1
|
Abdel-Haq H. Feasibility of Using a Type I IFN-Based Non-Animal Approach to Predict Vaccine Efficacy and Safety Profiles. Vaccines (Basel) 2024; 12:583. [PMID: 38932312 PMCID: PMC11209158 DOI: 10.3390/vaccines12060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Animal-based tests are used for the control of vaccine quality. However, because highly purified and safe vaccines are now available, alternative approaches that can replace or reduce animal use for the assessment of vaccine outcomes must be established. In vitro tests for vaccine quality control exist and have already been implemented. However, these tests are specifically designed for some next-generation vaccines, and this makes them not readily available for testing other vaccines. Therefore, universal non-animal tests are still needed. Specific signatures of the innate immune response could represent a promising approach to predict the outcome of vaccines by non-animal methods. Type I interferons (IFNs) have multiple immunomodulatory activities, which are exerted through effectors called interferon stimulated genes (ISGs), and are one of the most important immune signatures that might provide potential candidate molecular biomarkers for this purpose. This paper will mainly examine if this idea might be feasible by analyzing all relevant published studies that have provided type I IFN-related biomarkers for evaluating the safety and efficacy profiles of vaccines using an advanced transcriptomic approach as an alternative to the animal methods. Results revealed that such an approach could potentially provide biomarkers predictive of vaccine outcomes after addressing some limitations.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
2
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Matsumura T, Takahashi Y, Hamaguchi I. Systemically inoculated adjuvants stimulate pDC-dependent IgA response in local site. Mucosal Immunol 2023; 16:275-286. [PMID: 36935091 DOI: 10.1016/j.mucimm.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The stimulation of local immunity by vaccination is desirable for controlling virus replication in the respiratory tract. However, the local immune stimulatory effects of adjuvanted vaccines administered through the non-mucosal route are poorly understood. Here, we clarify the mechanisms by which non-mucosal inoculation of adjuvants stimulates the plasmacytoid dendritic cell (pDC)-dependent immunoglobulin (Ig)A response in the lungs. After systemic inoculation with type 1 interferon (IFN)-inducing adjuvants, type 1 IFN promotes CXCL9/10/11 release from alveolar endothelial and epithelial cells and recruits CXCR3-expressing pDCs into the lungs. Because adjuvant-activated pulmonary pDCs highly express major histocompatibility complex II, cluster of differentiation 80, and cluster of differentiation 86, transplantation of such cells into the lungs successfully enhances antigen-specific IgA production by the intranasally sensitized vaccine. In contrast, pDC accumulation in the lungs and subsequent IgA production are impaired in pDC-depleted mice and Ifnar1-/- mice. Notably, the combination of systemic inoculation with type 1 IFN-inducing adjuvants and intranasal antigen sensitization protects mice against influenza virus infection due to the pDC-dependent IgA response and type I IFN response. Our results provide insights into the novel mucosal vaccine strategies using non-mucosal inoculated adjuvants.
Collapse
Affiliation(s)
- Eita Sasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Hideki Asanuma
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Hamaguchi I. Immunogenicity and Toxicity of Different Adjuvants Can Be Characterized by Profiling Lung Biomarker Genes After Nasal Immunization. Front Immunol 2020; 11:2171. [PMID: 33013912 PMCID: PMC7516075 DOI: 10.3389/fimmu.2020.02171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The efficacy of vaccine adjuvants depends on their ability to appropriately enhance the immunogenicity of vaccine antigens, which is often insufficient in non-adjuvanted vaccines. Genomic analyses of immune responses elicited by vaccine adjuvants provide information that is critical for the rational design of adjuvant vaccination strategies. In this study, biomarker genes from the genomic analyses of lungs after priming were used to predict the efficacy and toxicity of vaccine adjuvants. Based on the results, it was verified whether the efficacy and toxicity of the tested adjuvants could be predicted based on the biomarker gene profiles after priming. Various commercially available adjuvants were assessed by combining them with the split influenza vaccine and were subsequently administered in mice through nasal inoculation. The expression levels of lung biomarker genes within 24 h after priming were analyzed. Furthermore, we analyzed the antibody titer, cytotoxic T lymphocyte (CTL) induction, IgG1/IgG2a ratio, leukopenic toxicity, and cytotoxicity in mice vaccinated at similar doses. The association between the phenotypes and the changes in the expression levels of biomarker genes were analyzed. The ability of the adjuvants to induce the production of antigen-specific