1
|
Patel P, Patel B, Vyas SD, Patel MS, Hirani T, Haque M, Kumar S. A Narrative Review of Periodontal Vaccines: Hope or Hype? Cureus 2025; 17:e80636. [PMID: 40091902 PMCID: PMC11910667 DOI: 10.7759/cureus.80636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025] Open
Abstract
Globally, periodontal diseases, mainly driven by polymicrobial biofilms, are a widespread concern of social medicine due to their considerable incidence and tie-up to systemic disorders like diabetes, cardiovascular diseases, and complications during pregnancy. Traditional treatments focus on mechanical debridement and antimicrobial therapies, but these approaches have limitations, including recurrence and antibiotic resistance. Periodontal vaccines offer a promising alternative by targeting the immunological mechanisms underlying periodontal disease. This review explores the current state of periodontal vaccine development, highlighting key antigens, vaccine delivery systems, and preclinical and clinical advancements. Special emphasis is placed on antigen selection, host variability, immune tolerance, and future directions to overcome these barriers. This article highlights the advancements and challenges in periodontal vaccine research, offering insights into the capability of immunoprophylaxis as a groundbreaking way to manage periodontal diseases.
Collapse
Affiliation(s)
- Pratiksha Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shruti D Vyas
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Maitri S Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Tanvi Hirani
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
2
|
Innate Immune Sensing of Nucleic Acid in Endodontic Infection. Int Endod J 2022; 55:1335-1346. [DOI: 10.1111/iej.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
|
3
|
Shaker B, Ahmad S, Shen J, Kim HW, Na D. Computational Design of a Multi-Epitope Vaccine Against Porphyromonas gingivalis. Front Immunol 2022; 13:806825. [PMID: 35250977 PMCID: PMC8894597 DOI: 10.3389/fimmu.2022.806825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 01/14/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative pathogenic bacterium associated with chronic periodontitis. The development of a chimeric peptide-based vaccine targeting this pathogen could be highly beneficial in preventing oral bone loss as well as other severe gum diseases. We applied a computational framework to design a multi-epitope-based vaccine candidate against P. gingivalis. The vaccine comprises epitopes from subunit proteins prioritized from the P. gingivalis reference strain (P. gingivalis ATCC 33277) using several reported vaccine properties. Protein-based subunit vaccines were prioritized through genomics techniques. Epitope prediction was performed using immunoinformatic servers and tools. Molecular modeling approaches were used to build a putative three-dimensional structure of the vaccine to understand its interactions with host immune cells through biophysical techniques such as molecular docking simulation studies and binding free energy methods. Genome subtraction identified 18 vaccine targets: six outer-membrane, nine cytoplasmic membrane-, one periplasmic, and two extracellular proteins. These proteins passed different vaccine checks required for the successful development of a vaccine candidate. The shortlisted proteins were subjected to immunoinformatic analysis to map B-cell derived T-cell epitopes, and antigenic, water-soluble, non-toxic, and good binders of DRB1*0101 were selected. The epitopes were then modeled into a multi-epitope peptide vaccine construct (linked epitopes plus adjuvant) to enhance immunogenicity and effectively engage both innate and adaptive immunity. Further, the molecular docking approach was used to determine the binding conformation of the vaccine to TLR2 innate immune receptor. Molecular dynamics simulations and binding free energy calculations of the vaccine-TLR2 complex were performed to highlight key intermolecular binding energies. Findings of this study will be useful for vaccine developers to design an effective vaccine for chronic periodontitis pathogens, specifically P. gingivalis.
