coronavirus. Viruses 2023; 15:635. [PMID: 36992344 PMCID: PMC10054012 DOI: 10.3390/v15030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Bovine coronavirus (BCoV) is one of the major viral pathogens of cattle, responsible for economic losses and causing a substantial impact on animal welfare. Several in vitro 2D models have been used to investigate BCoV infection and its pathogenesis. However, 3D enteroids are likely to be a better model with which to investigate host-pathogen interactions. This study established bovine enteroids as an in vitro replication system for BCoV, and we compared the expression of selected genes during the BCoV infection of the enteroids with the expression previously described in HCT-8 cells. The enteroids were successfully established from bovine ileum and permissive to BCoV, as shown by a seven-fold increase in viral RNA after 72 h. Immunostaining of differentiation markers showed a mixed population of differentiated cells. Gene expression ratios at 72 h showed that pro-inflammatory responses such as IL-8 and IL-1A remained unchanged in response to BCoV infection. Expression of other immune genes, including CXCL-3, MMP13, and TNF-α, was significantly downregulated. This study shows that the bovine enteroids had a differentiated cell population and were permissive to BCoV. Further studies are necessary for a comparative analysis to determine whether enteroids are suitable in vitro models to study host responses during BCoV infection.
Collapse
Affiliation(s)
| | | | | | - Mette Myrmel
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| |
Collapse
|
3
|
Li J, Zhu Y, Shoemake B, Liu B, Adkins P, Wallace L. A systematic review of the utility of biomarkers as aids in the early diagnosis and outcome prediction of bovine respiratory disease complex in feedlot cattle. J Vet Diagn Invest 2022; 34:577-586. [PMID: 35321598 PMCID: PMC9266496 DOI: 10.1177/10406387221081232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a common, serious problem in feedlot cattle worldwide. Early diagnosis and outcome prediction are critical for making decisions to prevent economic loss and to limit antimicrobial use. Diagnosing BRDC is commonly based on visual signs and behavioral changes; both assessments are considered to have low diagnostic accuracy. Biomarkers are important for supporting the diagnosis of BRDC, determining the necessity and potential outcomes of treatment, and assisting in research in which differentiating diseased animals is required. There are few reviews summarizing the biomarkers available and utilized. We systematically evaluated the detection and prognostic potential of biomarkers from the literature published between January 1990 and December 2020. We performed a descriptive analysis of 5 biomarker categories: acute-phase proteins, stress-related hormones, other blood biomarkers, omics biomarkers, and non-blood biomarkers. The retrieved articles consisted of studies or trials that assessed the detection value and treatment and/or outcome prediction efficacy of biomarkers for BRDC in feedlot cattle; 23 manuscripts for review and analysis satisfied the selection criteria. Based on our review, we cannot recommend a specific biomarker as the sole method for the early detection or outcome prediction for BRDC, given that the application and efficacy of biomarkers varies in different situations. Our systematic review may serve as a reference for clinical and research investigations of early detection and outcome prediction of BRDC.
Collapse
Affiliation(s)
| | | | - Brian Shoemake
- Brian Shoemake, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Bo Liu
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Pamela Adkins
- College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Laurie Wallace
- College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Frucchi APS, Dall Agnol AM, Bronkhorst DE, Beuttemmuller EA, Alfieri AA, Alfieri AF. Bovine Coronavirus Co-infection and Molecular Characterization in Dairy Calves With or Without Clinical Respiratory Disease. Front Vet Sci 2022; 9:895492. [PMID: 35692294 PMCID: PMC9174899 DOI: 10.3389/fvets.2022.895492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022] Open
Abstract
Bovine respiratory disease (BRD) is considered a major cause of morbidity and mortality in young calves and is caused by a range of infectious agents, including viruses and bacteria. This study aimed to determine the frequency of viral and bacterial pathogens detected in calves with BRD from high-production dairy cattle herds and to perform the molecular characterization of N and S1 genes in identified bovine coronavirus (BCoV) strains. Nasal swabs were collected from 166 heifer calves, namely, 85 symptomatic and 81 asymptomatic calves aged between 5 and 90 days, from 10 dairy cattle herds. Nasal swabs were evaluated using molecular techniques for the identification of viruses (BCoV, bovine alphaherpesvirus 1, bovine viral diarrhea virus, bovine parainfluenza virus 3, and bovine respiratory syncytial virus) and bacteria (Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, and Mycoplasma bovis). In addition, five and two BCoV-positive samples were submitted to N and S1 gene amplification and nucleotide sequencing, respectively. The frequency of diagnosis of BCoV was higher (56%, 93/166) than the frequency of P. multocida (39.8%, 66/166) and M. haemolytica (33.1%, 55/166). The three microorganisms were identified in the calves of symptomatic and asymptomatic heifer calve groups. All other pathogens included in the analyses were negative. In the phylogenetic analysis of the S1 gene, the Brazilian strains formed a new branch, suggesting a new genotype, called # 15; from the N gene, the strains identified here belonged to cluster II. This study describes high rates of BCoV, P. multocida, and M. haemolytica in heifer calves from high-production dairy cattle herds with BRD. Additionally, the molecular characterization provides evidence that the circulating BCoV strains are ancestrally different from the prototype vaccine strains and even different BCoV strains previously described in Brazil.
