1
|
Feodorova VA, Zaitsev SS, Lyapina AM, Kichemazova NV, Saltykov YV, Khizhnyakova MA, Evstifeev VV, Larionova OS. Whole genome sequencing characteristics of Chlamydia psittaci caprine AMK-16 strain, a promising killed whole cell veterinary vaccine candidate against chlamydia infection. PLoS One 2023; 18:e0293612. [PMID: 37903115 PMCID: PMC10615304 DOI: 10.1371/journal.pone.0293612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Chlamydia psittaci is a primary zoonotic pathogen with a broad host range causing severe respiratory and reproductive system infection in animals and humans. To reduce the global burden of C. psittaci-associated diseases on animal welfare and health and to control the pathogen spread in husbandry, effective vaccines based on promising vaccine candidate(s) are required. Recently, the caprine C. psittaci AMK-16 strain (AMK-16) demonstrated a high level of protection (up to 80-100%) in outbred mice and pregnant rabbits immunized with these formaldehyde-inactivated bacteria against experimental chlamydial wild-type infection. This study investigated the molecular characteristics of AMK-16 by whole-genome sequencing followed by molecular typing, phylogenetic analysis and detection of main immunodominant protein(s) eliciting the immune response in mouse model. Similarly to other C. psittaci, AMK-16 harbored an extrachromosomal plasmid. The whole-genome phylogenetic analysis proved that AMK-16 strain belonging to ST28 clustered with only C. psittaci but not with Chlamydia abortus strains. However, AMK-16 possessed the insert which resulted from the recombination event as the additional single chromosome region of a 23,100 bp size with higher homology to C. abortus (98.38-99.94%) rather than to C. psittaci (92.06-92.55%). At least six of 16 CDSs were absent in AMK-16 plasticity zone and 41 CDSs in other loci compared with the reference C. psittaci 6BC strain. Two SNPs identified in the AMK-16 ompA sequence resulted in MOMP polymorphism followed by the formation of a novel genotype/subtype including three other C. psittaci strains else. AMK-16 MOMP provided marked specific cellular and humoral immune response in 100% of mice immunized with the inactivated AMK-16 bacteria. Both DnaK and GrpE encoded by the recombination region genes were less immunoreactive, inducing only a negligible T-cell murine immune response, while homologous antibodies could be detected in 50% and 30% of immunized mice, respectively. Thus, AMK-16 could be a promising vaccine candidate for the development of a killed whole cell vaccine against chlamydiosis in livestock.
Collapse
Affiliation(s)
- Valentina A. Feodorova
- Laboratory for Fundamental and Applied Research, Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Sergey S. Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Anna M. Lyapina
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Natalya V. Kichemazova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Yury V. Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Mariya A. Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Vitaliy V. Evstifeev
- Laboratory of Viral and Chlamydial Infections, Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
- Department of Microbiology, Virology and Immunology, Kazan State Academy of Veterinary Medicine by N.E. Bauman, Kazan City, Russia
| | - Olga S. Larionova
- Laboratory for Fundamental and Applied Research, Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| |
Collapse
|
2
|
Wang C, Jin Y, Wang J, Zheng K, Lei A, Lu C, Wang S, Wu Y. Protective Immunity against Chlamydia psittaci Lung Infection Induced by a DNA Plasmid Vaccine Carrying CPSIT_p7 Gene Inhibits Dissemination in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24087013. [PMID: 37108176 PMCID: PMC10138700 DOI: 10.3390/ijms24087013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
Chlamydia psittaci (C. psittaci), a zoonotic pathogen, poses a potential threat to public health security and the development of animal husbandry. Vaccine-based preventative measures for infectious diseases have a promising landscape. DNA vaccines, with many advantages, have become one of the dominant candidate strategies in preventing and controlling the chlamydial infection. Our previous study showed that CPSIT_p7 protein is an effective candidate for a vaccine against C. psittaci. Thus, this study evaluated the protective immunity of pcDNA3.1(+)/CPSIT_p7 against C. psittaci infection in BALB/c mice. We found that pcDNA3.1(+)/CPSIT_p7 can induce strong humoral and cellular immune responses. The IFN-γ and IL-6 levels in the infected lungs of mice immunized with pcDNA3.1(+)/CPSIT_p7 reduced substantially. In addition, the pcDNA3.1(+)/CPSIT_p7 vaccine diminished pulmonary pathological lesions and reduced the C. psittaci load in the lungs of infected mice. It is worth noting that pcDNA3.1(+)/CPSIT_p7 suppressed C. psittaci dissemination in BALB/c mice. In a word, these results demonstrate that the pcDNA3.1(+)/CPSIT_p7 DNA vaccine has good immunogenicity and immunity protection effectiveness against C. psittaci infection in BALB/c mice, especially pulmonary infection, and provides essential practical experience and insights for the development of a DNA vaccine against chlamydial infection.
