1
|
Arriagada V, Osorio A, Carrera-Naipil C, Villacis-Aguirre CA, Escobar C, Morales N, Villa D, Mardones L, Pérez D, Jara M, Molina RE, Ferrari Í, Azocar S, Gómez LA, Oñate ÁA. In Silico Design and Characterization of a Multiepitope Vaccine Candidate Against Brucella canis Using a Reverse Vaccinology Approach. J Immunol Res 2025; 2025:6348238. [PMID: 40265107 PMCID: PMC12014272 DOI: 10.1155/jimr/6348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Abstract
Brucella canis is a Gram-negative bacterium that causes canine brucellosis, a zoonotic disease with serious implications for public health and the global economy. Currently, there is no effective preventive vaccine for B. canis. Control measures include diagnostic testing, isolation, and euthanasia of infected animals. However, these measures face significant limitations, such as diagnostic challenges, ethical concerns, and limited success in preventing transmission. Epidemiologically, canine brucellosis exhibits seroprevalence rates ranging from less than 1% to over 15%, with higher rates reported in stray dogs and regions of low socioeconomic development. This study employed a reverse vaccinology approach to design and characterize a multiepitope vaccine candidate against B. canis, aiming to prevent infection caused by this pathogen. A comprehensive in silico analysis of the complete B. canis proteome was conducted to identify proteins with potential as vaccine targets. Predicted epitopes for B and T cells were analyzed, and those with the highest capacity to elicit a robust immune response were selected. These proteins were classified as plasma membrane proteins, outer membrane proteins (OMPs), or proteins with similarity to virulence factors. Selection criteria emphasized their essential roles in bacterial function, lack of homology with proteins from dogs or mice, and presence of fewer than two transmembrane domains. From this process, four candidate proteins were identified. Epitopes for B and T cells within these proteins were predicted and analyzed, selecting the most immunogenic sequences. The overlap between B- and T-cell epitopes narrowed the selection to six final epitopes. These selected epitopes were then assembled into a multiepitope vaccine construct using flexible linkers to ensure structural integrity and molecular adjuvants to enhance immunogenicity. The physicochemical properties, antigenicity, and toxicity of the designed vaccine were evaluated. Additionally, the secondary and tertiary structure of the vaccine was predicted and refined, followed by a molecular interaction analysis with the Toll-like receptor 4 (TLR4) receptor. The designed vaccine proved to be highly antigenic, nonallergenic, and nontoxic. Validation of its secondary and tertiary structures, along with molecular docking analysis, revealed a high binding affinity to the TLR4 receptor. Molecular dynamics simulations and normal mode analysis further confirmed the vaccine's structural stability and binding capacity. A multiepitope vaccine candidate against B. canis was successfully designed and characterized using a reverse vaccinology approach. This vaccine construct is expected to induce robust humoral and cellular immune responses, potentially conferring protective immunity against B. canis. The results of this study are promising; however, in vitro and in vivo tests are necessary to validate the vaccine's protective efficacy. Furthermore, the described method could serve as a framework for developing vaccines against other pathogens.
Collapse
Affiliation(s)
- Vicente Arriagada
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | - Crisleri Carrera-Naipil
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Carlos A. Villacis-Aguirre
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cristian Escobar
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Nicolás Morales
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Danthe Villa
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Lien Mardones
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Dafne Pérez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Macarena Jara
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Raúl E. Molina
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Ítalo Ferrari
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Sebastián Azocar
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Leonardo A. Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Ángel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
2
|
Goudarzi T, Abkar M, Zamanzadeh Z, Fasihi-Ramandi M. Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice. Clin Exp Vaccine Res 2023; 12:304-312. [PMID: 38025913 PMCID: PMC10655149 DOI: 10.7774/cevr.2023.12.4.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.
Collapse
Affiliation(s)
- Tahereh Goudarzi
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Morteza Abkar
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang Y, Li H, Xu Z, Yi J, Li W, Meng C, Zhang H, Deng X, Ma Z, Wang Y, Chen C. Exosomes released by Brucella-infected macrophages inhibit the intracellular survival of Brucella by promoting the polarization of M1 macrophages. Microb Biotechnol 2023; 16:1524-1535. [PMID: 37212362 PMCID: PMC10281354 DOI: 10.1111/1751-7915.14274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023] Open
Abstract
Exosomes, membrane vesicles released extracellularly from cells, contain nucleic acids, proteins, lipids and other components, allowing the transfer of material information between cells. Recent studies reported the role of exosomes in pathogenic microbial infection and host immune mechanisms. Brucella-invasive bodies can survive in host cells for a long time and cause chronic infection, which causes tissue damage. Whether exosomes are involved in host anti-Brucella congenital immune responses has not been reported. Here, we extracted and identified exosomes secreted by Brucella melitensis M5 (Exo-M5)-infected macrophages, and performed in vivo and in vitro studies to examine the effects of exosomes carrying antigen on the polarization of macrophages and immune activation. Exo-M5 promoted the polarization of M1 macrophages, which induced the significant secretion of M1 cytokines (tumour necrosis factor-α and interferon-γ) through NF-κB signalling pathways and inhibited the secretion of M2 cytokines (IL-10), thereby inhibiting the intracellular survival of Brucella. Exo-M5 activated innate immunity and promoted the release of IgG2a antibodies that protected mice from Brucella infection and reduced the parasitaemia of Brucella in the spleen. Furthermore, Exo-M5 contained Brucella antigen components, including Omp31 and OmpA. These results demonstrated that exosomes have an important role in immune responses against Brucella, which might help elucidate the mechanisms of host immunity against Brucella infection and aid the search for Brucella biomarkers and the development of new vaccine candidates.