IgA could be assessed based on the levels of Timp1 expression. Furthermore, the expression of this gene partially correlated with the levels of other damage-associated molecular patterns in bronchoalveolar lavage fluid. Additionally, the changes in the expression of proteasome- and transporter-related genes involved in major histocompatibility complex class 1 antigen presentation could be monitored to effectively assess the expansion of CTL by adjuvants. The monitoring of certain genes is necessary for the assessment of leukopenic toxicity and cytotoxicity of the tested adjuvant. These results indicate that the efficacy and toxicity of various adjuvants can be characterized by profiling lung biomarker genes after the first instance of immunization. This approach could make a significant contribution to the development of optimal selection and exploratory screening strategies for novel adjuvants.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Boravleva EY, Lunitsin AV, Kaplun AP, Bykova NV, Krasilnikov IV, Gambaryan AS. Immune Response and Protective Efficacy of Inactivated and Live Influenza Vaccines Against Homologous and Heterosubtypic Challenge. BIOCHEMISTRY (MOSCOW) 2020; 85:553-566. [PMID: 32571185 DOI: 10.1134/s0006297920050041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inactivated (whole-virion, split, subunit, and adjuvanted) vaccines and live attenuated vaccine were tested in parallel to compare their immunogenicity and protective efficacy. Homologous and heterosubtypic protection against the challenge with influenza H5N1 and H1N1 viruses in a mouse model were studied. Single immunization with live or inactivated whole-virion H5N1 vaccine elicited a high level of serum antibodies and provided complete protection against the challenge with the lethal A/Chicken/Kurgan/3/05 (H5N1) virus, whereas application of a single dose of the split vaccine was much less effective. Adjuvants increased the antibody levels. Addition of the Iso-SANP adjuvant to the split vaccine led to a paradoxical outcome: it increased the antibody levels but reduced the protective effect of the vaccine. All tested adjuvants shifted the ratio between IgG1 and IgG2a antibodies. Immunization with any of the tested heterosubtypic live viruses provided partial protection against the H5N1 challenge and significantly reduced mouse mortality, while inactivated H1N1 vaccine offered no protection at all. More severe course of illness and earlier death were observed in mice after immunization with adjuvanted subunit vaccines followed by the challenge with the heterosubtypic virus compared to challenged unvaccinated animals.
Collapse
Affiliation(s)
- E Y Boravleva
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - A V Lunitsin
- FSBSI Federal Research Center for Virology and Microbiology, Volginsky, Vladimir Region, 601125, Russia
| | - A P Kaplun
- Lomonosov Moscow University of Fine Chemical Technology, Moscow, 119571, Russia
| | - N V Bykova
- Lomonosov Moscow University of Fine Chemical Technology, Moscow, 119571, Russia
| | - I V Krasilnikov
- Saint Petersburg Institute of Vaccines and Sera, FMBA, St.-Petersburg, 198320, Russia
| | - A S Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia.
| |
Collapse
|
5
|
Sasaki E, Kusunoki H, Momose H, Furuhata K, Hosoda K, Wakamatsu K, Mizukami T, Hamaguchi I. Changes of urine metabolite profiles are induced by inactivated influenza vaccine inoculations in mice. Sci Rep 2019; 9:16249. [PMID: 31700085 PMCID: PMC6838172 DOI: 10.1038/s41598-019-52686-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
The safety evaluation of vaccines is critical to avoid the development of side effects in humans. To increase the sensitivity of detection for toxicity tests, it is important to capture not only pathological changes but also physiological changes. 1H nuclear magnetic resonance (NMR) spectroscopy analysis of biofluids produces profiles that show characteristic responses to changes in physiological status. In this study, mouse urine metabolomics analysis with 1H NMR was performed using different influenza vaccines of varying toxicity to assess the usefulness of 1H NMR in evaluating vaccine toxicity. Two types of influenza vaccines were used as model vaccines: a toxicity reference vaccine (RE) and a hemagglutinin split vaccine. According to the blood biochemical analyses, the plasma alanine transaminase levels were increased in RE-treated mice. Changes in metabolite levels between mice administered different types of influenza vaccines were observed in the 1H NMR spectra of urine, and a tendency toward dosage-dependent responses for some spectra was observed. Hierarchical clustering analyses and principal component analyses showed that the changes in various urine metabolite levels allowed for the classification of different types of vaccines. Among them, two liver-derived metabolites were shown to largely contribute to the formation of the cluster. These results demonstrate the possibility that urine metabolomics analysis could provide information about vaccine-induced toxicity and physiological changes.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan.