Collapse
Affiliation(s)
- Ana Paula S. Frucchi
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Alais M. Dall Agnol
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| | - Dalton E. Bronkhorst
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Edsel A. Beuttemmuller
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amauri A. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
- *Correspondence: Amauri A. Alfieri
| | - Alice F. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
5
|
Pattnaik B, S Patil S, S C, G. Amachawadi R, Dash AP, Yadav MP, Prasad KS, P S, Jain AS, Shivamallu C. COVID-19 PANDEMIC: A SYSTEMATIC REVIEW ON THE CORONAVIRUSES OF ANIMALS AND SARS-CoV-2. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2021; 9:117-130. [DOI: 10.18006/2021.9(2).117.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Coronaviruses (CoVs), classified into four genera, viz., alpha-, beta-, gamma-, and Delta- CoV, represent an important group of diverse transboundary pathogens that can infect a variety of mammalian and avian species including humans, animals, poultry, and non-poultry birds. CoVs primarily infect lung and gut epithelial cells, besides monocytes and macrophages. CoVs have high mutation rates causing changes in host specificity, tissue tropism, and mode of virus excretion and transmissions. The recent CoV zoonoses are SARS, MERS, and COVID-19 that are caused by the transmission of beta-CoVs of bats to humans. Recently, reverse zoonoses of the COVID-19 virus have been detected in dogs, tigers, and minks. Beta-CoV strains also infect bovine (BCoV) and canine species (CRCoV); both these beta-CoVs might have originated from a common ancestor. Despite the high genetic similarity between BCoV, CRCoV, and HCoV-OC43, these differ in species specificity. Alpha-CoV strains infect canine (CCoV), feline (FIPV), swine (TGEV and PEDV), and humans (HCoV229E and NL63). Six coronavirus species are known to infect and cause disease in pigs, seven in human beings, and two in dogs. The high mutation rate in CoVs is attributed to error-prone 3′-5′ exoribonuclease (NSP 14), and genetic recombination to template shift by the polymerase. The present compilation describes the important features of the CoVs and diseases caused in humans, animals, and birds that are essential in surveillance of diverse pool of CoVs circulating in nature, and monitoring interspecies transmission, zoonoses, and reverse zoonoses.
Collapse
|
6
|
Zhang M, Hill JE, Alexander TW, Huang Y. The nasal viromes of cattle on arrival at western Canadian feedlots and their relationship to development of bovine respiratory disease. Transbound Emerg Dis 2020; 68:2209-2218. [PMID: 33031627 DOI: 10.1111/tbed.13873] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 01/08/2023]
Abstract
Bovine respiratory disease (BRD) has a complex pathogenesis and aetiology, being the costliest disease affecting the cattle industry in North America. In this study, we applied Nanopore-based viral metagenomic sequencing to explore the nasal virome of cattle upon arrival at feedlot and related the findings to the development of BRD. Deep nasal swabs (DNS) from 310 cattle for which BRD outcomes were known (155 cattle developed BRD within 40 days and 155 remained healthy) were included. The most prevalent virus in on-arrival samples was bovine coronavirus (BCV) (45.2%, 140/310), followed by bovine rhinitis virus B (BRBV) (21.9%, 68/310), enterovirus E (EVE) (19.6%, 60/310), bovine parainfluenza virus 3 (BPIV3) (10.3%, 32/310), ungulate tetraparvovirus 1 (UTPV1) (9.7%, 30/310) and influenza D virus (7.1%, 22/310). No relationship was found between BRD development and the number of viruses detected, the presence of any specific individual virus or combination of viruses. Bovine kobuvirus (BKV) was detected in 2.6% of animals (8/310), being the first report of this virus in Canada. Results of this study demonstrate the diversity of viruses in bovine DNS collected upon arrival at feedlot and highlights the need for further research into prediction of BRD development in the context of mixed infections.
Collapse
Affiliation(s)
- Maodong Zhang
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Trevor W Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Yanyun Huang
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Prairie Diagnostic Services Inc, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Fulton RW. Viruses in Bovine Respiratory Disease in North America: Knowledge Advances Using Genomic Testing. Vet Clin North Am Food Anim Pract 2020; 36:321-332. [PMID: 32451028 PMCID: PMC7244414 DOI: 10.1016/j.cvfa.2020.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Advances in viral detection in bovine respiratory disease (BRD) have resulted from advances in viral sequencing of respiratory tract samples. New viruses detected include influenza D virus, bovine coronavirus, bovine rhinitis A, bovine rhinitis B virus, and others. Serosurveys demonstrate widespread presence of some of these viruses in North American cattle. These viruses sometimes cause disease after animal challenge, and some have been found in BRD cases more frequently than in healthy cattle. Continued work is needed to develop reagents for identification of new viruses, to confirm their pathogenicity, and to determine whether vaccines have a place in their control.