Collapse
Affiliation(s)
- Yueli Wang
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Honghuan Li
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Zhenyu Xu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Jihai Yi
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Wei Li
- Xinjiang Center for Animal Disease Control and PreventionUrumqiChina
| | - Chuang Meng
- Jiangsu Key Laboratory of ZoonosisYangzhou UniversityYangzhouChina
| | - Huan Zhang
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Xiaoyu Deng
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Zhongchen Ma
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Yong Wang
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Chuangfu Chen
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| |
Collapse
|
4
|
Sattarahmady N, Alamian S, Abkar M. Gelatin Micro/Nanoparticles-Based Delivery of Urease and Omp31 in Mice Has a Protective Role Against Brucella melitensis 16 M Infection. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
5
|
Zhang H, Wang Y, Wang Y, Deng X, Ji T, Ma Z, Yang N, Xu M, Li H, Yi J, Wang Y, Wang Y, Sheng J, Wang Z, Chen C. Using a Relative Quantitative Proteomic Method to Identify Differentially Abundant Proteins in Brucella melitensis Biovar 3 and Brucella melitensis M5-90. Front Immunol 2022; 13:929040. [PMID: 35928811 PMCID: PMC9343586 DOI: 10.3389/fimmu.2022.929040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Brucellosis, caused by Brucella spp., is one of the most widespread bacterial zoonoses worldwide. Vaccination is still considered the best way to control brucellosis. An investigation into the differential proteome expression patterns of wild and vaccine strains may help researchers and clinicians differentiate between the strains to diagnose and better understand the mechanism(s) underlying differences in virulence. In the present study, a mass spectrometry-based, label-free relative quantitative proteomics approach was used to investigate the proteins expressed by the wild strain, B. melitensis biovar 3 and compare it with those expressed by B. melitensis M5-90. The higher level of virulence for B. melitensis biovar 3 compared to B. melitensis M5-90 was validated in vitro and in vivo. A total of 2133 proteins, encompassing 68% of the theoretical proteome, were identified and quantified by proteomic analysis, resulting in broad coverage of the B. melitensis proteome. A total of 147 proteins were identified as differentially expressed (DE) between these two strains. In addition, 9 proteins and 30 proteins were identified as unique to B. melitensis M5-90 and B. melitensis biovar 3, respectively. Pathway analysis revealed that the majority of the DE proteins were involved in iron uptake, quorum sensing, pyrimidine metabolism, glycine betaine biosynthetic and metabolic processes, thiamine-containing compound metabolism and ABC transporters. The expression of BtpA and VjbR proteins (two well-known virulence factors) in B. melitensis biovar 3 was 8-fold and 2-fold higher than in B. melitensis M5-90. In summary, our results identified many unique proteins that could be selected as candidate markers for differentiating vaccinated animals from animals with wild-type infections. BtpA and VjbR proteins might be responsible for the residual virulence of B. melitensis M5-90, while ABC transporters and thiamine metabolism associated proteins may be newly identified Brucella virulence factors. All of the identified DE proteins provide valuable information for the development of vaccines and the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Huan Zhang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yueli Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Deng
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Taiwang Ji
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Zhongchen Ma
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Ningning Yang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Mingguo Xu
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Honghuan Li
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Jihai Yi
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yong Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| | - Jinliang Sheng
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
| | - Zhen Wang
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| | - Chuangfu Chen
- School of Animal Science and Technology, Shihezi University, Shihezi City, China
- *Correspondence: Yuanzhi Wang, ; Zhen Wang, ; Chuangfu Chen,
| |
Collapse
|
6
|
Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022; 9:925773. [PMID: 35923818 PMCID: PMC9339783 DOI: 10.3389/fvets.2022.925773] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a bacterial zoonosis caused by Brucella spp. which can lead to heavy economic losses and severe human diseases. Thus, controlling brucellosis is very important. Due to humans easily gaining brucellosis from animals, animal brucellosis control programs can help the eradication of human brucellosis. There are two popular vaccines against animal brucellosis. Live attenuated Brucella abortus strain 19 (S19 vaccine) is the first effective and most extensively used vaccine for the prevention of brucellosis in cattle. Live attenuated Brucella melitensis strain Rev.1 (Rev.1 vaccine) is the most effective vaccine against caprine and ovine brucellosis. Although these two vaccines provide good immunity for animals against brucellosis, the expense of persistent serological responses is one of the main problems of both vaccines. The advantages and limitations of Brucella vaccines, especially new vaccine candidates, have been less studied. In addition, there is an urgent need for new strategies to control and eradicate this disease. Therefore, this narrative review aims to present an updated overview of the available different types of brucellosis vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Malihe Talebi
| |
Collapse
|
7
|
Oliveira KC, Brancaglion GA, Santos NCM, Araújo LP, Novaes E, Santos RDL, Oliveira SC, Corsetti PP, de Almeida LA. Epitope-Based Vaccine of a Brucella abortus Putative Small RNA Target Induces Protection and Less Tissue Damage in Mice. Front Immunol 2021; 12:778475. [PMID: 34992597 PMCID: PMC8724193 DOI: 10.3389/fimmu.2021.778475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and animals. Currently available live attenuated vaccines against brucellosis still have drawbacks. Therefore, subunit vaccines, produced using epitope-based antigens, have the advantage of being safe, cost-effective and efficacious. Here, we identified B. abortus small RNAs expressed during early infection with bone marrow-derived macrophages (BMDMs) and an apolipoprotein N-acyltransferase (Int) was identified as the putative target of the greatest expressed small RNA. Decreased expression of Int was observed during BMDM infection and the protein sequence was evaluated to rationally select a putative immunogenic epitope by immunoinformatic, which was explored as a vaccinal candidate. C57BL/6 mice were immunized and challenged with B. abortus, showing lower recovery in the number of viable bacteria in the liver, spleen, and axillary lymph node and greater production of IgG and fractions when compared to non-vaccinated mice. The vaccinated and infected mice showed the increased expression of TNF-α, IFN-γ, and IL-6 following expression of the anti-inflammatory genes IL-10 and TGF-β in the liver, justifying the reduction in the number and size of the observed granulomas. BMDMs stimulated with splenocyte supernatants from vaccinated and infected mice increase the CD86+ marker, as well as expressing greater amounts of iNOS and the consequent increase in NO production, suggesting an increase in the phagocytic and microbicidal capacity of these cells to eliminate the bacteria.
