1
|
Hill H, Mitsi E, Nikolaou E, Blizard A, Pojar S, Howard A, Hyder-Wright A, Devin J, Reiné J, Robinson R, Solórzano C, Jochems SP, Kenny-Nyazika T, Ramos-Sevillano E, Weight CM, Myerscough C, McLenaghan D, Morton B, Gibbons E, Farrar M, Randles V, Burhan H, Chen T, Shandling AD, Campo JJ, Heyderman RS, Gordon SB, Brown JS, Collins AM, Ferreira DM. A Randomized Controlled Clinical Trial of Nasal Immunization with Live Virulence Attenuated Streptococcus pneumoniae Strains Using Human Infection Challenge. Am J Respir Crit Care Med 2023; 208:868-878. [PMID: 37556679 DOI: 10.1164/rccm.202302-0222oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
Rationale: Pneumococcal pneumonia remains a global health problem. Pneumococcal colonization increases local and systemic protective immunity, suggesting that nasal administration of live attenuated Streptococcus pneumoniae (Spn) strains could help prevent infections. Objectives: We used a controlled human infection model to investigate whether nasopharyngeal colonization with attenuated S. pneumoniae strains protected against recolonization with wild-type (WT) Spn (SpnWT). Methods: Healthy adults aged 18-50 years were randomized (1:1:1:1) for nasal administration twice (at a 2-wk interval) with saline solution, WT Spn6B (BHN418), or one of two genetically modified Spn6B strains, SpnA1 (Δfhs/piaA) or SpnA3 (ΔproABC/piaA) (Stage I). After 6 months, participants were challenged with SpnWT to assess protection against the homologous serotype (Stage II). Measurements and Main Results: 125 participants completed both study stages per intention to treat. No serious adverse events were reported. In Stage I, colonization rates were similar among groups: SpnWT, 58.1% (18 of 31); SpnA1, 60% (18 of 30); and SpnA3, 59.4% (19 of 32). Anti-Spn nasal IgG levels after colonization were similar in all groups, whereas serum IgG responses were higher in the SpnWT and SpnA1 groups than in the SpnA3 group. In colonized individuals, increases in IgG responses were identified against 197 Spn protein antigens and serotype 6 capsular polysaccharide using a pangenome array. Participants given SpnWT or SpnA1 in Stage I were partially protected against homologous challenge with SpnWT (29% and 30% recolonization rates, respectively) at stage II, whereas those exposed to SpnA3 achieved a recolonization rate similar to that in the control group (50% vs. 47%, respectively). Conclusions: Nasal colonization with genetically modified live attenuated Spn was safe and induced protection against recolonization, suggesting that nasal administration of live attenuated Spn could be an effective strategy for preventing pneumococcal infections. Clinical trial registered with the ISRCTN registry (ISRCTN22467293).
Collapse
Affiliation(s)
- Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elena Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Annie Blizard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela Hyder-Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Jack Devin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesus Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Ryan Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Simon P Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tinashe Kenny-Nyazika
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Chris Myerscough
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniella McLenaghan
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Gibbons
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Madlen Farrar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Victoria Randles
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Hassan Burhan
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Joe J Campo
- Antigen Discovery Inc, Irvine, California; and
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Wellcome-Trust Programme, Blantyre, Malawi
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Andrea M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Chan WY, Entwisle C, Ercoli G, Ramos-Sevillano E, McIlgorm A, Cecchini P, Bailey C, Lam O, Whiting G, Green N, Goldblatt D, Wheeler JX, Brown JS. Corrected and Republished from: "A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge". Infect Immun 2022; 90:e0084618a. [PMID: 35076289 PMCID: PMC9199499 DOI: 10.1128/iai.00846-18a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
Affiliation(s)
- Win-Yan Chan
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | | | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Elise Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Ann McIlgorm
- ImmunoBiology Ltd., Babraham, Cambridge, United Kingdom
| | | | | | - Oliver Lam
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Gail Whiting
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Nicola Green
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Goldblatt