Collapse
Affiliation(s)
- Robert W Fulton
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
8
|
Ridpath JF, Fulton RW, Bauermann FV, Falkenberg SM, Welch J, Confer AW. Sequential exposure to bovine viral diarrhea virus and bovine coronavirus results in increased respiratory disease lesions: clinical, immunologic, pathologic, and immunohistochemical findings. J Vet Diagn Invest 2020; 32:513-526. [PMID: 32484424 DOI: 10.1177/1040638720918561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bovine coronaviruses (BoCVs) have been found in respiratory tissues in cattle and frequently associated with bovine respiratory disease (BRD); however, pathogenesis studies in calves are limited. To characterize the pathogenesis and pathogenicity of BoCV isolates, we used 5 different BoCV strains to inoculate colostrum-deprived calves, ~ 2-5 wk of age. Later, to determine if dual viral infection would potentiate pathogenicity of BoCV, calves were inoculated with BoCV alone, bovine viral diarrhea virus (BVDV) alone, or a series of dual-infection (BVDV-BoCV) schemes. A negative control group was included in all studies. Clinical signs and body temperature were monitored during the study and samples collected for lymphocyte counts, virus isolation, and serology. During autopsy, gross lesions were recorded and fixed tissues collected for histopathology and immunohistochemistry; fresh tissues were collected for virus isolation. Results suggest increased pathogenicity for isolate BoCV OK 1776. Increased body temperature was found in all virus-inoculated groups. Lung lesions were present in calves in all dual-infection groups; however, lesions were most pronounced in calves inoculated with BVDV followed by BoCV inoculation 6 d later. Lung lesions were consistent with mild-to-moderate interstitial pneumonia, and immunohistochemistry confirmed the presence of BoCV antigen. Our studies demonstrated that BVDV-BoCV dual infection may play an important role in BRD pathogenesis, and timing between infections seems critical to the severity of lesions.
Collapse
Affiliation(s)
- Julia F Ridpath
- Ridpath Consulting, Ames, IA (Ridpath); Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Bauermann, Confer, Fulton); U.S. Department of Agriculture Research Service, National Animal Disease Center, Ames, IA (Falkenberg); Zoetis Animal Health, Kalamazoo, MI (Welch)
| | - Robert W Fulton
- Ridpath Consulting, Ames, IA (Ridpath); Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Bauermann, Confer, Fulton); U.S. Department of Agriculture Research Service, National Animal Disease Center, Ames, IA (Falkenberg); Zoetis Animal Health, Kalamazoo, MI (Welch)
| | - Fernando V Bauermann
- Ridpath Consulting, Ames, IA (Ridpath); Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Bauermann, Confer, Fulton); U.S. Department of Agriculture Research Service, National Animal Disease Center, Ames, IA (Falkenberg); Zoetis Animal Health, Kalamazoo, MI (Welch)
| | - Shollie M Falkenberg
- Ridpath Consulting, Ames, IA (Ridpath); Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Bauermann, Confer, Fulton); U.S. Department of Agriculture Research Service, National Animal Disease Center, Ames, IA (Falkenberg); Zoetis Animal Health, Kalamazoo, MI (Welch)
| | - Jenny Welch
- Ridpath Consulting, Ames, IA (Ridpath); Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Bauermann, Confer, Fulton); U.S. Department of Agriculture Research Service, National Animal Disease Center, Ames, IA (Falkenberg); Zoetis Animal Health, Kalamazoo, MI (Welch)
| | - Anthony W Confer
- Ridpath Consulting, Ames, IA (Ridpath); Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Bauermann, Confer, Fulton); U.S. Department of Agriculture Research Service, National Animal Disease Center, Ames, IA (Falkenberg); Zoetis Animal Health, Kalamazoo, MI (Welch)
| |
Collapse
|
9
|
Global Transmission, Spatial Segregation, and Recombination Determine the Long-Term Evolution and Epidemiology of Bovine Coronaviruses. Viruses 2020; 12:v12050534. [PMID: 32414076 PMCID: PMC7290379 DOI: 10.3390/v12050534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Bovine coronavirus (BCoV) is widespread in cattle and wild ruminant populations throughout the world. The virus causes neonatal calf diarrhea and winter dysentery in adult cattle, as well as upper and lower respiratory tract infection in young cattle. We isolated and deep sequenced whole genomes of BCoV from calves with respiratory distress in the south–west of France and conducted a comparative genome analysis using globally collected BCoV sequences to provide insights into the genomic characteristics, evolutionary origins, and global diversity of BCoV. Molecular clock analyses allowed us to estimate that the BCoV ancestor emerged in the 1940s, and that two geographically distinct lineages diverged from the 1960s–1970s. A recombination event in the spike gene (breakpoint at nt 1100) may be at the origin of the genetic divergence sixty years ago. Little evidence of genetic mixing between the spatially segregated lineages was found, suggesting that BCoV genetic diversity is a result of a global transmission pathway that occurred during the last century. However, we found variation in evolution rates between the European and non-European lineages indicating differences in virus ecology.
