1
|
Salasar Moghaddam F, Tabibian M, Absalan M, Tavoosidana G, Ghahremani MH, Tabatabaei N, Abdolhosseini M, Shafiee Sabet M, Motevaseli E. Comparative analysis of Escherichia coli Nissle 1917 ghosts quality: a study of two chemical methods. Arch Microbiol 2024; 206:386. [PMID: 39190149 DOI: 10.1007/s00203-024-04095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024]
Abstract
The gram-negative bacterium Escherichia coli Nissle 1917 (EcN) has long been recognized for its therapeutic potential in treating various intestinal diseases. Bacterial ghosts (BGs) are empty shells of non-living bacterial cells that demonstrate enormous potential for medicinal applications. Genetic and chemical techniques can create these BGs. In the current study, we produced Escherichia coli Nissle 1917 ghosts (EcNGs) for the first time using benzoic acid (BA) and sodium hydroxide (SH). BA is a feeble acidic chemical that enhances gram-negative bacteria's external membrane permeability, reduces energy production, and decreases internal pH. SH has shown success in producing BGs from some gram-negative and gram-positive organisms. This research aims to produce EcNGs using the minimum inhibitory concentration (MIC) of SH and BA, specifically 3.125 mg/mL. We assessed the bacterial quality of the BGs produced using quantitative PCR (qPCR) and Bradford protein assays. Field emission scanning electron microscopy (FE-SEM) showed the three-dimensional structure of EcNGs. The study confirmed the presence of tunnel-like pores on the outer surface, indicating the preservation of cell membrane integrity. Importantly, this investigation introduces BA as a novel chemical inducer of EcNGs, suggesting its potential alongside SH for efficient EcNG formation.
Collapse
Affiliation(s)
- Fahimeh Salasar Moghaddam
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrollah Tabatabaei
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoreh Abdolhosseini
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Shafiee Sabet
- Department of Neurology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhou J, Yu R, Ma Y, Wang Q, Liu Q, Zhang Y, Liu X. A bacterial ghost vaccine against Aeromonas salmonicida infection in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109711. [PMID: 38901685 DOI: 10.1016/j.fsi.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Aeromonas salmonicida is one of the most prevalent pathogens that causes huge economic losses to aquaculture. Effective vaccination is the first choice for preventing infection. Bacterial ghost (BG), an empty bacterial shell devoid of cytoplasm, is a promising vaccine antigen with distinct advantages. Herein, we established strategies for producing a substantial yield of A. salmonicida ghost (ASG) and investigated the immune-protective properties of it. As a result, 2.84 mg/ml NaOH was discovered to be capable of inducing considerable amounts of ASG. Furthermore, the ASG vaccine elicited adaptive immunity in turbots after rapid activation of innate immunity. Even though formalin-killed cells (FKC) produced a few more antibodies than ASG, ASG ultimately provided a much stronger immune protection effect because it strengthened cellular immunity, with a relative percentage survival (RPS) of 50.1 % compared to FKC. These findings demonstrated that ASG effectively activated cell-mediated immunity, which helped get rid of microorganisms inside cells. Therefore, this study presented novel perspectives for future research on furunculosis vaccine products based on ASG as an antigen.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruofan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
3
|
Shaji S, Selvaraj RK, Shanmugasundaram R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023; 11:2814. [PMID: 38004824 PMCID: PMC10672927 DOI: 10.3390/microorganisms11112814] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Salmonella is the leading cause of food-borne zoonotic disease worldwide. Non-typhoidal Salmonella serotypes are the primary etiological agents associated with salmonellosis in poultry. Contaminated poultry eggs and meat products are the major sources of human Salmonella infection. Horizontal and vertical transmission are the primary routes of infection in chickens. The principal virulence genes linked to Salmonella pathogenesis in poultry are located in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Cell-mediated and humoral immune responses are involved in the defense against Salmonella invasion in poultry. Vaccination of chickens and supplementation of feed additives like prebiotics, probiotics, postbiotics, synbiotics, and bacteriophages are currently being used to mitigate the Salmonella load in poultry. Despite the existence of various control measures, there is still a need for a broad, safe, and well-defined strategy that can confer long-term protection from Salmonella in poultry flocks. This review examines the current knowledge on the etiology, transmission, cell wall structure, nomenclature, pathogenesis, immune response, and efficacy of preventative approaches to Salmonella.