Collapse
Affiliation(s)
- Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul, South Korea
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Junhao Shen
- Department of Biomedical Engineering, Chung-Ang University, Seoul, South Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul, South Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
4
|
Wang W, Zheng C, Yang J, Li B. Intersection between macrophages and periodontal pathogens in periodontitis. J Leukoc Biol 2021; 110:577-583. [PMID: 34028883 DOI: 10.1002/jlb.4mr0421-756r] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Periodontitis is a chronic infectious disease characterized by loss of periodontal attachment and resorption of alveolar bone. Dysregulated oral microbial community is the initial factor of periodontitis and causes excessive infiltration of immune cells in periodontal tissues. Macrophage, as an important part of the innate immune system, interacts continually with oral pathogens. Macrophages can recognize and phagocytize pathogens and apoptotic neutrophils and produce the specialized pro-resolving mediators (SPMs) playing an important role in maintaining the homeostasis of tissue microenvironment. However, macrophages may also induce abnormal immune responses with the overstimulation from pathogens, leading to the destruction of periodontal tissues and alveolar bone. Looking for targeted drugs that can regulate the activities of oral pathogens and the functions of macrophages provides a new idea for periodontitis treatment. This review summarizes the interaction between macrophages and periodontal pathogens in periodontitis, focusing on the pro-inflammation and anti-inflammation phenotypes of macrophages, and briefly concludes potential new methods of periodontitis therapy targeted at oral pathogens and macrophages.
Collapse
Affiliation(s)
- Wenzhe Wang
- State Key Laboratory of Military Stomatology&National Clinical Research Center for Oral Diseases&Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenxi Zheng
- State Key Laboratory of Military Stomatology&National Clinical Research Center for Oral Diseases&Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianhua Yang
- State Key Laboratory of Military Stomatology&National Clinical Research Center for Oral Diseases&Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology&National Clinical Research Center for Oral Diseases&Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Ahmad S, Navid A, Farid R, Abbas G, Ahmad F, Zaman N, Parvaiz N, Azam SS. Design of a Novel Multi Epitope-Based Vaccine for Pandemic Coronavirus Disease (COVID-19) by Vaccinomics and Probable Prevention Strategy against Avenging Zoonotics. Eur J Pharm Sci 2020; 151:105387. [PMID: 32454128 PMCID: PMC7245302 DOI: 10.1016/j.ejps.2020.105387] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023]
Abstract
The emergence and rapid expansion of the coronavirus disease (COVID-19) require the development of effective countermeasures especially a vaccine to provide active acquired immunity against the virus. This study presented a comprehensive vaccinomics approach applied to the complete protein data published so far in the National Center for Biotechnological Information (NCBI) coronavirus data hub. We identified non-structural protein 8 (Nsp8), 3C-like proteinase, and spike glycoprotein as potential targets for immune responses to COVID-19. Epitopes prediction illustrated both B-cell and T-cell epitopes associated with the mentioned proteins. The shared B and T-cell epitopes: DRDAAMQRK and QARSEDKRA of Nsp8, EDMLNPNYEDL and EFTPFDVVR of 3C-like proteinase, and VNNSYECDIPI of the spike glycoprotein are regions of high potential interest and have a high likelihood of being recognized by the human immune system. The vaccine construct of the epitopes shows stimulation of robust primary immune responses and high level of interferon gamma. Also, the construct has the best conformation with respect to the tested innate immune receptors involving vigorous molecular mechanics and solvation energy. Designing of vaccination strategies that target immune response focusing on these conserved epitopes could generate immunity that not only provide cross protection across Betacoronaviruses but additionally resistant to virus evolution.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Afifa Navid
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rabia Farid
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ghulam Abbas
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Faisal Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan..