Collapse
|
10
|
Etiological and Pathomorphological Investigations in Calves with Coronaviral Pneumoenteritis. MACEDONIAN VETERINARY REVIEW 2019. [DOI: 10.2478/macvetrev-2018-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
The aim of the present study was to report the primary gross and microscopic lesions, as well as etiological agents of field cases of pneumoenteritis in neonate and juvenile calves. The research was done with 370 calves from 6 cattle farms in 4 regions of the country. The age of the animals was from 24 hours to 25 days. Clinical and epidemiological studies were carried out with newborn and growing calves in all farms. For rapid antigenic and viral detection of pathogens, Rainbow calf scour 5 BIO K 306 Detection of Rota, Corona, E.coli F5, Crypto and Clostridium perf. in bovine stool (BIOX Diagnostics, Belgium), and Monoclonal Antibody anti-bovine Coronavirus FITC conjugated) 0,5 ml (20X), BIO 023, (BIOX Diagnostics, Belgium) were used. Eighteen carcasses of calves with signs of pneumoenteritis syndrome (PES) were submitted to gross anatomy and histopathological studies. Bovine coronavirus (BCoV) was the main etiological agent involved in calf pneumoenteritis. The macro- and micro lesions in the lung and the ileum of calves affected by PES are relevant with regard to the differential diagnosis of the syndrome and its differentiation from respiratory (IBR, BVD, BRSV, M. haemolytica etc.) and intestinal (Cryptosporidium parvum, bovine rotaviruses, bovine coronaviruses and Escherichia coli K99 (F5) diseases in this category of animals.
Collapse
|
11
|
Gomez DE, Arroyo LG, Poljak Z, Viel L, Weese JS. Detection of Bovine Coronavirus in Healthy and Diarrheic Dairy Calves. J Vet Intern Med 2017; 31:1884-1891. [PMID: 28913936 PMCID: PMC5697193 DOI: 10.1111/jvim.14811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/02/2017] [Accepted: 07/20/2017] [Indexed: 01/24/2023] Open
Abstract
Background BCoV is identified in both healthy and diarrheic calves, complicating its assessment as a primary pathogen. Objectives To investigate the detection rates of bovine coronavirus (BCoV) in feces of healthy and diarrheic calves and to describe the usefulness of a pancoronavirus reverse transcriptase (RT) PCR (PanCoV‐RT‐PCR) assay to identify BCoV in samples of diarrheic calves. Animals Two hundred and eighty‐six calves <21 days. Calves with liquid or semiliquid feces, temperature >39.5°C, and inappetence were considered as cases, and those that had pasty or firm feces and normal physical examination were designated as controls. Methods Prospective case–control study. A specific BCoV‐RT‐PCR assay was used to detect BCoV in fecal samples. Association between BCoV and health status was evaluated by exact and random effect logistic regression. Fecal (n = 28) and nasal (n = 8) samples from diarrheic calves were tested for the presence of BCoV by both the PanCoV‐RT‐PCR and a specific BCoV‐RT‐PCR assays. A Kappa coefficient test was used to assess the level of agreement of both assays. Results BCoV was detected in 55% (157/286) of calves; 46% (66/143), and 64% (91/143) of healthy and diarrheic calves, respectively. Diarrheic calves had higher odds of BCoV presence than healthy calves (OR: 2.16, 95% CI: 1.26 to 3.83, P = 0.004). A good agreement between PanCoV‐RT‐PCR and BCoV‐RT‐PCR to detect BCoV was identified (κ = 0.68, 95% CI: 0.392 to 0.967; P < 0.001). Conclusions and Clinical Importance BCoV was more likely to be detected in diarrheic than healthy calves. The PanCoV‐RT‐PCR assay can be a useful tool to detect CoV samples from diarrheic calves.
Collapse
Affiliation(s)
- D E Gomez
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Z Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L Viel
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J S Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Workman AM, Kuehn LA, McDaneld TG, Clawson ML, Chitko-McKown CG, Loy JD. Evaluation of the effect of serum antibody abundance against bovine coronavirus on bovine coronavirus shedding and risk of respiratory tract disease in beef calves from birth through the first five weeks in a feedlot. Am J Vet Res 2017; 78:1065-1076. [DOI: 10.2460/ajvr.78.9.1065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Molecular and phylogenetic characterization of bovine coronavirus virus isolated from dairy cattle in Central Region, Thailand. Trop Anim Health Prod 2017; 49:1523-1529. [PMID: 28721511 PMCID: PMC7089240 DOI: 10.1007/s11250-017-1358-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
Bovine coronavirus (BCoV) is involved mainly in enteric infections in cattle. This study reports the first molecular detection of BCoV in a diarrhea outbreak in dairy cows in the Central Region, Thailand. BCoV was molecularly detected from bloody diarrheic cattle feces by using nested PCR. Agarose gel electrophoresis of three diarrheic fecal samples yielded from the 25 samples desired amplicons that were 488 base pairs and sequencing substantiated that have BCoV. The sequence alignment indicated that nucleotide and amino acid sequences, the three TWD isolated in Thailand, were more quite homologous to each other (amino acid at position 39 of TWD1, TWD3 was proline, but TWD2 was serine) and closely related to OK-0514-3strain (virulent respiratory strain; RBCoV).The amino acid sequencing identities among TWD1, TWD2,TWD3, and OK-0514-3 strain were 96.0 to 96.6%, those at which T3I, H65N, D87G, H127Y, andQ136R were changed. In addition, the phylogenetic tree of the hypervariable region S1subunit spike glycoprotein BCoV gene was composed of three major clades by using the 54 sequences generated and showed that the evolutionally distance, TWD1, TWD2, and TWD3 were the isolated group together and most similar to OK-0514-3 strain (98.2 to 98.5% similarity). Further study will develop ELISA assay for serologic detection of winter dysentery disease.