Collapse
Affiliation(s)
- Syamily Shaji
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| |
Collapse
|
4
|
Lee J, Lee KS, Lee J, Lee KS, Park SY. Weissella koreensis and Pediococcus pentosaceus bacterial ghosts induce inflammatory responses as immunostimulants. Biochem Biophys Res Commun 2023; 676:213-219. [PMID: 37597299 DOI: 10.1016/j.bbrc.2023.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023]
Abstract
In this study, bacterial ghosts (BGs) were generated from Weissella koreensis LKS42 (WKorGs) and Pediococcus pentosacues KA94 (PPGs) by chemically inducing lysis using substances such as hydrochloric acid (HCl), sulfuric acid (H2SO4), nitric acid (HNO3), acetic acid (CH3COOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium carbonate (Na2CO3), n-butanol, and C6H8O7. HCl-induced WKorGs and PPGs exhibited complete removal of DNA and displayed transverse membrane dissolution tunnel structures under scanning electron microscopy (SEM). Cell viability assays showed high viability of RAW 264.7 cells exposed to HCl-induced WKorGs and PPGs. Additionally, treatment with HCl-induced WKorGs and PPGs elevated mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, iNOS) and the anti-inflammatory cytokine IL-10 in RAW 264.7 cells. These findings suggest that HCl-induced WKorGs and PPGs have the potential to be used as inactivated bacterial immunostimulants, highlighting their promising applications in immunization and immunotherapy.
Collapse
Affiliation(s)
- Jieun Lee
- Diagnostic Research Group, BIONEER Corporation, Daejeon, Republic of Korea
| | - Kwang-Su Lee
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon, Republic of Korea
| | - Junwon Lee
- Department of Life Science and Genetic Engineering, Graduate School of Pai Chai University, Daejeon, Republic of Korea
| | - Ki-Sung Lee
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon, Republic of Korea.
| | - Shin-Young Park
- Division of Software Engineering, Pai Chai University, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Halder P, Maiti S, Banerjee S, Das S, Dutta M, Dutta S, Koley H. Bacterial ghost cell based bivalent candidate vaccine against Salmonella Typhi and Salmonella Paratyphi A: A prophylactic study in BALB/c mice. Vaccine 2023; 41:5994-6007. [PMID: 37625993 DOI: 10.1016/j.vaccine.2023.08.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Typhoid and emerging paratyphoid fever are a severe enteric disease worldwide with high morbidity and mortality. Licensed typhoid vaccines are in the market, but no paratyphoid vaccine is currently available. In the present study we developed a bivalent vaccine against Salmonella Typhi and Paratyphi A using a bacterial ghost platform. Bacterial ghost cells (BGs) are bacteria-derived cell membranes without cytoplasmic contents that retain their cellular morphology, including all cell surface features. Furthermore, BGs have inherent adjuvant properties that promote an enhanced humoral and cellular immune reaction to the target antigen. Sodium hydroxide was used to prepare ghost cells of Salmonella Typhi and Paratyphi A. The bacterial ghost cells were characterised using electron microscopy. Then BALB/c mice were immunized three times (0th, 14th and 28th day) with the bivalent typhoidal bacterial ghost cells. Haematological study of adult mice throughout immunization period reflected that the immunogen was safe to administer and does not affect the animals' health. After complete immunization, we found significant serum antibody titter against whole cell lysate, outer membrane protein and lipopolysaccharide of both bacteria, and cell-mediated immunity was observed in an ex-vivo experiment. CD4+, CD8a+ and CD19+ splenic cell populations were increased in immunized animals. Bivalent Typhoidal ghost cell immunized mice showed better survival, less bacterial colonization in systemic organs, and less inflammation and/or destruction of tissue in histopathological analysis than non-immunized control mice.Serum antibodies of immunized animals can significantly inhibit bacterial motility and mucin penetration ability with better killing properties against Salmonella Typhi and Paratyphi A. Furthermore, significant passive protection was observed through the adoptive transfer of serum antibody and lymphocytes of immunized animals to naïve animals after bacterial infection. In summary, Bivalent Typhoidal Bacterial Ghost cells (BTBGs) enhances immunogenic properties and serves as a safe and effective prevention strategy against Salmonella Typhi and Paratyphi A.
Collapse
Affiliation(s)
- Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India.
| |
Collapse
|
6
|
Bahy R, Gaber A, Zedan H, Mabrook M. New typhoid vaccine using sponge-like reduced protocol: development and evaluation. Clin Exp Vaccine Res 2023; 12:70-76. [PMID: 36844684 PMCID: PMC9950223 DOI: 10.7774/cevr.2023.12.1.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/22/2022] [Indexed: 02/19/2023] Open
Abstract
Purpose Typhoid remains a major health problem, especially in the developing world. Furthermore, the emergence of multidrug-resistant and extensively drug-resistant strains of Salmonella typhi added a sense of urgency to develop more effective typhoid vaccines, one of which is bacterial ghosts (BGs), prepared by both genetic and chemical means. The chemical method includes incubation with numerous agents for a short time at their minimum inhibitory or minimum growth concentrations. This study included the preparation of BGs by a sponge-like reduced protocol (SLRP). Materials and Methods Critical concentrations of sodium dodecyl sulfate, NaOH, and H2O2 were used. Moreover, high-quality BGs were visualized by scanning electron microscope (SEM). Subculturing was used to confirm the absence of vital cells. Besides, the concentrations of the released DNA and protein were estimated spectrophotometrically. In addition, the integrity of cells was proved by visualizing Gram-stained cells using a light microscope. Furthermore, a comparison between the immunogenicity and safety of the prepared vaccine and the available whole-cell killed vaccine was established. Results Improved preparation of high-quality BGs of S. typhi, visualized by SEM, revealed punctured cells with intact outer shells. Moreover, the absence of vital cells was confirmed by subculturing. At the same time, the release of respective amounts of proteins and DNA is another evidence of BGs' production. Additionally, the challenge test provided evidence that the prepared BGs are immunogenic and have the same efficacy as the whole cell vaccine. Conclusion The SLRP provided a simple, economical, and feasible method for BGs preparation.