| |
Collapse
|
6
|
Huang N, Shimomura E, Yin G, Tran C, Sato A, Steiner A, Heibeck T, Tam M, Fairman J, Gibson FC. Immunization with cell-free-generated vaccine protects from Porphyromonas gingivalis-induced alveolar bone loss. J Clin Periodontol 2019; 46:197-205. [PMID: 30578564 PMCID: PMC7891626 DOI: 10.1111/jcpe.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022]
Abstract
Introduction Periodontal diseases (PD) are complex oral inflammatory diseases initiated by keystone bacteria such as Porphyromonas gingivalis. A vaccine for PD is desirable as clinical treatment involves protracted maintenance strategies aimed to retain dentition. Although prior immunization approaches targeting P. gingivalis have reported variable success in limiting facets of disease such as oral bone loss, it remains that a vaccine for this disease may be attainable. Aim To investigate cell‐free protein synthesis (CFPS) as a platform to produce vaccinable targets suitable for efficacy testing in a P. gingivalis‐induced murine oral bone loss model. Materials and Methods Recombinantly generated P. gingivalis minor fimbriae protein (Mfa1), RgpA gingipain hemagglutinin domain 1 (HA1), and RgpA gingipain hemagglutinin domain 2 (HA2) were combined in equivalent doses in adjuvants and injected intramuscularly to immunize mice. Serum levels of protein‐specific antibody were measured by ELISA, and oral bone levels were defined by morphometrics. Results Recombinantly generated P. gingivalis proteins possessed high fidelity to predicted size and elicited protein‐specific IgG following immunization. Importantly, immunization with the vaccine cocktail protected from P. gingivalis elicited oral bone loss. Conclusion These data verify the utility of the CFPS technology to synthesize proteins that have the capacity to serve as novel vaccines.
Collapse
Affiliation(s)
- Nasi Huang
- Department of Medicine, Section of Infectious Diseases, School of Medicine, Boston University, Boston, Massachusetts
| | | | - Gang Yin
- Sutro BioPharma, South San Francisco, California
| | - Cuong Tran
- Sutro BioPharma, South San Francisco, California
| | - Aaron Sato
- Sutro BioPharma, South San Francisco, California
| | - Alex Steiner
- Sutro BioPharma, South San Francisco, California
| | | | - Michelle Tam
- Sutro BioPharma, South San Francisco, California
| | | | - Frank C Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Gaffen SL, Herzberg MC, Taubman MA, Van Dyke TE. Recent advances in host defense mechanisms/therapies against oral infectious diseases and consequences for systemic disease. Adv Dent Res 2016; 26:30-7. [PMID: 24736702 DOI: 10.1177/0022034514525778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate and adaptive immune systems are both crucial to oral disease mechanisms and their impact on systemic health status. Greater understanding of these interrelationships will yield opportunities to identify new therapeutic targets to modulate disease processes and/or increase host resistance to infectious or inflammatory insult. The topics addressed reflect the latest advances in our knowledge of the role of innate and adaptive immune systems and inflammatory mechanisms in infectious diseases affecting the oral cavity, including periodontitis and candidiasis. In addition, several potential links with systemic inflammatory conditions, such as cardiovascular disease, are explored. The findings elucidate some of the defense mechanisms utilized by host tissues, including the role of IL-17 in providing immunity to oral candidiasis, the antimicrobial defense of mucosal epithelial cells, and the pro-resolution effects of the natural inflammatory regulators, proresolvins and lipoxins. They also describe the role of immune cells in mediating pathologic bone resorption in periodontal disease. These insights highlight the potential for therapeutic benefit of immunomodulatory interventions that bolster or modulate host defense mechanisms in both oral and systemic disease. Among the promising new therapeutic approaches discussed here are epithelial cell gene therapy, passive immunization against immune cell targets, and the use of proresolvin agents.
Collapse
Affiliation(s)
- S L Gaffen
- Department of Medicine, University of Pittsburgh, Division of Rheumatology & Clinical Immunology, S702 BST, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
8
|
Wang Q, Zhang P, Aprecio R, Zhang D, Li H, Ji N, Mohamed O, Zhang W, Li Y, Ding Y. Comparison of Experimental Diabetic Periodontitis Induced by Porphyromonas gingivalis in Mice. J Diabetes Res 2016; 2016:4840203. [PMID: 27995146 PMCID: PMC5141310 DOI: 10.1155/2016/4840203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/02/2016] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is one of the severe complications in diabetic patients and gingival epithelium plays an initial role on the onset and progression of this disease. However the potential mechanism is yet sufficiently understood. Meanwhile, the research on the correlational experimental animal models was also insufficient. Here, we established periodontitis with type 2 diabetes in db/db and Tallyho/JngJ (TH) mice and periodontitis with type 1 diabetes in streptozotocin induced diabetes C57BL/6J (STZ-C57) mice by oral infection of periodontal pathogen Porphyromonas gingivalis W50. We demonstrated that periodontal infected mice with high blood glucose levels showed dramatically more alveolar bone loss than their counterparts, in which infected db/db mice exhibited the most bone defects. No contrary impact could be observed between this periodontal infection and onset and severity of diabetes. The expressions of PTPN2 were inhibited whereas the expression of JAK1, STAT1, and STAT3 increased dramatically in gingival epithelia and the serum TNF-α also significantly increased in the mice with diabetic periodontitis. Our results indicated that the variations of inflammation-related protein expressions in gingival epithelia might lead to the phenotype differences in the mice with diabetic periodontitis.