Collapse
Affiliation(s)
- Chuan Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Yingqi Jin
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Jiewen Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Kang Zheng
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Shuzhi Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
- Department of Pharmacology, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yimou Wu
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Peng B, Zhong S, Hua Y, Luo Q, Dong W, Wang C, Li Z, Yang C, Lei A, Lu C. Efficacy of Pgp3 vaccination for Chlamydia urogenital tract infection depends on its native conformation. Front Immunol 2022; 13:1018774. [PMID: 36466885 PMCID: PMC9709265 DOI: 10.3389/fimmu.2022.1018774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
Urogenital tract infections with Chlamydia trachomatis have frequently been detected among patients diagnosed with sexually transmitted infections, and such infections lead to inflammatory complications. Currently, no licensed chlamydial vaccine is available in clinical practice. We previously reported that immunization with recombinant C. trachomatis plasmid-encoded virulence factor Pgp3 provided cross-serovar protection against C. muridarum genital tract infection. Because Pgp3 is a homotrimer and human antisera only recognize the trimeric form of Pgp3, we compared the effects of the native conformation of Pgp3 (trimer) and heat-denatured Pgp3 (monomer) to determine whether the native conformation is dispensable for the induction of protective immunity against chlamydial vaginal challenge. Both Pgp3 trimer and monomer immunization induced corresponding specific antibody production, but only trimer-induced antibody recognized endogenous Pgp3, and trimer-immunized mouse splenocytes showed the highest IFN-γ production upon restimulation with the chlamydial elementary body or native Pgp3 in vitro. Importantly, only Pgp3 trimer-immunized mice showed shortened lower genital tract chlamydial shedding and decreased upper genital tract pathology. Thus, Pgp3-induced protective immunity against Chlamydia urogenital tract infection is highly dependent on the native conformation, which will guide the design of Pgp3-based polypeptides and multi-subunit chlamydial vaccines.
Collapse
Affiliation(s)
- Bo Peng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
- Department of Pathology, Hengyang Medical College, University of South China, Hengyang, China
| | - Shufang Zhong
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Yaoqin Hua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Qizheng Luo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Weilei Dong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Chunfen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Aihua Lei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| |
Collapse
|
4
|
He S, Wang C, Huang Y, Lu S, Li W, Ding N, Chen C, Wu Y. Chlamydia psittaci plasmid-encoded CPSIT_P7 induces macrophage polarization to enhance the antibacterial response through TLR4-mediated MAPK and NF-κB pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119324. [PMID: 35809864 DOI: 10.1016/j.bbamcr.2022.119324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although the protective effects of Chlamydia psittaci plasmid-encoded protein CPSIT_P7 as vaccine antigens to against chlamydial infection have been confirmed in our previous study, the function and mechanism of CPSIT_P7 inducing innate immunity in the antibacterial response remain unknown. Here, we found that plasmid protein CPSIT_P7 could induce M1 macrophage polarization upregulating the genes of the surface molecule CD86, proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and antibacterial effector NO synthase 2 (iNOS). During M1 macrophage polarization, macrophages acquire phagocytic and microbicidal competence, which promotes the host antibacterial response. As we observed that CPSIT_P7-induced M1 macrophages could partially reduce the infected mice pulmonary Chlamydia psittaci load. Furthermore, CPSIT_P7 induced M1 macrophage polarization through the TLR4-mediated MAPK and NF-κB pathways. Collectively, our results highlight the effect of CPSIT_P7 on macrophage polarization and provide new insights into new prevention and treatment strategies for chlamydial infection.