Collapse
Affiliation(s)
- Rehab Bahy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Asmaa Gaber
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hamdallah Zedan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona Mabrook
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
7
|
Ali RH, Ali ME, Samir R. Production and Characterization of Bacterial Ghost Vaccine against Neisseria meningitidis. Vaccines (Basel) 2022; 11:vaccines11010037. [PMID: 36679882 PMCID: PMC9865227 DOI: 10.3390/vaccines11010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Bacterial ghosts (BGS) are empty non-living envelopes produced either genetically or chemically. This study investigated a novel chemical protocol for the production of Neisseria meningitidis ghost vaccine using tween 80 followed by a pH reduction with lactic acid. For our vaccine candidate, both safety and immunogenicity aspects were evaluated. The ghost pellets showed no sign of growth upon cultivation. BGS were visualized by scanning electron microscopy, illustrating the formation of trans-membrane tunnels with maintained cell morphology. Gel electrophoresis showed no distinctive bands of the cytoplasmic proteins and DNA, assuring the formation of ghost cells. In animal model, humoral immune response significantly increased when compared to commercial vaccine (p < 0.01). Moreover, serum bactericidal assay (SBA) recorded 94.67% inhibition compared to 64% only for the commercial vaccine after three vaccination doses. In conclusion, this is the first N. meningitidis ghost vaccine candidate, proven to be effective, economic, and with significant humoral response and efficient SBA values; however, clinical studies should be performed.
Collapse
Affiliation(s)
- Randa H. Ali
- Department of Microbiology and Immunology, National Organization for Research and Control of Biological (NORCB), Giza 12622, Egypt
| | - Mohamed E. Ali
- Department of Microbiology and Immunology, National Organization for Research and Control of Biological (NORCB), Giza 12622, Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
8
|
Sodium hydroxide-induced Weissella kimchii ghosts (WKGs) as immunostimulant. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Rabea S, Yassin AS, Mohammed AF, Salem-Bekhit MM, Alanazi FK, Esmail EA, Moneib NA, Hashem AEM. Immunological characterization of the chemically prepared ghosts of Salmonella Typhimurium as a vaccine candidate. BMC Vet Res 2022; 18:72. [PMID: 35180858 PMCID: PMC8855557 DOI: 10.1186/s12917-021-03112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bacterial ghosts are the evacuated bacterial cellular membranes from most of the genetic and protein contents which preserved their surface characters. Recently, bacterial ghosts exploited for different biomedical applications, for instance, vaccination. The purpose of this study is to measure the immunogenic protective response of bacterial ghosts of Salmonella Typhimurium in animals and to allow future testing this response in humans. The immunologic response was qualitatively, quantitatively, and functionally measured. We have measured the humoral and cellular immune responses, such as immunoglobulins elevation (IgG), increased granulocytes, serum antibacterial activity, clearance of virulence in feces and liver, and the survival rate. RESULTS The bacterial ghosts' vaccine was able to protect 100% of subcutaneously vaccinated rats and 75% of adjuvant subcutaneously vaccinated rats. The lowest survival rate was in the orally vaccinated group (25%). The maximum level of serum IgG titers, as well as serum and feces bactericidal activity (100% eradication), was exhibited in the subcutaneously vaccinated group with adjuvant vaccines followed by the subcutaneously vaccinated one. Additionally, the highest granulocytes' number was observed in the adjuvant vaccine subcutaneously immunized group. The bacterial load in liver homogenate was eliminated in the subcutaneously vaccinated rats after the virulence challenge. CONCLUSIONS The bacterial ghosts of Salmonella enterica serovar Typhimurium that prepared by Tween 80 Protocol showed an effective vaccine candidate that protected animals, eliminated the virulence in feces and liver. These findings show that chemically induced bacterial ghosts of Salmonella Typhimurium can be a promising vaccine.