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jun X. Wheeler
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| |
Collapse
|
3
|
Ramos-Sevillano E, Ercoli G, Guerra-Assunção JA, Felgner P, Ramiro de Assis R, Nakajima R, Goldblatt D, Tetteh KKA, Heyderman RS, Gordon SB, Ferreria DM, Brown JS. Protective Effect of Nasal Colonisation with ∆cps/piaA and ∆cps/proABCStreptococcus pneumoniae Strains against Recolonisation and Invasive Infection. Vaccines (Basel) 2021; 9:vaccines9030261. [PMID: 33804077 PMCID: PMC8000150 DOI: 10.3390/vaccines9030261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nasopharyngeal administration of live virulence-attenuated Streptococcus pneumoniae strains is a potential novel preventative strategy. One target for creating reduced virulence S. pneumoniae strains is the capsule, but loss of the capsule reduces the duration of S. pneumoniae colonisation in mice which could impair protective efficacy against subsequent infection. OBJECTIVES To assess protective efficacy of nasopharyngeal administration of unencapsulated S. pneumoniae strains in murine infection models. METHODS Strains containing cps locus deletions combined with the S. pneumoniae virulence factors psaA (reduces colonisation) or proABC (no effect on colonisation) were constructed and their virulence phenotypes and ability to prevent recolonisation or invasive infection assessed using mouse infection models. Serological responses to colonisation were compared between strains using ELISAs, immunoblots and 254 S. pneumoniae protein antigen array. MEASUREMENTS AND MAIN RESULTS The ∆cps/piaA and ∆cps/proABC strains were strongly attenuated in virulence in both invasive infection models and had a reduced ability to colonise the nasopharynx. ELISAs, immunoblots and protein arrays showed colonisation with either strain stimulated weaker serological responses than the wild type strain. Mice previously colonised with these strains were protected against septicaemic pneumonia but, unlike mice colonised with the wild type strain, not against S. pneumoniae recolonisation. CONCLUSIONS Colonisation with the ∆cps/piaA and ∆cps/proABC strains prevented subsequent septicaemia, but in contrast, to published data for encapsulated double mutant strains they did not prevent recolonisation with S. pneumoniae. These data suggest targeting the cps locus is a less effective option for creating live attenuated strains that prevent S. pneumoniae infections.
Collapse
Affiliation(s)
- Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
| | | | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - David Goldblatt
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London WC1N 1EH, UK;
| | - Kevin Kweku Adjei Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London WC1E 7HT, UK;
| | - Robert Simon Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, Rayne Institute, London WC1E 6JF, UK;
| | - Stephen Brian Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 30096, Malawi;
| | - Daniela Mulari Ferreria
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Jeremy Stuart Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| |
Collapse
|
4
|
Disruption of the cpsE and endA Genes Attenuates Streptococcus pneumoniae Virulence: Towards the Development of a Live Attenuated Vaccine Candidate. Vaccines (Basel) 2020; 8:vaccines8020187. [PMID: 32326482 PMCID: PMC7349068 DOI: 10.3390/vaccines8020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of deaths due to Streptococcus pneumoniae infections are in developing countries. Although polysaccharide-based pneumococcal vaccines are available, newer types of vaccines are needed to increase vaccine affordability, particularly in developing countries, and to provide broader protection across all pneumococcal serotypes. To attenuate pneumococcal virulence with the aim of engineering candidate live attenuated vaccines (LAVs), we constructed knockouts in S. pneumoniae D39 of one of the capsular biosynthetic genes, cpsE that encodes glycosyltransferase, and the endonuclease gene, endA, that had been implicated in the uptake of DNA from the environment as well as bacterial escape from neutrophil-mediated killing. The cpsE gene knockout significantly lowered peak bacterial density, BALB/c mice nasopharyngeal (NP) colonisation but increased biofilm formation when compared to the wild-type D39 strain as well as the endA gene knockout mutant. All constructed mutant strains were able to induce significantly high serum and mucosal antibody response in BALB/c mice. However, the cpsE-endA double mutant strain, designated SPEC, was able to protect mice from high dose mucosal challenge of the D39 wild-type. Furthermore, SPEC showed 23-fold attenuation of virulence compared to the wild-type. Thus, the cpsE-endA double-mutant strain could be a promising candidate for further development of a LAV for S. pneumoniae.