Collapse
|
14
|
Fulton RW, Neill JD, Saliki JT, Landis C, Burge LJ, Payton ME. Genomic and antigenic characterization of bovine parainfluenza-3 viruses in the United States including modified live virus vaccine (MLV) strains and field strains from cattle. Virus Res 2017; 235:77-81. [PMID: 28416404 PMCID: PMC7172726 DOI: 10.1016/j.virusres.2017.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 10/29/2022]
Abstract
This study investigated the genetic and antigenic characterization of parainfluenza-3 virus (PI3V) of cattle. Using molecular tests including real time PCR and viral genome sequencing, PI3V strains could be separated into PI3V types, including PI3V A, PI3V B, and PI3V C. Isolates from cattle with bovine respiratory disease clinical signs and commercial vaccines in the U.S. with MLV PI3V were typed using these molecular tests. All the MLV vaccine strains tested were PI3V A. In most cases PI3V field strains from calves receiving MLV vaccines were types heterologous to the vaccine type A. Also antigenic differences were noted as PI3V C strains had lower antibody levels than PI3V A in serums from cattle receiving MLV PI3V A vaccines. This study further demonstrates there is genetic variability of U.S. PI3V strains and also antigenic variability. In addition, isolates from cattle with BRD signs and receiving MLV vaccines may have heterologous types to the vaccines, and molecular tests should be performed to differentiate field from vaccine strains. Potentially the efficacy of current PI3V A vaccines should be evaluated with other types such a PI3V B and PI3V C.
Collapse
Affiliation(s)
- R W Fulton
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078 USA.
| | - J D Neill
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Diseases Center, Ames, IA 50010 USA
| | - J T Saliki
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA 30602 USA
| | - C Landis
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078 USA
| | - L J Burge
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078 USA
| | - M E Payton
- Department of Statistics, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
15
|
|
16
|
Evolving views on bovine respiratory disease: An appraisal of selected key pathogens - Part 1. Vet J 2016; 217:95-102. [PMID: 27810220 PMCID: PMC7110489 DOI: 10.1016/j.tvjl.2016.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 11/23/2022]
Abstract
Bovine respiratory disease (BRD) is one of the most commonly diagnosed causes of morbidity and mortality in cattle and interactions of factors associated with the animal, the pathogen and the environment are central to its pathogenesis. Emerging knowledge of a role for pathogens traditionally assumed to be minor players in the pathogenesis of BRD reflects an increasingly complex situation that will necessitate regular reappraisal of BRD pathogenesis and control. This review appraises the role of selected key pathogens implicated in BRD pathogenesis to assess how our understanding of their role has evolved in recent years.
Collapse
|
17
|
Fulton RW, d'Offay JM, Landis C, Miles DG, Smith RA, Saliki JT, Ridpath JF, Confer AW, Neill JD, Eberle R, Clement TJ, Chase CCL, Burge LJ, Payton ME. Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease. Vaccine 2016; 34:3478-92. [PMID: 27108192 PMCID: PMC7173208 DOI: 10.1016/j.vaccine.2016.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 11/02/2022]
Abstract
This study investigated viruses in bovine respiratory disease (BRD) cases in feedlots, including bovine herpesvirus-1 (BoHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronaviruses (BoCV) and parainfluenza-3 virus (PI3V). Nasal swabs were collected from 114 cattle on initial BRD treatment. Processing included modified live virus (MLV) vaccination. Seven BRD necropsy cases were included for 121 total cases. Mean number of days on feed before first sample was 14.9 days. Swabs and tissue homogenates were tested by gel based PCR (G-PCR), quantitative-PCR (qPCR) and quantitative real time reverse transcriptase PCR (qRT-PCR) and viral culture. There were 87/114 (76.3%) swabs positive for at least one virus by at least one test. All necropsy cases were positive for at least one virus. Of 121 cases, positives included 18/121 (14.9%) BoHV-1; 19/121 (15.7%) BVDV; 76/121 (62.8%) BoCV; 11/121 (9.1%) BRSV; and 10/121 (8.3%) PI3V. For nasal swabs, G-PCR (5 viruses) detected 44/114 (38.6%); q-PCR and qRT-PCR (4 viruses) detected 81/114 (71.6%); and virus isolation detected 40/114 (35.1%). Most were positive for only one or two tests, but not all three tests. Necropsy cases had positives: 5/7 G-PCR, 5/7 q-PCR and qRT-PCR, and all were positive by cell culture. In some cases, G-PCR and both real time PCR were negative for BoHV-1, BVDV, and PI3V in samples positive by culture. PCR did not differentiate field from vaccines strains of BoHV-1, BVDV, and PI3V. However based on sequencing and analysis, field and vaccine strains of culture positive BoHV-1, BoCV, BVDV, and PI3V, 11/18 (61.1%) of BoHV-1 isolates, 6/17 (35.3%) BVDV isolates, and 1/10 (10.0%) PI3V identified as vaccine. BRSV was only identified by PCR testing. Interpretation of laboratory tests is appropriate as molecular based tests and virus isolation cannot separate field from vaccine strains. Additional testing using sequencing appears appropriate for identifying vaccine strains.