Collapse
Affiliation(s)
- Sameh Rabea
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11652, Egypt
| | - Aly Fahmy Mohammed
- The International Center for Advanced Researchers (ICTAR-Egypt), Cairo, Egypt
| | - Mounir M Salem-Bekhit
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Eman Amin Esmail
- The Holding Company for Production of Vaccines, Sera And Drugs (VACSERA), Cairo, Egypt
| | - Nayera A Moneib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11652, Egypt
| | - Abd Elgawad M Hashem
- Faculty of Pharmacy, British University in Egypt (BUE), Cairo, 11837 - P.O. Box 43, Egypt
| |
Collapse
|
10
|
Protective Immunity against Listeria monocytogenes in Rats, Provided by HCl- and NaOH-Induced Listeria monocytogenes Bacterial Ghosts (LMGs) as Vaccine Candidates. Int J Mol Sci 2022; 23:ijms23041946. [PMID: 35216061 PMCID: PMC8876606 DOI: 10.3390/ijms23041946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes (Lm) bacterial ghosts (LMGs) were produced by the minimum inhibitory concentration (MIC) of HCl, H2SO4, and NaOH. Acid and alkali effects on the LMGs were compared by in vitro and in vivo analyses. Scanning electron microscope showed that all chemicals form lysis pores on the Lm cell envelopes. Real-time qPCR revealed a complete absence of genomic DNA in HCl- and H2SO4-induced LMGs but not in NaOH-induced LMGs. HCl-, H2SO4- and NaOH-induced LMGs showed weaker or missing protein bands on SDS-PAGE gel when compared to wild-type Lm. Murine macrophages exposed to the HCl-induced LMGs showed higher cell viability than those exposed to NaOH-induced LMGs or wild-type Lm. The maximum level of cytokine expression (TNF-α, iNOS, IFN-γ, and IL-10 mRNA) was observed in the macrophages exposed to NaOH-induced LMGs, while that of IL-1β mRNA was observed in the macrophages exposed to HCl-induced LMGs. To investigate LMGs as a vaccine candidate, mice were divided into PBS buffer-injected, HCl- and NaOH-induced LMGs immunized groups. Mice vaccinated with HCl- and NOH-induced LMGs, respectively, significantly increased in specific IgG antibodies, bactericidal activities of serum, and CD4+ and CD8+ T-cell population. Antigenic Lm proteins reacted with antisera against HCl- and NOH-induced LMGs, respectively. Bacterial loads in HCl- and NaOH-induced LMGs immunized mice were significantly lower than PBS-injected mice after virulent Lm challenges. It suggested that vaccination with LMGs induces both humoral and cell-mediated immune responses and protects against virulent challenges.
Collapse
|
11
|
Hydrochloric acid-treated Bacillus subtilis ghosts induce IL-1 beta, IL-6, and TNF-alpha in murine macrophage. Mol Cell Toxicol 2022; 18:267-276. [PMID: 35069752 PMCID: PMC8764320 DOI: 10.1007/s13273-022-00221-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Background Bacterial ghosts (BGs) are empty cell envelopes commonly generated using Gram-negative bacteria; they represent a potential platform for efficient adjuvant and vaccine delivery systems. However, the efficient production of BGs from bacteria in a short period of time is challenging.
Objective The purpose of this study was to investigate the possibility of producing BGs in the Gram-positive Bacillus subtilis using various chemicals, and the potential application of BGs as a novel immunomodulatory agent. Results In this study, Bacillus subtilis ghosts (BSGs) were generated, for the first time to the best of our knowledge, using the minimum inhibitory concentration (MIC) of hydrochloric acid (HCl; 6.25 mg/mL), sulfuric acid (H2SO4; 3.125 mg/mL), and nitric acid (HNO3; 6.25 mg/mL). Among the BSGs generated using these chemicals, HCl-induced BSGs were completely DNA-free as confirmed by real-time polymerase chain reaction. Scanning electron microscopy showed the formation of transmembrane lysis tunnel structures in HCl-induced BSGs. Murine macrophages exposed to the HCl-induced BSGs at a concentration of 1 × 105 CFU/mL showed a cell viability of 97.8%. Additionally, HCl-induced BSGs upregulated the expression of pro-inflammatory cytokines including interleukin (IL)-1β, tumor necrosis factor alpha, and IL-6. Furthermore, we found differences in the protein expression profiles between intact live bacteria and BSGs using two-dimensional electrophoresis coupled with peptide mass fingerprinting/matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis.
Conclusion These data suggest that the HCl-induced BSGs may be potentially safe and effective candidates for inactivated bacterial vaccines and/or immunostimulants. Supplementary Information The online version contains supplementary material available at 10.1007/s13273-022-00221-5.