Collapse
MESH Headings
- Alveolar Bone Loss
- Animals
- Blood Glucose/metabolism
- Diabetes Complications/etiology
- Diabetes Complications/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Gingiva/metabolism
- Janus Kinase 1/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Periodontitis/etiology
- Periodontitis/metabolism
- Porphyromonas gingivalis
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
- STAT1 Transcription Factor/metabolism
- STAT3 Transcription Factor/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section S. Renmin Road, Chengdu, China
- *Qi Wang: and
| | - Peng Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section S. Renmin Road, Chengdu, China
| | - Ray Aprecio
- Center for Dental Research, School of Dentistry, Loma Linda University, 11175 Campus Street, Loma Linda, CA, USA
| | - Dongjiao Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, 44-1 Wenhua W. Road, Jinan, China
| | - Hao Li
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning 530021, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section S. Renmin Road, Chengdu, China
| | - Omaima Mohamed
- Center for Dental Research, School of Dentistry, Loma Linda University, 11175 Campus Street, Loma Linda, CA, USA
| | - Wu Zhang
- Center for Dental Research, School of Dentistry, Loma Linda University, 11175 Campus Street, Loma Linda, CA, USA
| | - Yiming Li
- Center for Dental Research, School of Dentistry, Loma Linda University, 11175 Campus Street, Loma Linda, CA, USA
| | - Yi Ding
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section S. Renmin Road, Chengdu, China
- *Yi Ding:
| |
Collapse
|
9
|
Abstract
One challenge in studying chronic infectious and inflammatory disorders is understanding how host pattern recognition receptors (PRRs), specifically toll-like receptors (TLRs), sense and respond to pathogen- or damage-associated molecular patterns, their communication with each other and different components of the immune system, and their role in propagating inflammatory stages of disease. The discovery of innate immune activation through nucleic acid recognition by intracellular PRRs such as endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) and cytoplasmic proteins (absent in melanoma 2 and DNA-dependent activator of interferon regulatory factor) opened a new paradigm: Nucleic acid sensing is now implicated in multiple immune and inflammatory conditions (e.g., atherosclerosis, cancer), viral (e.g., human papillomavirus, herpes virus) and bacterial (e.g., Helicobacter pylori, pneumonia) diseases, and autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis). Clinical investigations reveal the overexpression of specific nucleic acid sensors in diseased tissues. In vivo animal models show enhanced disease progression associated with receptor activation. The involvement of nucleic acid sensors in various systemic conditions is further supported by studies reporting receptor knockout mice being either protected from or prone to disease. TLR9-mediated inflammation is also implicated in periodontal diseases. Considering that persistent inflammation in the oral cavity is associated with systemic diseases and that oral microbial DNA is isolated at distal sites, nucleic acid sensing may potentially be a link between oral and systemic diseases. In this review, we discuss recent advances in how intracellular PRRs respond to microbial nucleic acids and emerging views on the role of nucleic acid sensors in various systemic diseases. We also highlight new information on the role of intracellular PRRs in the pathogenesis of oral diseases including periodontitis and oral cavity cancer, which might offer future possibilities for disease prevention and therapy.
Collapse
Affiliation(s)
- K E Crump
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - S E Sahingur
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
RETRACTED ARTICLE: Distinctive pathways characterize A. actinomycetemcomitans and P. gingivalis. Mol Biol Rep 2014; 42:441-9. [DOI: 10.1007/s11033-014-3785-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|