Collapse
Affiliation(s)
- R W Fulton
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - J M d'Offay
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - C Landis
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - D G Miles
- Veterinary Research and Consulting Services, Greeley, CO 80634, USA
| | - R A Smith
- Veterinary Research and Consulting Services, Stillwater, OK 74075, USA
| | - J T Saliki
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA 30602, USA
| | - J F Ridpath
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Diseases Center, Ames, IA 50010, USA
| | - A W Confer
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - J D Neill
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Diseases Center, Ames, IA 50010, USA
| | - R Eberle
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - T J Clement
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - C C L Chase
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - L J Burge
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - M E Payton
- Department of Statistics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
18
|
Gunn L, Collins PJ, O'Connell MJ, O'Shea H. Phylogenetic investigation of enteric bovine coronavirus in Ireland reveals partitioning between European and global strains. Ir Vet J 2015; 68:31. [PMID: 26719792 PMCID: PMC4696222 DOI: 10.1186/s13620-015-0060-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 12/16/2015] [Indexed: 11/13/2022] Open
Abstract
Background Bovine coronavirus is a primary cause of neonatal calf diarrhea worldwide, and is also associated with acute diarrhea in adult cattle during the winter season. There are no reports on molecular characterization of bovine coronavirus in Ireland, and little data exists apart from serological studies. Findings In this study, 11 neonatal (mean age 9 days) calf BCoV strains from the south of Ireland were collected over a one year period and characterized using molecular methods. The spike gene which encodes a protein involved in viral entry, infectivity and immune response shows the most variability amongst the isolates and was subsequently selected for in depth analysis. Phylogenetic analysis of the spike gene revealed that the Irish strains clustered with novel BCoV strains from Europe in a unique clade, possibly indicating lineage partitioning. Direct analysis of alignments identified amino acid changes in the spike protein unique to the Irish clade. Conclusion Thus, monitoring of bovine coronavirus in Ireland is important as the current isolates in circulation in the south of Ireland may be diverging from the available vaccine strain, which may have implications regarding future BCoV vaccine efficacy.
Collapse
Affiliation(s)
- L Gunn
- Department of Biological Sciences, Cork Institute of Technology, Rossa Ave, Bishopstown, Cork Ireland
| | - P J Collins
- Department of Biological Sciences, Cork Institute of Technology, Rossa Ave, Bishopstown, Cork Ireland
| | - M J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9 Ireland
| | - H O'Shea
- Department of Biological Sciences, Cork Institute of Technology, Rossa Ave, Bishopstown, Cork Ireland
| |
Collapse
|
19
|
Ribeiro J, Lorenzetti E, Alfieri AF, Alfieri AA. Molecular detection of bovine coronavirus in a diarrhea outbreak in pasture-feeding Nellore steers in southern Brazil. Trop Anim Health Prod 2015; 48:649-53. [PMID: 26712361 PMCID: PMC7088806 DOI: 10.1007/s11250-015-0975-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Abstract
Worldwide diarrhea outbreaks in cattle herds are more frequently detected in calves being that diarrhea outbreaks in adult cattle are not common. Winter dysentery (WD) is a bovine coronavirus (BCoV) enteric infection that is more reported in Northern hemisphere. Seasonal outbreaks of WD in adult cattle occur mainly in dairy cows. WD has not been described in beef cattle herds of tropical countries. This study describes the molecular detection of BCoV in a diarrhea outbreak in beef cattle steers (Nellore) raised on pasture in Parana, southern Brazil. During the outbreak, the farm had about 600 fattening steers. Watery and bloody diarrhea unresponsive to systemic broad-spectrum antibiotic therapy reveals a morbidity rate of approximately 15 %. The BCoV N gene was identified in 42.9 % (6/14) of the diarrheic fecal samples evaluated by semi-nested polymerase chain reaction (SN-PCR) technique. Other enteric microorganisms occasionally identified in adult cattle and evaluated in this study such as bovine groups A, B, and C rotavirus, bovine viral diarrhea virus, bovine torovirus, aichivirus B, and Eimeria sp. were not identified in the fecal samples. To the best knowledge of the authors, this is the first description of the BCoV diagnosis in fecal samples collected in a diarrhea outbreak in adult beef cattle grazing in the grass in a tropical country.
Collapse
Affiliation(s)
- Juliane Ribeiro
- Laboratory of Animal Virology and Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid-Campus Universitário, PO Box 10011, CEP 86057-970, Londrina, Parana, Brazil
| | - Elis Lorenzetti
- Laboratory of Animal Virology and Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid-Campus Universitário, PO Box 10011, CEP 86057-970, Londrina, Parana, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology and Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid-Campus Universitário, PO Box 10011, CEP 86057-970, Londrina, Parana, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology and Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid-Campus Universitário, PO Box 10011, CEP 86057-970, Londrina, Parana, Brazil.
| |
Collapse
|
20
|
Bok M, Miño S, Rodriguez D, Badaracco A, Nuñes I, Souza SP, Bilbao G, Louge Uriarte E, Galarza R, Vega C, Odeon A, Saif LJ, Parreño V. Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994-2010. Vet Microbiol 2015; 181:221-9. [PMID: 26520931 PMCID: PMC7185509 DOI: 10.1016/j.vetmic.2015.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/28/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
Detection rate of BCoV was statistically higher in dairy than in beef calves. Argentinean strains are distant from the Mebus strain included in local vaccines. In vitro cross-protection between Arg95 field strain and Mebus reference strain.