Collapse
|
12
|
A Novel and Efficient High-Yield Method for Preparing Bacterial Ghosts. Toxins (Basel) 2021; 13:toxins13060420. [PMID: 34199218 PMCID: PMC8231862 DOI: 10.3390/toxins13060420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial ghosts (BGs) are empty cell envelopes possessing native extracellular structures without a cytoplasm and genetic materials. BGs are proposed to have significant prospects in biomedical research as vaccines or delivery carriers. The applications of BGs are often limited by inefficient bacterial lysis and a low yield. To solve these problems, we compared the lysis efficiency of the wild-type protein E (EW) from phage ΦX174 and the screened mutant protein E (EM) in the Escherichia coli BL21(DE3) strain. The results show that the lysis efficiency mediated by protein EM was improved. The implementation of the pLysS plasmid allowed nearly 100% lysis efficiency, with a high initial cell density as high as OD600 = 2.0, which was higher compared to the commonly used BG preparation method. The results of Western blot analysis and immunofluorescence indicate that the expression level of protein EM was significantly higher than that of the non-pLysS plasmid. High-quality BGs were observed by SEM and TEM. To verify the applicability of this method in other bacteria, the T7 RNA polymerase expression system was successfully constructed in Salmonella enterica (S. Enterica, SE). A pET vector containing EM and pLysS were introduced to obtain high-quality SE ghosts which could provide efficient protection for humans and animals. This paper describes a novel and commonly used method to produce high-quality BGs on a large scale for the first time.
Collapse
|
13
|
Li S, Wang D, Guo C, Tian M, Liu Q, Pan Z. Study on preparation of a Streptococcus suis ghost vaccine. Microb Pathog 2021; 154:104865. [PMID: 33771628 DOI: 10.1016/j.micpath.2021.104865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Streptococcus suis (S.suis)is an important zoonotic pathogen in pigs and human. Bacterial ghosts (BGs) which are empty envelopes were used recently as efficient delivery system in vaccine development. In this study, S.suis ghosts were prepared and protective efficacy was evaluated in mice. Sodium hydroxide was used to prepare S.suis ghosts which were visualized under scanning electron microscopy. The optimum concentration of is Sodium hydroxide 6 mg/mL for ghosts formed. To investigate the S.suis ghosts as a candidate vaccine, the 50 BALB/c mice were randomly divided into three groups: Group A (control group), group B (subcutaneous injection of inactivated S.suis 2), group C (subcutaneous injection of inactivated S.suis 9), group D (subcutaneous injection of S.suis 2 ghosts), group E (subcutaneous injection of S.suis 9 ghosts). Serum were collected from five groups on the day of 7, 14, 21 and 28 after the first immunization for potency assay. Indirect ELISA results showed that antibody titer of blood serum of mice from group S.suis2 ghosts and group S.suis9 ghosts were significantly higher than blank group(P < 0.01), but were approximate to the conventional inactivated vaccine group SS2. In comparison with the conventional inactivated vaccine, S.suis ghosts as candidate vaccine strategy showed the excellent immunogenicity and provided protection against S.suis challenge in mice model.
Collapse
Affiliation(s)
- Siyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Dan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Chenyao Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Motong Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Qi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
14
|
Taddese R, Belzer C, Aalvink S, de Jonge MI, Nagtegaal ID, Dutilh BE, Boleij A. Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. J Microbiol Methods 2021; 184:106208. [PMID: 33766606 DOI: 10.1016/j.mimet.2021.106208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
There are many approaches available to produce inactive bacteria by termination of growth, each with a different efficacy, impact on cell integrity, and potential for application in standardized inactivation protocols. The aim of this study was to compare these approaches and develop a standardized protocol for generation of inactivated Gram-positive and Gram-negative bacteria, yielding cells that are metabolically dead with retained cellular integrity i.e., preserving the surface and limited leakage of intracellular proteins and DNA. These inactivated bacteria are required for various applications, for instance, when investigating receptor-triggered signaling or bacterial contact-dependent analysis of cell lines requiring long incubation times. We inactivated eight different bacterial strains of different species by treatment with beta-propiolactone, ethanol, formalin, sodium hydroxide, and pasteurization. Inactivation efficacy was determined by culturing, and cell wall integrity assessed by quantifying released DNA, bacterial membrane and intracellular DNA staining, and visualization by scanning electron microscopy. Based on these results, we discuss the bacterial inactivation methods, and their advantages and disadvantages to study host-microbe interactions with inactivated bacteria.