| | - Hideki Kusunoki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Kazuo Hosoda
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kaori Wakamatsu
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo, 208-0011, Japan
| |
Collapse
|
6
|
Sato K, Takahashi Y, Adachi Y, Asanuma H, Ato M, Tashiro M, Itamura S. Efficient protection of mice from influenza A/H1N1pdm09 virus challenge infection via high avidity serum antibodies induced by booster immunizations with inactivated whole virus vaccine. Heliyon 2019; 5:e01113. [PMID: 30623129 PMCID: PMC6319303 DOI: 10.1016/j.heliyon.2018.e01113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022] Open
Abstract
The immunogenicities of inactivated whole and split virus vaccines derived from influenza A/H1N1pdm09 virus were compared in a mouse model. We demonstrated the unique properties of whole virus vaccine boosters on the serum memory antibody response in mice. Consistent with previous studies, booster immunization with either whole or split virus vaccines of A/H1N1pdm09 virus produced comparable titers of serum antibodies with hemagglutination inhibition and virus-neutralizing activities. However, superior protection against the challenge infection was unexpectedly observed in mice primed and boosted with whole virus vaccines compared with those treated with split virus vaccines, despite similar levels of antibody titers in each group. Immune serum antibodies were shown to be primarily responsible for this protection via passive transfer experiments of immune serum antibodies to naive recipient mice. Moreover, this protection correlated with elevated affinity maturation of the antibodies. Thus, booster immunization with whole virus vaccines elicited a robust serum antibody response with high avidity to the virus, which was not measurable via conventional serological assays.
Collapse
Affiliation(s)
- Kayoko Sato
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Shigeyuki Itamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| |
Collapse
|
7
|
Sasaki E, Momose H, Hiradate Y, Ishii KJ, Mizukami T, Hamaguchi I. In vitro marker gene expression analyses in human peripheral blood mononuclear cells: A tool to assess safety of influenza vaccines in humans. J Immunotoxicol 2018. [PMID: 29521144 DOI: 10.1080/1547691x.2018.1447052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Vaccines are inoculated in healthy individuals from children to the elderly, and thus high levels of safety and consistency of vaccine quality in each lot must meet the required specifications by using preclinical and lot release testing. Because vaccines are inoculated into humans, recapitulation of biological reactions in humans should be considered for test methods. We have developed a new method to evaluate the safety of influenza vaccines using biomarker gene expression in mouse and rat models. Some biomarker genes are already known to be expressed in human lymphocytes, macrophages and dendritic cells; therefore, we considered some of these genes might be common biomarkers for human and mice to evaluate influenza vaccine safety. In this study, we used human peripheral blood mononuclear cells (PBMC) as a primary assessment tool to confirm the usefulness of potential marker genes in humans. Analysis of marker gene expression in PBMC revealed biomarker gene expressions were dose-relatedly increased in toxic reference influenza vaccine (RE)-stimulated PBMC. Although some marker genes showed increased expression in hemagglutinin split vaccine-stimulated PBMC, their expression levels were lower than that of RE in PBMC from two different donors. Many marker gene expressions correlated with chemokine production. Marker genes such as IRF7 were associated with other Type 1 interferon (IFN)-associated signals and were highly expressed in the CD304+ plasmacytoid dendritic cell (pDC) population. These results suggest PBMC and their marker genes may be useful for vaccine safety evaluation in humans.