Collapse
Affiliation(s)
- Karen Cristina Oliveira
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | | | - Natália C. M. Santos
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo P. Araújo
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Evandro Novaes
- Department of Biology, Federal University of Lavras, Lavras, Brazil
| | - Renato de Lima Santos
- Department of Clinic and Veterinary Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
- *Correspondence: Leonardo Augusto de Almeida, ; Patrícia Paiva Corsetti,
| | - Leonardo Augusto de Almeida
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
- *Correspondence: Leonardo Augusto de Almeida, ; Patrícia Paiva Corsetti,
| |
Collapse
|
8
|
Mohammadi Y. Evaluation of the immunogenicity and efficacy of a chimeric OMP25-OMP31 antigen in BALB/c mice. Vet Med Sci 2021; 7:2008-2014. [PMID: 34057317 PMCID: PMC8464292 DOI: 10.1002/vms3.537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/13/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Brucellosis is a zoonotic disease causes by Brucella bacteria. So far, there is not any efficient treatment for this infectious disease in animals, although subunit vaccines can be a safe alternative. To this aim, we have designed a new chimeric OMP25-OMP31 antigen formulated in Chitosan nanoparticles and studied its protective efficiency in vivo. OMP25-OMP31 was produced using spliced overlap extension by polymerase chain reaction and the 3D protein structure and antigenic ability were predicted using computational tools. In addition, the humoural and cellular immune responses were measured by ELISA in six different experimental groups. The immune response showed chimeric rOMP25-OMP31 antigen-induced higher titers of IFN-γ and TNF-α cytokines, while the lowest amount of IL-4 was dedicated to itself. Also, rOMP25-OMP31 stimulated higher titer of IgG than individual injection of rOMP25 and rOMP31 treatments and the cell proliferation assay demonstrated the vaccination with rOMP25-OMP31 elicits a vigorous antigen-specific cell proliferative. In addition, the challenge experiment showed immunised mic stimulated a higher level of protection than negative controls. Overall, the results of rOMP25-OMP31 could be promising for considering chimeric constructs as a feasible vaccine candidate for further investigations against brucellosis.
Collapse
Affiliation(s)
- Yahya Mohammadi
- Department of Animal Science, Faculty of agricultureIlam UniversityIlamIran
| |
Collapse
|
9
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Santos RL, Souza TD, Mol JPS, Eckstein C, Paíxão TA. Canine Brucellosis: An Update. Front Vet Sci 2021; 8:594291. [PMID: 33738302 PMCID: PMC7962550 DOI: 10.3389/fvets.2021.594291] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/28/2021] [Indexed: 01/18/2023] Open
Abstract
Canine brucellosis is an infectious and zoonotic disease caused by Brucella canis, which has been reported worldwide, and is a major public health concern due to close contact between dogs and humans. In dogs, canine brucellosis manifests with abortion outbreaks, reproductive failure, enlargement of lymph nodes, and occasionally affects the osteoarticular system, although the occurrence of asymptomatic infections in dogs are not uncommon. In humans, the disease is associated with a febrile syndrome, commonly with non-specific symptoms including splenomegaly, fatigue, and weakness. Infection of dogs occurs mostly by the oronasal route when in contact with contaminated tissues such as aborted fetuses, semen, urine, and vaginal secretions. In humans, contact with contaminated fluids from infected dogs is an important source of infection, and it is an occupational risk for veterinarians, breeders, laboratory workers, among other professionals who deal with infected animals or biological samples. The diagnosis in dogs is largely based on serologic methods. However, serologic diagnosis of canine brucellosis remains very challenging due to the low accuracy of available tests. Molecular diagnostic methods have been increasingly used in the past few years. Treatment of infected dogs is associated with a high frequency of relapse, and should be employed only in selected cases. Currently there are no commercially available vaccines for prevention of canine brucellosis. Therefore, development of novel and improved diagnostic methods as well as the development of efficacious and safe vaccination protocols are needed for an effective control of canine brucellosis and its associated zoonotic risk.