Collapse
Affiliation(s)
- Rahwa Taddese
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Steven Aalvink
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, the Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
The Development of a Phytopathogenic Fungi Control Trial: Aspergillus flavus and Aspergillus niger Infection in Jojoba Tissue Culture as a Model. ScientificWorldJournal 2021; 2021:6639850. [PMID: 33531879 PMCID: PMC7834779 DOI: 10.1155/2021/6639850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
After introducing the idea of using concentrations equal to or less than the minimum inhibition concentration (MIC) of some active chemical compounds for evacuating microbial cells, different types of microbes were evacuated. The original protocol was given the name sponge-like protocol and then was reduced and modified from a microorganism to another to prepare microbial ghosts for various applications such as immunological applications, drug delivery, and isolation of DNA and protein. Fungal pathogens that infect plants critically affect cost effectiveness, quality, and quantity of their production. They kill plant cells and/or cause plant stress. Plant fungal infections can originate from many sources such as infected soil, seeds, or crop debris causing diseases and quality losses around the world with billions of US dollars annually as costs of the associated productivity loss. This study focused on the application of the sponge-like protocol in protecting in vitro tissue cultures of plants against fungal pathogens. This can be useful for research purposes or may be developed to be introduced in field applications. Aspergillus flavus and Aspergillus niger infection in tissue culture of jojoba (Simmondsia chinensis (Link) Schn.) was used as a model to establish the employment of this protocol to control plant fungal diseases. The best conditions for A. flavus and A. niger ghosts production previously mapped by randomization experimental design (reduced Plackett–Burman experimental design) were used to prepare fungal ghosts. SDS, NaOH, NaHCO3, and H2O2 were used in their MIC (+1 level) or minimum growth concentration (MGC, −1 level) according to the determined optimal experimental design. The release of both of DNA and protein from the fungal cells was evaluated spectrophotometrically at 260nm and 280nm, respectively, as an indicator for cell loss of their cytoplasm. Fungal ghost cells were also examined by transmission electron microscopy. After confirming the preparation of high-quality fungal ghost cells, the same conditions were mimicked to control plant fungal infection. Jojoba grown in tissue culture was sprayed with fungal cells (about 103 CFU) as a control experiment or fungal cells followed by treatment with solution (a) represents the fungal ghost cells formation calculated critical concentration (FGCCC) of SDS, NaOH, and NaHCO3 and then treatment with solution (b) represents H2O2 FGCCC. The plant was examined on day 0 (plant grown before any infection or infection followed by treatment), day 5 (plant at day 5 after infection or infection followed by treatment), and day 10 (plant at day 10 after infection or infection followed by treatment). We observed fungal growth in case of control experiments at days 5 and 10 on the tissue culture medium, as well as plant, and the absence of any fungal growth in case of plant treated with FGCCC even after day 10. We recommend using this FGCCC in the form of chemical spraying formulation to treat the plants aiming to control different plant fungal infections in in vitro tissue culture systems or applied in field.
Collapse
|
16
|
Amara AAAF. Improving Animal Immunity to Prevent Fungal Infections with Folk Remedies and Advanced Medicine. FUNGAL DISEASES IN ANIMALS 2021:127-162. [DOI: 10.1007/978-3-030-69507-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Loo YS, Bose RJ, McCarthy JR, Mat Azmi ID, Madheswaran T. Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications. Drug Discov Today 2020; 26:902-915. [PMID: 33383213 DOI: 10.1016/j.drudis.2020.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Smart nanocarriers obtained from bacteria and viruses offer excellent biomimetic properties which has led to significant research into the creation of advanced biomimetic materials. Their versatile biomimicry has application as biosensors, biomedical scaffolds, immobilization, diagnostics, and targeted or personalized treatments. The inherent natural traits of biomimetic and bioinspired bacteria- and virus-derived nanovesicles show potential for their use in clinical vaccines and novel therapeutic drug delivery systems. The past few decades have seen significant progress in the bioengineering of bacteria and viruses to manipulate and enhance their therapeutic benefits. From a pharmaceutical perspective, biomimetics enable the safe integration of naturally occurring bacteria and virus particles to achieve high, stable rates of cellular transfection/infection and prolonged circulation times. In addition, biomimetic technologies can overcome safety concerns associated with live-attenuated and inactivated whole bacteria or viruses. In this review, we provide an update on the utilization of bacterial and viral particles as drug delivery systems, theranostic carriers, and vaccine/immunomodulation modalities.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Rajendran Jc Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Jason R McCarthy
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Abstract
INTRODUCTION Bacterial ghosts are intact bacterial cell envelopes that are emptied of their content by gentle biological or chemical poring methods. Ghost techniques increase the safety of the killed vaccines, while maintaining their antigenicity due to mild preparation procedures. Moreover, ghost-platforms may express and/or carry several antigens or plasmid-DNA encoding for protein epitopes. AREAS COVERED In this review, the development in ghost-vaccine production over the last 30 years is classified and discussed. The different applications of ghost-vaccines, how they trigger the immune system, their advantages and limitations are displayed. The phage-mediated lysis, molecular manipulation of the lysis-genes, and the biotechnological production of ghosts are described. The trials are classified according to the pattern of lysis and to the type of bacteria. Further subdivision includes chronological ordered application of the ghost as alternative-killed vaccine, recombinant antigen platform, plasmid DNA carrier, adjuvants, and dendritic cell inducer. Particular trials for specific pathogens or from distinct research schools are gathered. EXPERT OPINION Ghosts are highly qualified to act as immune-presenting platforms that express and/or carry several recombinant and DNA vaccines, as well as, being efficient alternative-killed vaccines. The coming years will show more molecular advances to develop ghost-production and to express more antigens.