Collapse
Affiliation(s)
- Eita Sasaki
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| | - Haruka Momose
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| | - Yuki Hiradate
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| | - Ken J Ishii
- b Laboratory of Adjuvant Innovation , National Institutes of Biomedical Innovation, Health and Nutrition , Osaka , Japan.,c Laboratory of Vaccine Science , WPI Immunology Frontier Research Center, Osaka University , Osaka , Japan
| | - Takuo Mizukami
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| | - Isao Hamaguchi
- a Department of Safety Research on Blood and Biological Products , National Institute of Infectious Diseases , Tokyo , Japan
| |
Collapse
|
8
|
Zhang CY, Huang J, Kang XT. Resveratrol Attenuates LPS-induced Apoptosis via Inhibiting NF- κ B Activity in Chicken Peripheral Lymphocyte Cultures. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- CY Zhang
- Henan University of Technology, P. R. China
| | - J Huang
- Henan University of Technology, P. R. China
| | - XT Kang
- Henan Agricultural University, P. R. China
| |
Collapse
|
9
|
Momose H, Sasaki E, Kuramitsu M, Hamaguchi I, Mizukami T. Gene expression profiling toward the next generation safety control of influenza vaccines and adjuvants in Japan. Vaccine 2018; 36:6449-6455. [PMID: 30243500 DOI: 10.1016/j.vaccine.2018.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
Influenza becomes epidemic worldwide every year, and many individuals receive vaccination annually. Quality control relating to safety and potency of influenza vaccines is important to maintain public confidence. The safety of influenza vaccines has been assessed by clinical trials, and animal safety tests are performed to monitor the consistent quality between vaccines used for clinical trials and marketing; the biological responses in vaccinated animals are evaluated, including changes in body weight and white blood cell count. Animal safety tests have been contributing to the quality relating to the safety of influenza vaccines for decades, but improvements are needed. Although precise mechanisms involving biological changes in animal safety tests have not been fully elucidated, the application of cDNA microarray technology make it possible to reliably identify genes related to biological responses in vaccinated animals. From analysis of the expression profile of >10,000 genes of lung in animals treated with an inactivated whole virion influenza vaccine, we identified 17 marker genes whose expression patterns correlated well to changes in body weight and leukocyte count in vaccinated animals. In influenza HA vaccine-treated animals exhibiting subtle changes in biological responses, a robust expression pattern of marker genes was found. Furthermore, these marker genes could also be used in the evaluation of adjuvanted influenza vaccines. The expression profile of marker genes is expected to be an alternative indicator for safety control of various influenza vaccines conferring high sensitivity and short turnaround time. Thus, gene expression profiling may be a powerful tool for safety control of vaccines in the future.
Collapse
Affiliation(s)
- Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| |
Collapse
|
10
|
Hiradate Y, Sasaki E, Momose H, Asanuma H, Furuhata K, Takai M, Aoshi T, Yamada H, Ishii KJ, Tanemura K, Mizukami T, Hamaguchi I. Development of screening method for intranasal influenza vaccine and adjuvant safety in preclinical study. Biologicals 2018; 55:43-52. [DOI: 10.1016/j.biologicals.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
|
11
|
Sasaki E, Momose H, Hiradate Y, Furuhata K, Mizukami T, Hamaguchi I. Development of a preclinical humanized mouse model to evaluate acute toxicity of an influenza vaccine. Oncotarget 2018; 9:25751-25763. [PMID: 29899819 PMCID: PMC5995229 DOI: 10.18632/oncotarget.25399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/28/2018] [Indexed: 01/13/2023] Open
Abstract
Safety evaluation of a human vaccine is critical for vaccine development and for preventing an unexpected adverse reaction in humans. Nonetheless, to date, very few systems have been described for preclinical studies of human adverse reactions in vivo. Previously, we have identified biomarker genes expressed in the lungs for evaluation of influenza vaccine safety, and their usefulness in rodent models and for adjuvant-containing vaccines has already been reported. Here, our purpose was to develop a novel humanized mouse model retaining human innate-immunity–related cells to assess the safety of influenza vaccines using the previously identified biomarker genes. In the present study, we tested whether the two humanized models, a short-term and long-term reconstitution model of NOD/Shi-scid IL2rγnull mice, are suitable for biomarker