Collapse
Affiliation(s)
- Siqin He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Yanru Huang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Weiwei Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chaoqun Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Liu C, Hufnagel K, O'Connell CM, Goonetilleke N, Mokashi N, Waterboer T, Tollison TS, Peng X, Wiesenfeld HC, Hillier SL, Zheng X, Darville T. Reduced Endometrial Ascension and Enhanced Reinfection Associated with IgG Antibodies to Specific Chlamydia trachomatis Proteins in Women at Risk for Chlamydia. J Infect Dis 2021; 225:846-855. [PMID: 34610131 DOI: 10.1093/infdis/jiab496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous research revealed antibodies targeting Chlamydia trachomatis (CT) elementary bodies was not associated with reduced endometrial or incident infection in CT-exposed women. However, data on the role of CT protein-specific antibodies in protection are limited. METHODS A whole-proteome CT array screening serum pools from CT-exposed women identified 121 immunoprevalent proteins. Individual sera were probed using a focused array. IgG antibody frequencies and endometrial or incident infection relationships were examined using Wilcoxon Rank sum test. The impact of breadth and magnitude of protein-specific IgGs on ascension and incident infection were examined using multivariable stepwise logistic regression. Complementary RNA-sequencing quantified CT gene transcripts in cervical swabs from infected women. RESULTS IgG to Pgp3 and CT005 were associated with reduced endometrial infection; anti-CT443, -CT486 and -CT123 were associated with increased incident infection. Increased breadth of protein recognition did not however predict protection from endometrial or incident infection. mRNAs for immunoprevalent CT proteins were highly abundant in the cervix. CONCLUSIONS Protein-specific CT antibodies are not sufficient to protect against ascending or incident infection but broad recognition of CT proteins by IgG correlates with cervical CT gene transcript abundance, suggesting CT protein abundance correlates with immunogenicity and signifies their potential as vaccine candidates.
Collapse
Affiliation(s)
- Chuwen Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrin Hufnagel
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Neha Mokashi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Tammy S Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Xiaojing Zheng
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Ambroxol Treatment Suppresses the Proliferation of Chlamydia pneumoniae in Murine Lungs. Microorganisms 2021; 9:microorganisms9040880. [PMID: 33924075 PMCID: PMC8074272 DOI: 10.3390/microorganisms9040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
Ambroxol (Ax) is used as a mucolytics in the treatment of respiratory tract infections. Ax, at a general dose for humans, does not alter Chlamydia pneumoniae growth in mice. Therefore, we aimed to investigate the potential anti-chlamydial effect of Ax at a concentration four timed higher than that used in human medicine. Mice were infected with C. pneumoniae and 5-mg/kg Ax was administered orally. The number of recoverable C. pneumoniae inclusion-forming units (IFUs) in Ax-treated mice was significantly lower than that in untreated mice. mRNA expression levels of several cytokines, including interleukin 12 (IL-12), IL-23, IL-17F, interferon gamma (IFN-γ), and surfactant protein (SP)-A, increased in infected mice treated with Ax. The IFN-γ protein expression levels were also significantly higher in infected and Ax-treated mice. Furthermore, the in vitro results suggested that the ERK 1/2 activity was decreased, which is essential for the C. pneumoniae replication. SP-A and SP-D treatments significantly decreased the number of viable C. pneumoniae IFUs and significantly increased the attachment of C. pneumoniae to macrophage cells. Based on our results, a dose of 5 mg/kg of Ax exhibited an anti-chlamydial effect in mice, probably an immunomodulating effect, and may be used as supporting drug in respiratory infections caused by C. pneumoniae.
Collapse
|
7
|
Wang C, Li Y, Wang S, Yan X, Xiao J, Chen Y, Zheng K, Tan Y, Yu J, Lu C, Wu Y. Evaluation of a tandem Chlamydia psittaci Pgp3 multiepitope peptide vaccine against a pulmonary chlamydial challenge in mice. Microb Pathog 2020; 147:104256. [PMID: 32416138 DOI: 10.1016/j.micpath.2020.104256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Chlamydia psittaci is the pathogen of psittacosis, and it has emerged as a significant public health threat. Because most infections are easily overlooked, a vaccine is recognized as the best solution to control the spread of C. psittaci. Our previous study showed that Pgp3 protein is efficacious as a subunit vaccine while not the best candidate due to the negative effects. Thus, in this study, we tested the ability of a tandem epitope vaccine candidate designated SP based on Pgp3-dominant epitopes to induce protective immunity against pulmonary chlamydial infection. BALB/c mice were intraperitoneally inoculated with multiepitope peptide antigens followed by intranasal infection with C. psittaci. We found that the multiepitope peptide antigens induced strong humoral and cellular immune responses with high Th1-related (IFN-γ and IL-2) and proinflammatory (IL-6) cytokine levels. Meanwhile, the pathogen burden and inflammatory infiltration were significantly reduced in lungs of SP-immunized mice after chlamydial challenge. In addition, the IFN-γ and IL-6 secretion levels in the infected lungs were substantially reduced. Overall, our findings demonstrate that the peptide vaccine SP plays a significant role with good immunogenicity and protective efficacy against C. psittaci lung infection in BALB/c mice, providing important insights towards understanding the potential of peptide vaccines as new vaccine antigens for inducing protective immunity against chlamydial infection.