Collapse
Affiliation(s)
- Ali M Batah
- Tropical Disease Research Center, University of Science and Technology , Sana'a, Yemen
| | - Tarek A Ahmad
- Morehouse School of Medicine , Atlanta, GA, USA.,Library Sector, Bibliotheca Alexandrina , Alexandria, Egypt
| |
Collapse
|
19
|
Won G, Kim B, Lee JH. A novel method to generate Salmonella Typhi Ty21a ghosts exploiting the λ phage holin-endolysin system. Oncotarget 2018. [PMID: 28637001 PMCID: PMC5564637 DOI: 10.18632/oncotarget.18383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human typhoid fever caused by Salmonella Typhi still poses a severe global disease burden in developing countries despite the availability of commercial vaccines. In this study, we constructed a non-living S. Typhi Ty21a vaccine candidate by employing a lambda (λ) phage-derived holin-endolysin system to efficiently construct bacterial ghosts. The lysis plasmid pJHL464 harbors an R lysis cassette that is stringently regulated by dual promoters containing cI857/λPR and ParaBAD/araC components. The plasmid was introduced into an asd gene-deleted S. Typhi Ty21a strain designated JOL1675. The in vitro expression of endolysin (~17.76 kDa) in the subsequent JOL1675 vaccine construct when grown under lysis inducible conditions was validated by immunoblotting. In scanning electron microscopy analysis, surface transmembrane tunnels and a collapsed body were visualized in the ghosts. Following 48 h of lysis, no viable JOL1675 cells remained, indicating that lysis of all cells was achieved. Subcutaneous immunizations of mice with the JOL1675 ghosts produced significantly increasing titers of serum IgG and vaginal wash secretory IgA antibodies against JOL1675 outer membrane proteins during the observational period. Further, serum collected at 6 weeks post-immunization of rabbits exhibited effective bactericidal activity against wild type S. Typhi in the presence of complement. These data showed that JOL1675 ghosts are highly immunogenic and elicit humoral and mucosal responses expected to correlate with protective immunity against S. typhi. Collectively, our findings support the conclusion that incorporating a λ phage holin-endolysin-mediated lysis construct into S. Typhi is an efficient strategy for developing a novel and safe non-living typhoid vaccine candidate.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, Republic of Korea
| | - Boram Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan, Republic of Korea
| |
Collapse
|
20
|
Rabea S, Salem-Bekhit MM, Alanazi FK, Yassin AS, Moneib NA, Hashem AEM. A novel protocol for bacterial ghosts' preparation using tween 80. Saudi Pharm J 2018; 26:232-237. [PMID: 30166921 PMCID: PMC6111193 DOI: 10.1016/j.jsps.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Bacterial ghosts (BGs) can be prepared by both genetic and chemical means. Genetic method include using lysis gene E. Chemical method include incubation with numerous agents for a short time at their minimum inhibitory or minimum growth concentrations (MIC or MGC). The aim of this study is to prepare the BGs with a new protocol via exposing the bacterial cells to tween 80 for an extended period of time followed by sudden reduction of the surrounding pH. Salmonella enterica serovar typhimurium ATCC 13311 was used for this purpose. The cells were incubated in 7% v/v tween 80 solution in Muller-Hinton broth for 24 h at 37 °C then pH was decreased to 3.6 by adding lactic acid for one hour. The bacterial pellets were separated by high speed centrifugation, and then washed three times by half normal saline solution. High quality BGs were visualized by scanning electron microscopy (SEM) revealing punctured cells with intact outer shells and at least one intramembranous tunnel. The absence of vital cells was confirmed by subculturing. The release of respective amounts of proteins and DNA is another evidence of ghost's production. In addition, the integrity of cells was proved by visualization of Gram-stained cells using light microscopy. In conclusion, this new protocol is simple, economic and feasible for BGs preparation.
Collapse
Affiliation(s)
- Sameh Rabea
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11652, Egypt
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem-Bekhit
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aymen S. Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11652, Egypt
| | - Nayera A. Moneib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11652, Egypt
| | - Abd Elgawad M. Hashem
- Faculty of Pharmacy, British University in Egypt (BUE), P.O. Box 43, Cairo 11837, Egypt
| |
Collapse
|
21
|
A Salmonella typhimurium ghost vaccine induces cytokine expression in vitro and immune responses in vivo and protects rats against homologous and heterologous challenges. PLoS One 2017; 12:e0185488. [PMID: 28961267 PMCID: PMC5621678 DOI: 10.1371/journal.pone.0185488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023] Open
Abstract
Salmonella enteritidis and Salmonella typhimurium are important food-borne bacterial pathogens, which are responsible for diarrhea and gastroenteritis in humans and animals. In this study, S. typhimurium bacterial ghost (STG) was generated based on minimum inhibitory concentration (MIC) of sodium hydroxide (NaOH). Experimental studies performed using in vitro and in vivo experimental model systems to characterize effects of STG as a vaccine candidate. When compared with murine macrophages (RAW 264.7) exposed to PBS buffer (98.1%), the macrophages exposed to formalin-killed inactivated cells (FKC), live wild-type bacterial cells and NaOH-induced STG at 1 × 108 CFU/mL showed 85.6%, 66.5% and 84.6% cell viability, respectively. It suggests that STG significantly reduces the cytotoxic effect of wild-type bacterial cells. Furthermore, STG is an excellent inducer for mRNAs of pro-inflammatory cytokine (TNF-α, IL-1β) and factor (iNOS), anti-inflammatory cytokine (IL-10) and dual activities (IL-6) in the stimulated macrophage cells. In vivo, STG vaccine induced humoral and cellular immune responses and protection against homologous and heterologous challenges in rats. Furthermore, the immunogenicity and protective efficacy of STG vaccine were compared with those of FKC and non-vaccinated PBS control groups. The vaccinated rats from STG group exhibited higher levels of serum IgG antibody responses, serum bactericidal antibodies, and CD4+ and CD8+ T-cell populations than those of the FKC and PBS control groups. Most importantly, after challenge with homologous and heterologous strains, the bacterial loads in the STG group were markedly lower than the FKC and PBS control groups. In conclusion, these findings suggest that the STG vaccine induces protective immunity against homologous and heterologous challenges.