Collapse
Affiliation(s)
- Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tayse D Souza
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P S Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Eckstein
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane A Paíxão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Moran MC, Bence AR, Vallecillo MFS, Lützelschwab CM, Rodriguez MG, Pardo R, Goldbaum FA, Zylberman V, Palma SD, Maletto BA, Estein SM. Polymeric antigen BLSOmp31 formulated with class B CpG-ODN in a nanostructure (BLSOmp31/CpG-ODN/Coa-ASC16) administered by parenteral or mucosal routes confers protection against Brucella ovis in Balb/c mice. Res Vet Sci 2021; 135:217-227. [PMID: 33631456 DOI: 10.1016/j.rvsc.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/22/2021] [Accepted: 02/14/2021] [Indexed: 01/18/2023]
Abstract
Previously, we demonstrated that the chimera BLSOmp31 formulated in chitosan microspheres or Poloxamer407-Chitosan administered via the nasal and the ocular mucosa conferred partial protection in sheep against B. ovis. In this work, we tested a new delivery system for mucosal immunization with BLSOmp31 in the murine model to improve the efficacy of previously used formulations. First, we evaluated the protective efficacy against B. ovis induced by BLSOmp31 administered by the subcutaneous route using either BLSOmp31 alone, co-administered with immunostimulatory synthetic oligodeoxynucleotides containing unmethylated cytosine-guanine motifs (CpG-ODN) or with CpG-ODN in a nanostructure called Coa-ASC16 compared with BLSOmp31 emulsified in Incomplete Freund Adjuvant. Then, we evaluated the protection conferred by the best performing formulation (BLSOmp31/CpG-ODN/Coa-ASC16) administered by both subcutaneous and ocular routes. BLSOmp31/CpG-ODN/Coa-ASC16 injected subcutaneously did not induce higher IgG antibody levels compared to BLSOmp31 alone or BLSOmp31/CpG-ODN but it did stimulate a mixed immune Th1-Th2 response with the highest levels of IFN-ɣ and conferred significant protection against the B. ovis challenge. Although ocular instillation of BLSOmp31/CpG-ODN/Coa-ASC16 showed a similar degree of protection compared to the parenteral route (3.66 and 3.60 logs of protection, respectively), it induced lower levels in serum of specific IgG (with mixed IgG1/IgG2a) and IgA antibodies and, less IFN-ɣ and IL-4 than the subcutaneous route. No antibodies were detected in vaginal lavages or saliva. Fecal antigen-specific IgA was slightly higher in mice immunized with BLSOmp31/CpG-ODN/Coa-ASC16 subcutaneously compared with the ocular route. These results indicate that BLSOmp31/CpG-ODN/Coa-ASC16 was a safe and effective vaccine against B. ovis in mice.
Collapse
Affiliation(s)
- María Celeste Moran
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET-CICPBA), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina; Laboratorio de Microbiología Clínica y Experimental, Departamento SAMP, CIVETAN-CONICET-CICPBA., F.C.V, U.N.C.P.B.A., Tandil, Buenos Aires, Argentina
| | - Angel Ricardo Bence
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET-CICPBA), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina; Departamento de Fisiopatología, F.C.V, U.N.C.P.B.A., Tandil, Buenos Aires., Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Argentina
| | - María Fernanda Sánchez Vallecillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, CIBICI (CONICET), Córdoba, Argentina
| | - Claudia María Lützelschwab
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Box 7028, SE-750-07, Uppsala, Sweden
| | | | | | | | | | - Santiago Daniel Palma
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, UNITEFA (CONICET), Córdoba, Argentina
| | - Belkys Angélica Maletto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, CIBICI (CONICET), Córdoba, Argentina
| | - Silvia Marcela Estein
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria Tandil (CIVETAN-CONICET-CICPBA), Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Synthesis and immunogenicity of Brucella monovalent neoglycoconjugate. Carbohydr Res 2020; 499:108196. [PMID: 33243427 DOI: 10.1016/j.carres.2020.108196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
Brucellosis is a highly infectious zoonotic disease caused by Brucella. It is necessary to control and eliminate brucellosis. The cell wall O-polysaccharides of pathogenic Brucella species are homopolymers of the rare sugar 4,6-dideoxy-4-formamido-α-d-mannopyranose. Herein, one neoglycoconjugate was successfully synthesized based on disaccharide [Rha4NFo(1 → 2)Rha4NFo] as epitope. Disaccharide specific antibodies were detected by ELISA and the immune protective effect was further evaluated with PBS as control. The result showed that the synthetic neoglycoconjugate can produce moderate immune responses in mice and significantly decreased splenic Brucella M5 burden comparing with control group. The chemically defined antigen identified the A antigenic determinant and provided a structural basis for understanding the fine specificity of polyclonal antibodies that bind the A antigen. The neoglycoconjugate shows the potential in detection reagent or vaccine development for brucellosis.
Collapse
|
13
|
Eckstein C, Mol JPS, Costa FB, Nunes PP, Lima PA, Melo MM, Carvalho TP, Santos DO, Silva MF, Carvalho TF, Costa LF, Melo Júnior OAO, Giunchette RC, Paixão TA, Santos RL. Brucella ovis mutant in ABC transporter protects against Brucella canis infection in mice and it is safe for dogs. PLoS One 2020; 15:e0231893. [PMID: 32298378 PMCID: PMC7162469 DOI: 10.1371/journal.pone.0231893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/02/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND/OBJECTIVES Vaccination is the most important tool for controlling brucellosis, but currently there is no vaccine available for canine brucellosis, which is a zoonotic disease of worldwide distribution caused by Brucella canis. This study aimed to evaluate protection and immune response induced by Brucella ovis ΔabcBA (BoΔabcBA) encapsulated with alginate against the challenge with Brucella canis in mice and to assess the safety of this strain for dogs. METHODS Intracellular growth of the vaccine strain BoΔabcBA was assessed in canine and ovine macrophages. Protection induced by BoΔabcBA against virulent Brucella canis was evaluated in the mouse model. Safety of the vaccine strain BoΔabcBA was assessed in experimentally inoculated dogs. RESULTS Wild type B. ovis and B. canis had similar internalization and intracellular multiplication profiles in both canine and ovine macrophages. The BoΔabcBA strain had an attenuated phenotype in both canine and ovine macrophages. Immunization of BALB/c mice with alginate-encapsulated BoΔabcBA (108 CFU) induced lymphocyte proliferation, production of IL-10 and IFN-γ, and protected against experimental challenge with B. canis. Dogs immunized with alginate-encapsulated BoΔabcBA (109 CFU) seroconverted, and had no hematologic, biochemical or clinical changes. Furthermore, BoΔabcBA was not detected by isolation or PCR performed using blood, semen, urine samples or vaginal swabs at any time point over the course of this study. BoΔabcBA was isolated from lymph nodes near to the site of inoculation in two dogs at 22 weeks post immunization. CONCLUSION Encapsulated BoΔabcBA protected mice against experimental B. canis infection, and it is safe for dogs. Therefore, B. ovis ΔabcBA has potential as a vaccine candidate for canine brucellosis prevention.