Collapse
|
5
|
A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge. Infect Immun 2019; 87:IAI.00846-18. [PMID: 30530620 PMCID: PMC6386546 DOI: 10.1128/iai.00846-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
|
6
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
7
|
German EL, Al-Hakim B, Mitsi E, Pennington SH, Gritzfeld JF, Hyder-Wright AD, Banyard A, Gordon SB, Collins AM, Ferreira DM. Anti-protein immunoglobulin M responses to pneumococcus are not associated with aging. Pneumonia (Nathan) 2018; 10:5. [PMID: 29992080 PMCID: PMC5987460 DOI: 10.1186/s41479-018-0048-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/10/2018] [Indexed: 11/16/2022] Open
Abstract
Background The incidence of community-acquired pneumonia and lower respiratory tract infection rises considerably in later life. Immunoglobulin M (IgM) antibody levels to pneumococcal capsular polysaccharide are known to decrease with age; however, whether levels of IgM antibody to pneumococcal proteins are subject to the same decline has not yet been investigated. Methods This study measured serum levels and binding capacity of IgM antibody specific to the pneumococcal surface protein A (PspA) and an unencapsulated pneumococcal strain in serum isolated from hospital patients aged < 60 and ≥ 60, with and without lower respiratory tract infection. A group of young healthy volunteers was used as a comparator to represent adults at very low risk of pneumococcal pneumonia. IgM serum antibody levels were measured by enzyme-linked immunosorbent assay (ELISA) and flow cytometry was performed to assess IgM binding capacity. Linear regression and one-way analysis of variance (ANOVA) tests were used to analyse the results. Results Levels and binding capacity of IgM antibody to PspA and the unencapsulated pneumococcal strain were unchanged with age. Conclusions These findings suggest that protein-based pneumococcal vaccines may provide protective immunity in the elderly. Trial registration The LRTI trial (LRTI and control groups) was approved by the National Health Service Research Ethics Committee in October 2013 (12/NW/0713). Recruitment opened in January 2013 and was completed in July 2013. Healthy volunteer samples were taken from the EHPC dose-ranging and reproducibility trial, approved by the same Research Ethics Committee in October 2011 (11/NW/0592). Recruitment for this study ran from October 2011 until December 2012. LRTI trial: (NCT01861184), EHPC dose-ranging and reproducibility trial: (ISRCTN85403723).
Collapse
Affiliation(s)
- Esther L German
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Bahij Al-Hakim
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK.,3Present address: Aintree University Hospital, Liverpool, UK
| | - Elena Mitsi
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Shaun H Pennington
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jenna F Gritzfeld
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK.,Present address: Public Health England, Vaccine Evaluation Unit, Manchester, UK
| | | | - Antonia Banyard
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK.,5Present address: Cancer Research UK Manchester Institute, Manchester, UK
| | - Stephen B Gordon
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK.,6Present address: Malawi-Liverpool-Wellcome Trust, Blantyre, Malawi
| | - Andrea M Collins
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniela M Ferreira
- 1Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
8
|
Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018; 16:355-367. [PMID: 29599457 PMCID: PMC5949087 DOI: 10.1038/s41579-018-0001-8] [Citation(s) in RCA: 656] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae has a complex relationship with its obligate human host. On the one hand, the pneumococci are highly adapted commensals, and their main reservoir on the mucosal surface of the upper airways of carriers enables transmission. On the other hand, they can cause severe disease when bacterial and host factors allow them to invade essentially sterile sites, such as the middle ear spaces, lungs, bloodstream and meninges. Transmission, colonization and invasion depend on the remarkable ability of S. pneumoniae to evade or take advantage of the host inflammatory and immune responses. The different stages of pneumococcal carriage and disease have been investigated in detail in animal models and, more recently, in experimental human infection. Furthermore, widespread vaccination and the resulting immune pressure have shed light on pneumococcal population dynamics and pathogenesis. Here, we review the mechanistic insights provided by these studies on the multiple and varied interactions of the pneumococcus and its host.