gene–based safety evaluation. In the short-term model, human CD14+ cells, plasmacytoid dendritic cells, CD4+ and CD8+ T cells, and B cells were retained in the lungs. Among these cells, human CD14+ cells and plasmacytoid dendritic cells were not detected in the lungs of the long-term model. After the vaccination, the expression levels of human biomarker genes were elevated only in the short-term model when the toxicity reference vaccine was inoculated. This phenomenon was not observed in the long-term model. The levels of human cytokines and chemokines in the lungs increased in response to the toxicity reference vaccine in the short-term mouse model. According to these results, the short-term model provides a better platform for evaluating vaccine safety in terms of human peripheral blood mononuclear cell–mediated initial reactions in vivo.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| |
Collapse
|
12
|
Sasaki E, Momose H, Hiradate Y, Furuhata K, Takai M, Asanuma H, Ishii KJ, Mizukami T, Hamaguchi I. Modeling for influenza vaccines and adjuvants profile for safety prediction system using gene expression profiling and statistical tools. PLoS One 2018; 13:e0191896. [PMID: 29408882 PMCID: PMC5800680 DOI: 10.1371/journal.pone.0191896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/12/2018] [Indexed: 11/18/2022] Open
Abstract
Historically, vaccine safety assessments have been conducted by animal testing (e.g., quality control tests and adjuvant development). However, classical evaluation methods do not provide sufficient information to make treatment decisions. We previously identified biomarker genes as novel safety markers. Here, we developed a practical safety assessment system used to evaluate the intramuscular, intraperitoneal, and nasal inoculation routes to provide robust and comprehensive safety data. Influenza vaccines were used as model vaccines. A toxicity reference vaccine (RE) and poly I:C-adjuvanted hemagglutinin split vaccine were used as toxicity controls, while a non-adjuvanted hemagglutinin split vaccine and AddaVax (squalene-based oil-in-water nano-emulsion with a formulation similar to MF59)-adjuvanted hemagglutinin split vaccine were used as safety controls. Body weight changes, number of white blood cells, and lung biomarker gene expression profiles were determined in mice. In addition, vaccines were inoculated into mice by three different administration routes. Logistic regression analyses were carried out to determine the expression changes of each biomarker. The results showed that the regression equations clearly classified each vaccine according to its toxic potential and inoculation amount by biomarker expression levels. Interestingly, lung biomarker expression was nearly equivalent for the various inoculation routes. The results of the present safety evaluation were confirmed by the approximation rate for the toxicity control. This method may contribute to toxicity evaluation such as quality control tests and adjuvant development.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Mamiko Takai
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Ken J. Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
- * E-mail: (TM); (IH)
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
- * E-mail: (TM); (IH)
| |
Collapse
|
13
|
Sasaki E, Momose H, Hiradate Y, Furuhata K, Takai M, Kamachi K, Asanuma H, Ishii KJ, Mizukami T, Hamaguchi I. Evaluation of marker gene expression as a potential predictive marker of leukopenic toxicity for inactivated influenza vaccines. Biologicals 2017; 50:100-108. [PMID: 28838806 DOI: 10.1016/j.biologicals.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
The leukopenic toxicity test (LTT) is used to evaluate the safety and lot-to-lot consistency of influenza hemagglutinin split vaccine (HAv) and is included in the Japanese Minimum Requirements for Biological Products. LTT assesses the reduced leukocyte levels in murine peripheral blood after HAv administration. However, they require large numbers of animals, and therefore it would be beneficial to develop a more accurate and sensitive alternative method. In this study, we selected biomarkers of leukocyte reduction from 18 previously identified marker genes that were associated with an abnormal toxicity test (ATT). Among these 18 genes, the expressions of 15 marker genes were strongly associated with leukocyte reduction levels. A stepwise single addition multiple regression analysis was used to further extract the genes responsible for leukocyte reduction, with significant (p < 0.25) regression coefficients. The expression of 7 genes significantly predicted the leukocyte reduction. The prediction accuracy of this approach was approximately >90% (mean) for the direct measurement of leukocyte numbers. These results indicate that the expression of these 18 previously identified genes can provide information for both ATT and LTT.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Mamiko Takai