Collapse
Affiliation(s)
- Camila Eckstein
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola B. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Philipe P. Nunes
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pâmela A. Lima
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marília M. Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel O. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. Silva
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane F. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana F. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Otoni A. O. Melo Júnior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodolfo C. Giunchette
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
14
|
Liu Y, Sun J, Peng X, Dong H, Qin Y, Shen Q, Jiang H, Xu G, Feng Y, Sun S, Ding J, Chen R. Deletion of the LuxR-type regulator VjbR in Brucella canis affects expression of type IV secretion system and bacterial virulence, and the mutant strain confers protection against Brucella canis challenge in mice. Microb Pathog 2019; 139:103865. [PMID: 31715318 DOI: 10.1016/j.micpath.2019.103865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/25/2023]
Abstract
Brucella spp. are facultative intracellular pathogens and zoonotic agents which pose a huge threat to human health and animal husbandry. The B. melitensis, B. abortus, and B. suis cause undulant fever and influenza-like symptoms in humans. However, the effects of B. canis have not been extensively studied. The quorum sensing-dependent transcriptional regulator VjbR influences the Brucella virulence in smooth type Brucella strains, such as B. melitensis, B. abortus and rough type Brucella ovis. However, the function of VjbR in the rough-type B. canis is unknown. In the present study, we discovered that deletion of this regulator significantly affected Brucella virulence in macrophage and mice infection models. The expression levels of virB operon and the ftcR gene were significantly altered in the vjbR mutant strain. We further investigated the protective effect of different doses of the vjbR mutant in mice and the results indicated that VjbR conferred protection against the virulent B. canis strain. This study presents the first evidence that the transcriptional regulator VjbR has important function in B. canis. In addition, according to its reduced virulence and the protective immunity it induces in mice, it can be a potential live attenuated vaccine against B. canis.
Collapse
Affiliation(s)
- Yufu Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China; Zhaoqing Institute of Biotechnology Co., Ltd, Zhaoqing, China
| | - Jiali Sun
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaowei Peng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Hao Dong
- China Animal Disease Control Center, Beijing, China
| | - Yuming Qin
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Qingchun Shen
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Hui Jiang
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Guanlong Xu
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Yu Feng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Shijing Sun
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiabo Ding
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China.
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
15
|
Alzogaray V, Urrutia M, Berguer P, Rossi A, Zylberman V, Pardo R, Bonomi HR, Goldbaum FA. Characterization of folding-sensitive nanobodies as tools to study the expression and quality of protein particle immunogens. J Biotechnol 2019; 293:17-23. [PMID: 30690101 DOI: 10.1016/j.jbiotec.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 01/05/2023]
Abstract
Vaccination is as one of the most beneficial biopharmaceutical interventions against pathogens due to its ability to induce adaptive immunity through targeted activation of the immune system. Each vaccine needs a tailor-made set of tests in order to monitor its quality throughout the development and manufacturing. The analysis of the conformational state of protein nanoparticles is one of the key steps in vaccine quality control. The enzyme lumazine synthase from Brucella spp. (BLS) acts as a potent oral and systemic immunogen. BLS has been used as a carrier of foreign peptides, protein domains and whole proteins, serving as a versatile platform for vaccine engineering purposes. Here, we show the generation and characterization of four families of nanobodies (Nbs) which only recognize BLS in its native conformational state and that bind to its active site. The present results support the use of conformation-sensitive Nbs as molecular probes during the development and production of vaccines based on the BLS platform. Finally, we propose Nbs as useful molecular tools targeting other protein scaffolds with potential applications in nano-and biotechnology.
Collapse
Affiliation(s)
- Vanina Alzogaray
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Mariela Urrutia
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Paula Berguer
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Andrés Rossi
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Vanesa Zylberman
- INMUNOVA, 25 de Mayo 1021 (B1650HMI), San Martin, Buenos Aires, Argentina
| | - Romina Pardo
- INMUNOVA, 25 de Mayo 1021 (B1650HMI), San Martin, Buenos Aires, Argentina
| | - Hernán R Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435 (C1405BWE), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
16
|
The Immunogenicity of OMP31 Peptides and Its Protection Against Brucella melitensis Infection in Mice. Sci Rep 2019; 9:3512. [PMID: 30837598 PMCID: PMC6401381 DOI: 10.1038/s41598-019-40084-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/08/2019] [Indexed: 11/08/2022] Open
Abstract
Given brucellosis is a widespread zoonosis in the world, a safe and effective vaccine is urgently needed. Recent trend in vaccine design has shifted to epitope-based vaccines that are safe and specific. In this study, peptide containing both T-cell and B-cell epitopes of OMP31 was synthesized and used to immunize the mice by nasal administration. The protective efficacy was evaluated. Mice immunized with the B epitope or TB epitope peptides of OMP31 had higher levels of IgG1 and IgG2a in the serum. While the BALB/c mice immunized with peptides containing T cell epitope or TB epitope of OMP31 showed high degree of IFN-γ-producing T cells in the lymphocytes from the respiratory draining lymph nodes and spleen. After intranasally challenged with 5 × 105 CFU of Brucella melitensis (strain 16 M), the bacterial loads in lung of the immunized mice were significantly lower than control group. These data demonstrate for the first time that peptides of OMP31 containing T epitope, B epitope or TB epitopes are of high immunogenicity and thus can protect host from Brucella melitensis infection in lung.