Collapse
|
9
|
Wang Y, Jiang B, Guo Y, Li W, Tian Y, Sonnenberg GF, Weiser JN, Ni X, Shen H. Cross-protective mucosal immunity mediated by memory Th17 cells against Streptococcus pneumoniae lung infection. Mucosal Immunol 2017; 10:250-259. [PMID: 27118490 PMCID: PMC5083242 DOI: 10.1038/mi.2016.41] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023]
Abstract
Pneumonia caused by Streptococcus pneumoniae (Sp) remains a leading cause of serious illness and death worldwide. Immunization with conjugated pneumococcal vaccine has lowered the colonization rate and consequently invasive diseases by inducing serotype-specific antibodies. However, many of the current pneumonia cases result from infection by serotype strains not included in the vaccine. In this study, we asked if cross-protection against lung infection by heterologous strains can be induced, and investigated the underlying immune mechanism. We found that immune mice recovered from a prior infection were protected against heterologous Sp strains in the pneumonia challenge model, as evident by accelerated bacterial clearance, reduced pathology, and apoptosis of lung epithelial cells. Sp infection in the lung induced strong T-helper type 17 (Th17) responses at the lung mucosal site. Transfer of CD4+ T cells from immune mice provided heterologous protection against pneumonia, and this protection was abrogated by interleukin-17A (IL-17A) blockade. Transfer of memory CD4+ T cells from IL-17A-knockout mice failed to provide protection. These results indicate that memory Th17 cells had a key role in providing protection against pneumonia in a serotype-independent manner and suggest the feasibility of developing a broadly protective vaccine against bacterial pneumonia by targeting mucosal Th17 T cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Bin Jiang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Yongli Guo
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Wenchao Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert’s Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA
| | - Jeffery N. Weiser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Xin Ni
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
10
|
Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry. Nat Protoc 2016; 11:1531-53. [PMID: 27466712 DOI: 10.1038/nprot.2016.091] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibacterial antibody responses that target surfaces of live bacteria or secreted toxins are likely to be relevant in controlling bacterial pathogenesis. The ability to specifically quantify bacterial-surface-binding antibodies is therefore highly attractive as a quantitative correlate of immune protection. Here, binding of antibodies from various body fluids to pure-cultured live bacteria is made visible with fluorophore-conjugated secondary antibodies and measured by flow cytometry. We indicate the necessary controls for excluding nonspecific binding and also demonstrate a cross-adsorption technique for determining the extent of cross-reactivity. This technique has numerous advantages over standard ELISA and western blotting techniques because of its independence from scaffold binding, exclusion of cross-reactive elements from lysed bacteria and ability to visualize bacterial subpopulations. In addition, less than 10(5) bacteria and less than 10 μg of antibody are required per sample. The technique requires 3-4 h of hands-on experimentation and analysis. Moreover, it can be combined with automation and mutliplexing for high-throughput applications.
Collapse
|
11
|
Correlation between in vitro complement deposition and passive mouse protection of anti-pneumococcal surface protein A monoclonal antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:99-107. [PMID: 25410204 DOI: 10.1128/cvi.00001-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The shortcomings of the licensed polysaccharide-based pneumococcal vaccine are driving efforts toward development of a protein-based vaccine that is serotype independent and effective in all age groups. An opsonophagocytic killing assay (OPKA) is used to evaluate the antibody response against polysaccharide-based pneumococcal vaccines. However, the OPKA is not reliable for noncapsular antigens. Thus, there is a need to develop an in vitro surrogate for protection for protein vaccine candidates like pneumococcal surface antigen A (PspA). PspA is a serologically variable cell surface virulence factor. Based on its sequence, PspA has been classified into families 1 (clade 1 and 2), 2 (clades 3, 4 and 5), and 3 (clade 6). Here, we report the characterization of 18 IgG anti-PspA monoclonal antibodies (anti-PspA(hkR36A) MAbs) generated from mice immunized with heat-killed strain R36A (clade 2). An enzyme-linked immunosorbent assay (ELISA)-based analysis of the reactivity of the MAbs with recombinant PspAs from the 6 clades indicated that they were family 1 specific. This was confirmed by flow cytometry using a hyperimmune serum generated against PspA from R36A. Eight MAbs that bind at least one clade 1- and clade 2-expressing strain were evaluated for complement deposition, bactericidal activity, and passive protection. The anti-PspA(hkR36A) MAb-dependent deposition of complement on pneumococci showed a positive correlation with passive protection against strain WU2 (r = 0.8783, P = 0.0041). All of our protective MAbs showed bactericidal activity; however, not all MAbs that exhibited bactericidal activity conferred protection in vivo. The protective MAbs described here can be used to identify conserved protection eliciting B cell epitopes for engineering a superior PspA-based vaccine.
Collapse
|