Bovine coronavirus (BCoV) is an important viral pathogen associated with neonatal calf diarrhea. Our aim was to investigate the incidence of BCoV in diarrhea outbreaks in beef and dairy herds from Argentina during 1994–2010. A total of 5.365 fecal samples from diarrheic calves were screened for BCoV diagnosis by ELISA. The virus was detected in 1.71% (92/5365) of the samples corresponding to 5.95% (63/1058) of the diarrhea cases in 239 beef and 324 dairy farms. The detection rate of BCoV was significantly higher in dairy than in beef herds: 12.13% (29/239) vs. 4.32% (14/324) respectively. Phylogenetic analysis of the hypervariable S1 region of seven representative samples (from different husbandry systems, farm locations and years of sampling) indicated that BCoV strains circulating in Argentinean beef and dairy herds formed a cluster distinct from other geographical regions. Interestingly, Argentinean strains are distantly related (at both the nucleotide and amino acid levels) with the Mebus historic reference BCoV strain included in the vaccines currently available in Argentina. However, Mebus-induced antibodies were capable of neutralizing the BCoV Arg95, a field strain adapted to grow in vitro, and vice versa, indicating that both strains belong to the same CoV serotype reported in cattle. This work represents the first large survey describing BCoV circulation in Argentinean cattle.
Collapse
Affiliation(s)
- M Bok
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - S Miño
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, Harbin, 150001 Heilongjiang, China
| | - D Rodriguez
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - A Badaracco
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - I Nuñes
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Brazil
| | - S P Souza
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Brazil
| | - G Bilbao
- Laboratory of Animal Health, EEA INTA- Balcarce, Buenos Aires, Argentina
| | | | - R Galarza
- EEA, INTA Rafaela, Santa Fe, Argentina
| | - C Vega
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - A Odeon
- Laboratory of Animal Health, EEA INTA- Balcarce, Buenos Aires, Argentina
| | - L J Saif
- Food Animal Health Research Program, The Ohio State University, Wooster, OH, USA
| | - V Parreño
- Virology Institute, CICVyA, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Fulton RW, Herd HR, Sorensen NJ, Confer AW, Ritchey JW, Ridpath JF, Burge LJ. Enteric disease in postweaned beef calves associated with Bovine coronavirus clade 2. J Vet Diagn Invest 2014; 27:97-101. [PMID: 25428188 DOI: 10.1177/1040638714559026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine coronavirus (BoCV; Betacoronavirus 1) infections are associated with varied clinical presentations including neonatal diarrhea, winter dysentery in dairy cattle, and respiratory disease in various ages of cattle. The current report presents information on BoCV infections associated with enteric disease of postweaned beef cattle in Oklahoma. In 3 separate accessions from a single herd, 1 in 2012 and 2 in 2013, calves were observed with bloody diarrhea. One calf in 2012 died and was necropsied, and 2 calves from this herd died in 2013 and were necropsied. A third calf from another herd died and was necropsied. The gross and histologic diagnosis was acute, hemorrhagic colitis in all 4 cattle. Colonic tissues from all 4 animals were positive by fluorescent antibody testing and/or immunohistochemical staining for BoCV antigen. Bovine coronavirus was isolated in human rectal tumor cells from swabs of colon surfaces of all animals. The genomic information from a region of the S envelope region revealed BoCV clade 2. Detection of BoCV clade 2 in beef cattle in Oklahoma is consistent with recovery of BoCV clade 2 from the respiratory tract of postweaned beef calves that had respiratory disease signs or were healthy. Further investigations on the ecology of BoCV in cattle are important, as BoCV may be an emerging disease beyond the initial descriptions. Challenge studies are needed to determine pathogenicity of these strains, and to determine if current BoCV vaccines are efficacious against the BoCV clade 2 strains.