Collapse
|
17
|
Xu X, Ding Z, Li J, Liang J, Bu Z, Ding J, Yang Y, Lang X, Wang X, Yin R, Qian J. Newcastle disease virus-like particles containing the Brucella BCSP31 protein induce dendritic cell activation and protect mice against virulent Brucella challenge. Vet Microbiol 2018; 229:39-47. [PMID: 30642597 DOI: 10.1016/j.vetmic.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Brucellosis is a widespread zoonosis that poses a substantial threat to human and animal public health due to the absence of a sufficiently safe and efficient vaccine. Virus-like particles (VLPs) have been developed as novel vaccine candidates and suitable carrier platforms for the delivery of exogenous proteins. Herein, we constructed chimeric virus-like particles (cVLPs) assembled by a Newcastle disease virus (NDV) M protein and glycosylphosphatidylinositol-anchored Brucella BCSP31 protein (GPI-BCSP31). cVLPs-GPI-BCSP31 were highly efficient in murine dendritic cell (DC) activation, both in vitro and in vivo. Moreover, they elicited strong specific humoural immune responses detected through ELISA assay with inactivated Brucella and recombinant BCSP31 protein and by elevated cellular immune responses indicated by intracellular IFN-γ and IL-4 levels in CD3+CD4+ T and CD3+CD8+ T cells. Importantly, cVLPs-GPI-BCSP31 conferred protection against virulent Brucella melitensis strain 16 M challenge, comparable to the efficacy of Brucella vaccine strain M5. In summary, this study provides a new strategy for the development of a safe and effective vaccine candidate against virulent Brucella and further extends the application of NDV VLP-based vaccine platforms.
Collapse
Affiliation(s)
- Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jindou Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiaming Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Zhaoyang Bu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jiaxin Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yanling Yang
- Institute of Special Wild Animal & Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xulong Lang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xinglong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Renfu Yin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences / Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing 210014, China.
| |
Collapse
|
18
|
Abstract
Abstract
Brucellosis is one of the most prevalent zoonoses in the world. Incidence of the disease has increased significantly in recent years and has seriously affected the health of human beings and the development of animal husbandry. The pathogenesis of brucellosis remains unclear. Current studies suggest that this disease may be related to changes in natural killer cells, dendritic cells, and macrophages in immune cell subsets. Brucellosis may be also related to T helper (Th) 1 cell/Th2 cell imbalance in the CD4+ T cell subset, immunoregulation of regulatory T cells and Th17 cells, and the mechanism of action of CD8+ T cell. This paper aims to review the research progress on these inherent immune cells, the CD4+ T cell subset, and CD8+ T cells in Brucella infection.
Collapse
|
19
|
Yousefi S, Abbassi-Daloii T, Sekhavati MH, Tahmoorespur M. Evaluation of immune responses induced by polymeric OMP25-BLS Brucella antigen. Microb Pathog 2017; 115:50-56. [PMID: 29253594 DOI: 10.1016/j.micpath.2017.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 01/18/2023]
Abstract
Brucellosis is one the serious infectious diseases caused deleterious health and economic losses. Vaccination with subunit vaccines is the efficient alternative way than live attenuated vaccines against infectious diseases. Herein a new chimeric OMP25-BLS antigen emulsified in Chitosan Nanoparticles was designed and its immune responses were compared with control groups. Also, the role of heat shock protein 60 kDa in combination with OMP25-BLS antigen was assessed. Structural and antigenic features of chimeric antigen were predicted using bioinformatics tools. Moreover, the humoral and cellular immune responses were measured by ELISA in seven different groups. Observations showed rOMP25-BLS structure was highly stable and antigenic. Cytokines analysis showed rOMP25 and rOMP25-BLS + rHSP60 induced higher titer of INF-γ than rHSP60 and rOMP25-BLS. There was no statistically significant difference between positive control group and rOMP25-BLS + rHSP60 in inducing TNF-α (p < .05). Additionally, the highest titer of IL-4 was dedicated to rOMP25 among other immunized treatments, while there were no significant differences between positive control group and other immunized groups with recombinant proteins (p < .05). In addition, rOMP25-BLS and rHSP60 induced higher titer of total antibody compared to other groups. Also, rHSP60 could improve IgG2a to IgG1 ratio when it used in combination with chimeric antigen. Moreover, the lymphocyte proliferation index was higher in chimeric rOMP25-BLS + HSP60 antigen. In conclusion, while rOMP25-BLS chimeric antigen unable to induce efficient cellular response than individual injection of rOMP25, its injection in combination with rHSP60 could improve cellular immunity.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | |
Collapse
|
20
|
Abbassi-Daloii T, Yousefi S, Sekhavati MH, Tahmoorespur M. Impact of heat shock protein 60KD in combination with outer membrane proteins on immune response against Brucella melitensis. APMIS 2017; 126:65-75. [PMID: 29154438 DOI: 10.1111/apm.12778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Brucellosis caused by the bacterium Brucella affects various domestic and wild species. The outer membrane proteins 25 and 31 play key roles on stimulation of cell-mediated immune response against Brucella. GroEL as one of the major Brucella antigens stimulates the immune system and increases intracellular survival of bacteria. In the present study, we assumed injection of GroEL in combination with OMP25 and OMP31 would offer higher immunity levels. So, the impact of GroEL with different concentrations of recombinant outer membrane proteins emulsified in Chitosan Nanoparticles on immune responses was evaluated in mice model. Results showed both univalent (except rGroEL) and divalent immunized groups induced higher IFN-γ, TNF-α, and IL-4 titers in comparison to negative control groups. While GroEL showed negative effect on TNF-α titer, there were positive increase trends in IFN-γ in some treatments. Analysis of humoral antibody response revealed both univalent and divalent immunized groups induced higher IgG2a titer than IgG1 titer, indicating strong bent of Th1 immune response. Also, results showed GroEL can have positive impact on lymphocyte proliferation response. Overall, mice immunization using individual OMP25 or OMP31 demonstrated more effective cell-mediated immunity, although some combinations of rGroEL and rOMP31 vaccines were more efficient than other divalent ones.