Collapse
|
22
|
Kim B, Won G, Lee JH. Construction of an inactivated typhoid vaccine candidate expressing Escherichia coli heat-labile enterotoxin B subunit and evaluation of its immunogenicity in a murine model. J Med Microbiol 2017; 66:1235-1243. [DOI: 10.1099/jmm.0.000543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Boram Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79 Iksan, 54596, Republic of Korea
| | - Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79 Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan campus, Gobong-ro 79 Iksan, 54596, Republic of Korea
| |
Collapse
|
23
|
A novel approach for construction of an inactivated typhoid vaccine candidate that effectively augments both humoral and cellular immune responses. Vaccine 2017; 35:3333-3341. [DOI: 10.1016/j.vaccine.2017.04.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/11/2023]
|
24
|
Wu X, Ju X, Du L, Yuan J, Wang L, He R, Chen Z. Production of Bacterial Ghosts from Gram-Positive PathogenListeria monocytogenes. Foodborne Pathog Dis 2017; 14:1-7. [DOI: 10.1089/fpd.2016.2184] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xueyou Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingrong Ju
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Lihui Du
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jian Yuan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Rong He
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhengxing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Characterization of Chemically-Induced Bacterial Ghosts (BGs) Using Sodium Hydroxide-Induced Vibrio parahaemolyticus Ghosts (VPGs). Int J Mol Sci 2016; 17:ijms17111904. [PMID: 27854308 PMCID: PMC5133902 DOI: 10.3390/ijms17111904] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Acellular bacterial ghosts (BGs) are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs) were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC) of sodium hydroxide (NaOH), acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS) extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 106 CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS), anti-inflammatory cytokine (IL-10), and dual activities (IL-6) in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning electron microscopy showed the formation of trans-membrane lysis tunnel structures in the NaOH-induced VPGs. SDS-PAGE and agarose gel electrophoresis also confirmed that cytoplasmic proteins and genomic DNA released from the VPGs to culture medium through the lysis tunnel structures. Taken together, all these data indicate that the NaOH-induced VPGs show the potency of a safe, economical, and effective inactivated bacterial vaccine candidate.
Collapse
|
26
|
Animal Models for Salmonellosis: Applications in Vaccine Research. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:746-56. [PMID: 27413068 DOI: 10.1128/cvi.00258-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development.
Collapse
|
27
|
Generation of a Novel Staphylococcus aureus Ghost Vaccine and Examination of Its Immunogenicity against Virulent Challenge in Rats. Infect Immun 2015; 83:2957-65. [PMID: 25964469 DOI: 10.1128/iai.00009-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/02/2015] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen that causes a wide range of infections in humans and animals. Bacterial ghosts are nonliving, empty cell envelopes and are well represented as novel vaccine candidates. In this study, we examined the immunogenicity and protective efficacy of S. aureus ghosts (SAGs) against a virulent challenge in rats. Nonliving SAGs were generated by using the MIC of sodium hydroxide. The formation of a transmembrane lysis tunnel structure in SAGs was visualized by scanning electron microscopy. To investigate these SAGs as a vaccine candidate, rats were divided into four groups, A (nonimmunized control), B (orally immunized), C (subcutaneously immunized), and D (intravenously immunized). The IgG antibody responses were significantly stronger in the SAG-immunized groups than in the nonimmunized control group (P < 0.05). Moreover, a significant increase in the populations of CD4(+) and CD8(+) T cells was observed in all three immunized groups (P < 0.05). We also found that serum bactericidal antibodies were significantly elicited in the SAG-immunized groups (P < 0.05). Most importantly, the bacterial loads in the immunized groups were significantly lower than those in the nonimmunized control group (P < 0.01). These results suggest that immunization with SAGs induces immune responses and provides protection against a virulent S. aureus challenge.
Collapse
|