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| |
Collapse
|
14
|
Sasaki E, Kuramitsu M, Momose H, Kobiyama K, Aoshi T, Yamada H, Ishii KJ, Mizukami T, Hamaguchi I. A novel vaccinological evaluation of intranasal vaccine and adjuvant safety for preclinical tests. Vaccine 2017; 35:821-830. [PMID: 28063707 DOI: 10.1016/j.vaccine.2016.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
Vaccines are administered to healthy humans, including infants, so the safety and efficacy must be very high. Therefore, evaluating vaccine safety in preclinical and clinical studies, according to World Health Organization guidelines, is crucial for vaccine development and clinical use. A change in the route of administration is considered to alter a vaccine's immunogenicity. Several adjuvants have also been developed and approved for use in vaccines. However, the addition of adjuvants to vaccines may cause unwanted immune responses, including facial nerve paralysis and narcolepsy. Therefore, a more accurate and comprehensive strategy must be used to develope next-generation vaccines for ensuring vaccine safety. Previously, we have developed a system with which to evaluate vaccine safety in rats using a systematic vaccinological approach and 20 marker genes. In this study, we developed a safety evaluation system for nasally administered influenza vaccines and adjuvanted influenza vaccines using these marker genes. Expression of these genes increased dose-dependent manner when mice were intranasally administered the toxicity reference vaccine. When the adjuvant CpG K3 or a CpG-K3-combined influenza vaccine was administered intranasally, marker gene expression increased in a CpG-K3-dose-dependent way. A histopathological analysis indicated that marker gene expression correlated with vaccine- or adjuvant-induced phenotypic changes in the lung and nasal mucosa. We believe that the marker genes expression analyses will be useful in preclinical testing, adjuvant development, and selecting the appropriate dose of adjuvant in nasal administration vaccines.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Taiki Aoshi
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Yamada
- Toxicogenomics Informatics Project, National Institutes of Biomedical, Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
15
|
Flores M, Chew C, Tyan K, Huang WQ, Salem A, Clynes R. FcγRIIB prevents inflammatory type I IFN production from plasmacytoid dendritic cells during a viral memory response. THE JOURNAL OF IMMUNOLOGY 2015; 194:4240-50. [PMID: 25821224 DOI: 10.4049/jimmunol.1401296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
The type I IFN (IFN-α) response is crucial for viral clearance during primary viral infections. Plasmacytoid dendritic cells (pDCs) are important early responders during systemic viral infections and, in some cases, are the sole producers of IFN-α. However, their role in IFN-α production during memory responses is unclear. We found that IFN-α production is absent during a murine viral memory response, despite colocalization of virus and pDCs to the splenic marginal zone. The absence of IFN was dependent on circulating Ab and was reversed by the transgenic expression of the activating human FcγRIIA receptor on pDCs. Furthermore, FcγRIIB was required for Sendai virus immune complex uptake by splenic pDCs in vitro, and internalization via FcγRIIb prevented cargo from accessing TLR signaling endosomes. Thus, pDCs bind viral immune complexes via FcγRIIB and prevent IFN-α production in vivo during viral memory responses. This Ab-dependent IFN-α regulation may be an important mechanism by which the potentially deleterious effects of IFN-α are prevented during a secondary infection.
Collapse
Affiliation(s)
- Marcella Flores
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| | - Claude Chew
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| | - Kevin Tyan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| | - Wu Qing Huang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| | - Aliasger Salem
- Division of Pharmaceuticals, College of Pharmacy, University of Iowa, Iowa City, IA 52242
| | - Raphael Clynes
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| |
Collapse
|
16
|
O'Gorman WE, Huang H, Wei YL, Davis KL, Leipold MD, Bendall SC, Kidd BA, Dekker CL, Maecker HT, Chien YH, Davis MM. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors. Vaccine 2014; 32:5989-97. [PMID: 25203448 DOI: 10.1016/j.vaccine.2014.07.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/15/2014] [Accepted: 07/30/2014] [Indexed: 12/26/2022]
Abstract
Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes.