Collapse
Affiliation(s)
- Tooba Abbassi-Daloii
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Human Genetics, Leiden University of Medical Center, Leiden, The Netherlands
| | - Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
21
|
Lalsiamthara J, Lee JH. Development and trial of vaccines against Brucella. J Vet Sci 2017; 18:281-290. [PMID: 28859268 PMCID: PMC5583415 DOI: 10.4142/jvs.2017.18.s1.281] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/18/2023] Open
Abstract
The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
22
|
A safe and molecular-tagged Brucella canis ghosts confers protection against virulent challenge in mice. Vet Microbiol 2017; 204:121-128. [PMID: 28532790 DOI: 10.1016/j.vetmic.2017.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/26/2017] [Accepted: 04/25/2017] [Indexed: 01/16/2023]
Abstract
Canine brucellosis, caused by Brucella canis, is a persistent infectious reproductive disease in dogs. The absence of effective treatment to the intracellular pathogen and the irreversible consequence of infection makes the need of a specific vaccine urgent. Bacterial ghosts (BGs) are the empty envelopes of bacteria with no genome content inside, which emerge as a proper vaccine candidate due to its intact outer antigen. It is generally derived from a genetically engineered strain, through the expression of Bacteriophage phiX174 lysis E gene upon induction. In this study, we combined the homologous recombination (HR) and bacterial ghost technologies, generating a genetically stable B. canis ghost strain which bears no drug resistance gene. When the ghost strain grows to OD600 of 0.6, 100% inactivation can be achieved under 42°C in 60h. The resultant BGs showed guaranteed safety and comparable immunogenicity to a live vaccine. The bacterial B0419 protein was depleted during HR process, which is subsequently proved to work as a molecular tag in distinguishing natural infection and BGs immunization through ELISA. Additionally, the BGs also conferred protection against B. canis RM6/66 and B. melitensis 16M. Therefore, the application of current BGs as a vaccine candidate and the corresponding serological diagnostic approach may provide better B. canis prevention strategy.
Collapse
|
23
|
Clausse M, Díaz AG, Pardo RP, Zylberman V, Goldbaum FA, Estein SM. Polymeric antigen BLSOmp31 in aluminium hydroxide induces serum bactericidal and opsonic antibodies against Brucella canis in dogs. Vet Immunol Immunopathol 2016; 184:36-41. [PMID: 28166930 DOI: 10.1016/j.vetimm.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 01/28/2023]
Abstract
Polymeric antigen BLSOmp31 is an immunogenic vaccine candidate that confers protection against Brucella canis in mice. In this preliminary study, the immunogenicity and safety of BLSOmp31 adsorbed to aluminum hydroxide gel (BLSOmp31-AH) were evaluated in Beagle dogs. In addition, the potential to elicit serum antibodies with complement-dependent bactericidal activity and/or to enhance phagocytosis by neutrophils were analyzed. Dogs were immunized three times with BLSOmp31-AH by subcutaneous route, followed by an annual booster. The vaccine elicited specific antibodies 3 weeks after the first immunization. Annual booster induced comparable antibody response as the primary series. Humoral immune response stimulated by BLSOmp31-AH did not interfere with routine agglutination test for canine brucellosis. Antibodies demonstrated a high complement-dependent bactericidal activity against B. canis. Moreover, opsonization by immune serum not only stimulated binding and uptake of the bacteria by neutrophils but effectively enhanced the destruction of B. canis. Specific IgG was detected in 3/4 immunized dogs in preputial secretions. The antibody profile corresponded to a marked Th2 response, since IgG1 prevailed over IgG2 and cellular immune response was not detected in vitro or in vivo. These results require further evaluation in larger field studies to establish the full prophylactic activity of BLSOmp31 against canine brucellosis.
Collapse
Affiliation(s)
- Maria Clausse
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina.
| | - Alejandra G Díaz
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina
| | | | - Vanesa Zylberman
- Inmunova S.A, Argentina; Fundación Instituto Leloir e Instituto de Investigaciones Biológicas Buenos Aires-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina
| | - Fernando A Goldbaum
- Inmunova S.A, Argentina; Fundación Instituto Leloir e Instituto de Investigaciones Biológicas Buenos Aires-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina
| | - Silvia M Estein
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina
| |
Collapse
|
24
|
Carvalho TF, Haddad JPA, Paixão TA, Santos RL. Meta-Analysis and Advancement of Brucellosis Vaccinology. PLoS One 2016; 11:e0166582. [PMID: 27846274 PMCID: PMC5112997 DOI: 10.1371/journal.pone.0166582] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023] Open
Abstract
Background/Objectives In spite of all the research effort for developing new vaccines against brucellosis, it remains unclear whether these new vaccine technologies will in fact become widely used. The goal of this study was to perform a meta-analysis to identify parameters that influence vaccine efficacy as well as a descriptive analysis on how the field of Brucella vaccinology is advancing concerning type of vaccine, improvement of protection on animal models over time, and factors that may affect protection in the mouse model. Methods A total of 117 publications that met the criteria were selected for inclusion in this study, with a total of 782 individual experiments analyzed. Results Attenuated (n = 221), inactivated (n = 66) and mutant (n = 102) vaccines provided median protection index above 2, whereas subunit (n = 287), DNA (n = 68), and vectored (n = 38) vaccines provided protection indexes lower than 2. When all categories of experimental vaccines are analyzed together, the trend line clearly demonstrates that there was no improvement of the protection indexes over the past 30 years, with a low negative and non significant linear coefficient. A meta-regression model was developed including all vaccine categories (attenuated, DNA, inactivated, mutant, subunit, and vectored) considering the protection index as a dependent variable and the other parameters (mouse strain, route of vaccination, number of vaccinations, use of adjuvant, challenge Brucella species) as independent variables. Some of these variables influenced the expected protection index of experimental vaccines against Brucella spp. in the mouse model. Conclusion In spite of the large number of publication over the past 30 years, our results indicate that there is not clear trend to improve the protective potential of these experimental vaccines.