Collapse
Affiliation(s)
- Robert W Fulton
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Fulton, Herd, Sorensen, Confer, Ritchey, Burge)U.S. Department of Agriculture, Agriculture Research Service, National Animal Disease Center, Ames, IA (Ridpath)
| | - Heather R Herd
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Fulton, Herd, Sorensen, Confer, Ritchey, Burge)U.S. Department of Agriculture, Agriculture Research Service, National Animal Disease Center, Ames, IA (Ridpath)
| | - Nicholas J Sorensen
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Fulton, Herd, Sorensen, Confer, Ritchey, Burge)U.S. Department of Agriculture, Agriculture Research Service, National Animal Disease Center, Ames, IA (Ridpath)
| | - Anthony W Confer
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Fulton, Herd, Sorensen, Confer, Ritchey, Burge)U.S. Department of Agriculture, Agriculture Research Service, National Animal Disease Center, Ames, IA (Ridpath)
| | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Fulton, Herd, Sorensen, Confer, Ritchey, Burge)U.S. Department of Agriculture, Agriculture Research Service, National Animal Disease Center, Ames, IA (Ridpath)
| | - Julia F Ridpath
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Fulton, Herd, Sorensen, Confer, Ritchey, Burge)U.S. Department of Agriculture, Agriculture Research Service, National Animal Disease Center, Ames, IA (Ridpath)
| | - Lurinda J Burge
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK (Fulton, Herd, Sorensen, Confer, Ritchey, Burge)U.S. Department of Agriculture, Agriculture Research Service, National Animal Disease Center, Ames, IA (Ridpath)
| |
Collapse
|
22
|
O'Neill R, Mooney J, Connaghan E, Furphy C, Graham DA. Patterns of detection of respiratory viruses in nasal swabs from calves in Ireland: a retrospective study. Vet Rec 2014; 175:351. [PMID: 25037889 DOI: 10.1136/vr.102574] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A retrospective analysis was conducted to investigate the prevalence and seasonality of bovine viral diarrhoea virus (BVDV), bovine coronavirus (BoCV), bovine herpesvirus-1 (BoHV-1), bovine respiratory syncytical virus (BRSV) and parainfluenza virus-3 (PI3V) in calves (aged three months and below) in Ireland. Results from real-time PCR testing, including cycle threshold values, conducted on nasal swabs (single or pooled) submitted from 1364 respiratory disease outbreaks between January 1, 2008 and December 31, 2012 were included in this study. One or more viruses were detected in 34.6 per cent of submissions, with BoCV detected most frequently (22.9 per cent), followed by BRSV (11.6 per cent), PI3 V (7.0 per cent), BoHV-1 (6.1 per cent) and BVDV (5.0 per cent). The detection rate of all viruses was higher when pooled multiple swabs were submitted from outbreaks rather than single swabs, with these differences being significant for all except BVDV. Two or more viruses were detected in 39.4 per cent of positive submissions, with BoCV and BRSV most commonly present as one of the two partners in detection. With the exception of BVDV, which was detected all year round, the others showed a clear seasonal pattern, being most commonly detected in winter and spring.
Collapse
Affiliation(s)
- R O'Neill
- Virology Division, DAFM Veterinary Labs, Celbridge, Kildare, Ireland
| | - J Mooney
- Virology Division, DAFM Veterinary Labs, Celbridge, Kildare, Ireland
| | - E Connaghan
- Virology Division, DAFM Veterinary Labs, Celbridge, Kildare, Ireland
| | - C Furphy
- Virology Division, DAFM Veterinary Labs, Celbridge, Kildare, Ireland
| | - D A Graham
- Animal Health Ireland, Main Street, Carrick on Shannon, Ireland
| |
Collapse
|
23
|
Bidokhti MRM, Tråvén M, Krishna NK, Munir M, Belák S, Alenius S, Cortey M. Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains. J Gen Virol 2013; 94:2036-2049. [PMID: 23804565 DOI: 10.1099/vir.0.054940-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coronaviruses demonstrate great potential for interspecies transmission, including zoonotic outbreaks. Although bovine coronavirus (BCoV) strains are frequently circulating in cattle farms worldwide, causing both enteric and respiratory disease, little is known about their genomic evolution. We sequenced and analysed the full-length spike (S) protein gene of 33 BCoV strains from dairy and feedlot farms collected during outbreaks that occurred from 2002 to 2010 in Sweden and Denmark. Amino acid identities were >97 % for the BCoV strains analysed in this work. These strains formed a clade together with Italian BCoV strains and were highly similar to human enteric coronavirus HECV-4408/US/94. A high similarity was observed between BCoV, canine respiratory coronavirus (CRCoV) and human coronavirus OC43 (HCoV-OC43). Molecular clock analysis of the S gene sequences estimated BCoV and CRCoV diverged from a common ancestor in 1951, while the time of divergence from a common ancestor of BCoV and HCoV-OC43 was estimated to be 1899. BCoV strains showed the lowest similarity to equine coronavirus, placing the date of divergence at the end of the eighteenth century. Two strongly positive selection sites were detected along the receptor-binding subunit of the S protein gene: spanning amino acid residues 109-131 and 495-527. By contrast, the fusion subunit was observed to be under negative selection. The selection pattern along the S glycoprotein implies adaptive evolution of BCoVs, suggesting a successful mechanism for BCoV to continuously circulate among cattle and other ruminants without disappearance.
Collapse
Affiliation(s)
- Mehdi R M Bidokhti
- Division of Ruminant Medicine and Veterinary Epidemiology, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
| | - Madeleine Tråvén
- Division of Ruminant Medicine and Veterinary Epidemiology, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
| | - Neel K Krishna
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23507-1696, USA
| | - Muhammad Munir
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.,Department of Virology, Immunobiology and Parasitology, National Veterinary Institute, Box 7028, SE-751 89 Uppsala, Sweden
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.,Department of Virology, Immunobiology and Parasitology, National Veterinary Institute, Box 7028, SE-751 89 Uppsala, Sweden
| | - Stefan Alenius
- Division of Ruminant Medicine and Veterinary Epidemiology, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
| | - Martí Cortey
- Department of Immunology, The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
| |
Collapse
|