Collapse
Affiliation(s)
- William E O'Gorman
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Huang Huang
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Yu-Ling Wei
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Kara L Davis
- Department of Pediatrics, Stanford University, Stanford, CA 94305, United States
| | - Michael D Leipold
- Human Immune Monitoring Center, Stanford University, Stanford, CA 94305, United States; Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, United States
| | - Sean C Bendall
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Brian A Kidd
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, United States
| | - Cornelia L Dekker
- Department of Pediatrics, Stanford University, Stanford, CA 94305, United States
| | - Holden T Maecker
- Human Immune Monitoring Center, Stanford University, Stanford, CA 94305, United States; Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, United States
| | - Yueh-Hsiu Chien
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States
| | - Mark M Davis
- The Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States; Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94305, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
17
|
Zhang C, Tian Y, Yan F, Kang X, Han R, Sun G, Zhang H. Modulation of growth and immunity by dietary supplementation with resveratrol in young chickens receiving conventional vaccinations. Am J Vet Res 2014; 75:752-9. [DOI: 10.2460/ajvr.75.8.752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Mizukami T, Momose H, Kuramitsu M, Takizawa K, Araki K, Furuhata K, Ishii KJ, Hamaguchi I, Yamaguchi K. System vaccinology for the evaluation of influenza vaccine safety by multiplex gene detection of novel biomarkers in a preclinical study and batch release test. PLoS One 2014; 9:e101835. [PMID: 25010690 PMCID: PMC4092028 DOI: 10.1371/journal.pone.0101835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/11/2014] [Indexed: 12/31/2022] Open
Abstract
Vaccines are beneficial and universal tools to prevent infectious disease. Thus, safety of vaccines is strictly evaluated in the preclinical phase of trials and every vaccine batch must be tested by the National Control Laboratories according to the guidelines published by each country. Despite many vaccine production platforms and methods, animal testing for safety evaluation is unchanged thus far. We recently developed a systems biological approach to vaccine safety evaluation where identification of specific biomarkers in a rat pre-clinical study evaluated the safety of vaccines for pandemic H5N1 influenza including Irf7, Lgals9, Lgalsbp3, Cxcl11, Timp1, Tap2, Psmb9, Psme1, Tapbp, C2, Csf1, Mx2, Zbp1, Ifrd1, Trafd1, Cxcl9, β2m, Npc1, Ngfr and Ifi47. The current study evaluated whether these 20 biomarkers could evaluate the safety, batch-to-batch and manufacturer-to-manufacturer consistency of seasonal trivalent influenza vaccine using a multiplex gene detection system. When we evaluated the influenza HA vaccine (HAv) from four different manufactures, the biomarker analysis correlated to findings from conventional animal use tests, such as abnormal toxicity test. In addition, sensitivity of toxicity detection and differences in HAvs were higher and more accurate than with conventional methods. Despite a slight decrease in body weight caused by HAv from manufacturer B that was not statistically significant, our results suggest that HAv from manufacturer B is significantly different than the other HAvs tested with regard to Lgals3bp, Tapbp, Lgals9, Irf7 and C2 gene expression in rat lungs. Using the biomarkers confirmed in this study, we predicted batch-to-batch consistency and safety of influenza vaccines within 2 days compared with the conventional safety test, which takes longer. These biomarkers will facilitate the future development of new influenza vaccines and provide an opportunity to develop in vitro methods of evaluating batch-to-batch consistency and vaccine safety as an alternative to animal testing.
Collapse
Affiliation(s)
- Takuo Mizukami
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuya Takizawa
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Araki
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken J. Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation (NIBIO), Osaka, Japan
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (WPI-IFREC), Osaka University, Osaka, Japan
| | - Isao Hamaguchi
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| | - Kazunari Yamaguchi
- Laboratory of Blood and Vaccine safety, Department of Safety Research on Blood and Biologicals, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
19
|
Mahla RS, Reddy MC, Prasad DVR, Kumar H. Sweeten PAMPs: Role of Sugar Complexed PAMPs in Innate Immunity and Vaccine Biology. Front Immunol 2013; 4:248. [PMID: 24032031 PMCID: PMC3759294 DOI: 10.3389/fimmu.2013.00248] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022] Open
Abstract
Innate sensors play a critical role in the early innate immune responses to invading pathogens through sensing of diverse biochemical signatures also known as pathogen associated molecular patterns (PAMPs). These biochemical signatures primarily consist of a major family of biomolecules such as proteins, lipids, nitrogen bases, and sugar and its complexes, which are distinct from host molecules and exclusively expressed in pathogens and essential to their survival. The family of sensors known as pattern recognition receptors (PRRs) are germ-line encoded, evolutionarily conserved molecules, and consist of Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs), and DNA sensors. Sensing of PAMP by PRR initiates the cascade of signaling leading to the activation of transcription factors, such as NF-κB and interferon regulatory factors (IRFs), resulting in a variety of cellular responses, including the production of interferons (IFNs) and pro-inflammatory cytokines. In this review, we discuss sensing of different types of glycosylated PAMPs such as β-glucan (a polymeric sugar) or lipopolysaccharides, nucleic acid, and so on (sugar complex PAMPs) by different families of sensors, its role in pathogenesis, and its application in development of potential vaccine and vaccine adjuvants.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) , Bhopal , India
| | | | | | | |
Collapse
|