Collapse
Affiliation(s)
- Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Shuzhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Xiaoliang Yan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Jian Xiao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuqing Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuan Tan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Jian Yu
- Department of Experimental Zoology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
8
|
Luan X, Peng B, Li Z, Tang L, Chen C, Chen L, Wu H, Sun Z, Lu C. Vaccination with MIP or Pgp3 induces cross-serovar protection against chlamydial genital tract infection in mice. Immunobiology 2018; 224:223-230. [PMID: 30558842 DOI: 10.1016/j.imbio.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/26/2023]
Abstract
Previously we reported that recombinant Chlamydia muridarum macrophage infectivity potentiator (MIP) provided partial protection against C. muridarum genital tract infection in mice. On the other hand, Chlamydia trachomatis plasmid encoded Pgp3could induce the protection against C. muridarum air way infection. This study aimed to evaluate the immunogenicity of MIP and Pgp3 from C. trachomatis serovar D and further investigate whether MIP and Pgp3 provide cross-serovar protection against C. muridarum genital tract infection in mice. Our results showed that vaccination by any regimen, including MIP alone, Pgp3 alone or MIP plus Pgp3, induced specific serum antibody production and Th1-dominant cellular responses in mice. Live chlamydial shedding from the vaginal and inflammatory pathologies in the oviduct markedly reduced. However, MIP + Pgp3 vaccination did not provide better protection than the single immunization. In conclusion, this study demonstrated that both MIP and Pgp3 can induce cross-serovar protective against chlamydial genital tract infection, and provided the guide for the development of optimal multisubunit vaccines against C. trachomatis infection.
Collapse
Affiliation(s)
- Xiuli Luan
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Bo Peng
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China; Department of Pathology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chaoqun Chen
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Lili Chen
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Haiying Wu
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Zhenjie Sun
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Chunxue Lu
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
9
|
A recombinant multi-epitope peptide vaccine based on MOMP and CPSIT_p6 protein protects against Chlamydia psittaci lung infection. Appl Microbiol Biotechnol 2018; 103:941-952. [DOI: 10.1007/s00253-018-9513-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
|
10
|
Tan Y, Li Y, Zhang Y, Yu J, Wen Y, Wang C, Xu M, Chen Q, Lu C, Wu Y. Immunization with Chlamydia psittaci plasmid-encoded protein CPSIT_p7 induces partial protective immunity against chlamydia lung infection in mice. Immunol Res 2018; 66:471-479. [PMID: 30097797 DOI: 10.1007/s12026-018-9018-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The present study evaluated the immune-protective efficacy of the Chlamydia psittaci (C. psittaci) plasmid protein CPSIT_p7 and analyzed the potential mechanisms of this protection. The current study used recombinant CPSIT_p7 protein with Freund's complete adjuvant and Freund's incomplete adjuvant to vaccinate BALB/c mice. Adjuvants alone or PBS formulated with the same adjuvants was used as negative controls. Mice were intranasally challenged with 105 inclusion-forming units (IFU) of C. psittaci. We found that CPSIT_p7 vaccination significantly decreased the mouse lung chlamydial load, interferon-γ (IFN-γ) level, and pathological injury. This protection correlated well with specific humoral and cellular immune responses against C. psittaci. In vitro or in vivo neutralization of C. psittaci with sera harvested from immunized mice did not reduce the number of recoverable C. psittaci in the infected lungs, but CD4+ spleen cells collected from CPSIT_p7-immunized mice significantly decreased the chlamydial load via adoptive transfer to native mice. These results reveal that the protection conferred by CPSIT_p7 is dependent on CD4+ T cells.
Collapse
Affiliation(s)
- Yuan Tan
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Dermatology, the First Hospital of Changsha City, Changsha, 410000, China
| | - Yumeng Li
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Yang Zhang
- Department of Pathology, University of South China, Hengyang, 421001, China
| | - Jian Yu
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Yating Wen
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Chuan Wang
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Man Xu
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Qian Chen
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Chunxue Lu
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.