Collapse
Affiliation(s)
- Tatiane F. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo A. Haddad
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
25
|
Díaz AG, Quinteros DA, Gutiérrez SE, Rivero MA, Palma SD, Allemandi DA, Pardo RP, Zylberman V, Goldbaum FA, Estein SM. Immune response induced by conjunctival immunization with polymeric antigen BLSOmp31 using a thermoresponsive and mucoadhesive in situ gel as vaccine delivery system for prevention of ovine brucellosis. Vet Immunol Immunopathol 2016; 178:50-6. [DOI: 10.1016/j.vetimm.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/12/2016] [Accepted: 07/04/2016] [Indexed: 11/15/2022]
|
26
|
Díaz AG, Quinteros DA, Llabot JM, Palma SD, Allemandi DA, Ghersi G, Zylberman V, Goldbaum FA, Estein SM. Spray dried microspheres based on chitosan: A promising new carrier for intranasal administration of polymeric antigen BLSOmp31 for prevention of ovine brucellosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:489-96. [DOI: 10.1016/j.msec.2016.01.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
27
|
Du ZQ, Li X, Wang JY. Immunogenicity Analysis of a Novel Subunit Vaccine Candidate Molecule-Recombinant L7/L12 Ribosomal Protein of Brucella suis. Appl Biochem Biotechnol 2016; 179:1445-55. [PMID: 27075455 DOI: 10.1007/s12010-016-2076-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/03/2016] [Indexed: 11/26/2022]
Abstract
Brucella was an intracellular parasite, which could infect special livestock and humans. After infected by Brucella, livestock's reproductive system could be affected and destroyed resulting in huge economic losses. More seriously, it could be contagious from livestock to humans. So far, there is no available vaccine which is safe enough for humans. On this point, subunit vaccine has become the new breakthrough of conquering brucellosis. In this study, Brucella rL7/L12-BLS fusion protein was used as an antigen to immunize rabbits to detect the immunogenicity. The results of antibody level testing assay of rabbit antiserum indicated rL7/L12-BLS fusion protein could elicit rabbits to produce high-level IgG. And gamma interferon (IFN-γ) concentrations in rabbit antiserum were obviously up-regulated in both the rL7/L12 group and rL7/L12-BLS group. Besides, the results of quantitative real-time PCR (qRT-PCR) showed the IFN-γ gene's expression levels of both the rL7/L12 group and rL7/L12-BLS group were obviously up-regulated. All these results suggested Brucella L7/L12 protein was an ideal subunit vaccine candidate and possessed good immunogenicity. And Brucella lumazine synthase (BLS) molecule was a favorable transport vector for antigenic protein.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Arding Street No.7, Kundulun District, Baotou, Inner Mongolia Autonomous Region, 014010, China.
| | - Xin Li
- Baotou Tumour Hospital, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Jian-Ying Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Arding Street No.7, Kundulun District, Baotou, Inner Mongolia Autonomous Region, 014010, China
| |
Collapse
|
28
|
Brucella canis is an intracellular pathogen that induces a lower proinflammatory response than smooth zoonotic counterparts. Infect Immun 2015; 83:4861-70. [PMID: 26438796 DOI: 10.1128/iai.00995-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023] Open
Abstract
Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly.
Collapse
|
29
|
Simultaneous immunization of mice with Omp31 and TF provides protection against Brucella melitensis infection. Vaccine 2015; 33:5532-5538. [DOI: 10.1016/j.vaccine.2015.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
|
30
|
Ghasemi A, Jeddi-Tehrani M, Mautner J, Salari MH, Zarnani AH. Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection. Vaccine 2014; 32:6659-66. [DOI: 10.1016/j.vaccine.2014.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/21/2023]
|
31
|
Evaluation of the efficacy of outer membrane protein 31 vaccine formulations for protection against Brucella canis in BALB/c mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1689-94. [PMID: 25339409 DOI: 10.1128/cvi.00527-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Canine brucellosis is an infectious disease caused by the Gram-negative bacterium Brucella canis. Unlike conventional control programs for other species of the genus Brucella, currently there is no vaccine available against canine brucellosis, and preventive measures are simply diagnosis and isolation of infected dogs. New approaches are therefore needed to develop an effective and safe immunization strategy against this zoonotic pathogen. In this study, BALB/c mice were subcutaneously immunized with the following: (i) the recombinant Brucella Omp31 antigen formulated in different adjuvants (incomplete Freund adjuvant, aluminum hydroxide, Quil A, and Montanide IMS 3012 VGPR), (ii) plasmid pCIOmp31, or (iii) pCIOmp31 plasmid followed by boosting with recombinant Omp31 (rOmp31). The immune response and the protective efficacy against B. canis infection were characterized. The different strategies induced a strong immunoglobulin G (IgG) response. Furthermore, spleen cells from rOmp31-immunized mice produced gamma interferon and interleukin-4 (IL-4) after in vitro stimulation with rOmp31, indicating the induction of a mixed Th1-Th2 response. Recombinant Omp31 administered with different adjuvants as well as the prime-boost strategy conferred protection against B. canis. In conclusion, our results suggest that Omp31 could be a useful candidate for the development of a subcellular vaccine against B. canis infection.
Collapse
|
32
|
Studies on recombinant glucokinase (r-glk) protein of Brucella abortus as a candidate vaccine molecule for brucellosis. Vaccine 2014; 32:5600-6. [DOI: 10.1016/j.vaccine.2014.07.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/09/2014] [Accepted: 07/31/2014] [Indexed: 01/18/2023]
|