| |
Collapse
|
11
|
Safety and immunogenicity of a prototype anti-Chlamydia pecorum recombinant protein vaccine in lambs and pregnant ewes. Vaccine 2017; 35:3461-3465. [PMID: 28528762 DOI: 10.1016/j.vaccine.2017.03.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/09/2017] [Accepted: 03/30/2017] [Indexed: 01/16/2023]
Abstract
Arthritis and kerato-conjunctivitis caused by Chlamydia pecorum in lambs are difficult to diagnose and treat. We tested the ability of a prototype C. pecorum vaccine (SC-vaccine), comprised of C. pecorum major outer membrane protein (MOMP-G) and polymorphic membrane protein G (PmpG), to trigger a Chlamydia-specific humoral and cell-mediated immune response in lambs and pregnant ewes. Vaccinations with the SC-vaccine (one and two injections) were very well tolerated by all ewes and lambs. Although the overall immune responses of ewes to SC-vaccination was poor, their lambs showed stronger antigen-specific immune response than lambs from control vaccine ewes. SC-vaccination in lambs triggered production of systemic anti-MOMP-G and anti-PmpG IgG antibodies and secretory IgA in the ocular mucosa. Double vaccination caused statistically significant increases in the height and duration of the humoral response. Antigen-specific IFN-γ was produced in the peripheral blood mononuclear cells of vaccinated lambs.
Collapse
|
12
|
Zhong G. Chlamydial Plasmid-Dependent Pathogenicity. Trends Microbiol 2016; 25:141-152. [PMID: 27712952 DOI: 10.1016/j.tim.2016.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Most Chlamydia species carry a 7.5kb plasmid encoding eight open reading frames conventionally called plasmid glycoproteins 1-8 or pGP1-8. Although the plasmid is not critical for chlamydial growth in vitro, its role in chlamydial pathogenesis is clearly demonstrated in the genital tracts of mice infected with Chlamydia muridarum, a model for investigating the human pathogen Chlamydia trachomatis. Plasmid-free C. trachomatis is also attenuated in both the mouse genital tract and nonhuman primate ocular tissue. Deficiency in pGP3 alone, which is regulated by pGP4, largely reproduced the in vivo but not in vitro phenotypes of the plasmid-free organisms, suggesting that pGP3 is a key in vivo virulence factor. The positive and negative regulations of some chromosomal genes by pGP4 and pGP5, respectively, may allow the plasmid to promote chlamydial adaptation to varied animal tissue environments. The focus of this review is to summarize the progress on the pathogenic functions of the plasmid-encoded open reading frames, which may motivate further investigation of the molecular mechanisms of chlamydial pathogenicity and development of medical utility of the chlamydial plasmid system.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Liang M, Wen Y, Ran O, Chen L, Wang C, Li L, Xie Y, Zhang Y, Chen C, Wu Y. Protective immunity induced by recombinant protein CPSIT_p8 of Chlamydia psittaci. Appl Microbiol Biotechnol 2016; 100:6385-6393. [PMID: 27052378 DOI: 10.1007/s00253-016-7494-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Chlamydia psittaci is a zoonotic pathogen with a broad host range that can lead to severe respiratory and systemic disease in humans. Currently, an effective commercial vaccine against C. psittaci infection is not available. The chlamydial plasmid is an important virulence factor and encodes plasmid proteins that play important roles in chlamydial infection and the corresponding immune response. In this study, we assessed the efficacy of vaccination with plasmid proteins at preventing C. psittaci lung infection in a murine model. BALB/c mice were immunized intraperitoneally, three times at 2-week intervals, with purified recombinant CPSIT_p8 protein and then infected with C. psittaci. Immunization significantly decreased chlamydial load in the lungs of infected mice, resulted in a lower level of IFN-γ, and reduced the extent of inflammation. In vivo or in vitro neutralization of C. psittaci with sera collected from immunized mice did not reduce the amount of viable C. psittaci in the lungs of mice, indicating that CPSIT_p8-specific antibodies do not have neutralizing capacity. Furthermore, confocal fluorescence microscopy using a mouse anti-CPSIT_p8 antibody revealed that CPSIT_p8 was localized inside the inclusion of C. psittaci 6BC-infected cells. Our results demonstrate that CPSIT_p8 protein induces significant protective immunity against challenge with C. psittaci in mice and represents a promising new vaccine candidate for the prevention of C. psittaci infection.
Collapse
Affiliation(s)
- Mingxing Liang
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yating Wen
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Ou Ran
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.,Department of Clinical Laboratory, Central Hospital of Xiangtan, Xiangtan, 411100, China
| | - Liesong Chen
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Chuan Wang
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Li Li
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Yafeng Xie
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Yang Zhang
- Department of Pathology, University of South China, Hengyang, 421001, China
| | - Chaoqun Chen
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China. .,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| | - Yimou Wu
- Pathogenic Biology Institute, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China. .,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|