1
|
Henning L, Anderson M, Triplett C, Smith T, Boyce K, Hendey L, Ridenour A, Eng J, Schaeufele D, Wilson E, Sabourin CL, Adams LE, Babas T, Parish L, Wolfe D. Efficacy of different AV7909 dose regimens in a nonclinical model of pulmonary anthrax. Hum Vaccin Immunother 2023; 19:2290345. [PMID: 38115181 PMCID: PMC10760354 DOI: 10.1080/21645515.2023.2290345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Pulmonary anthrax caused by exposure to inhaled Bacillus anthracis, the most lethal form of anthrax disease, is a continued military and public health concern for the United States. The vaccine AV7909, consisting of the licensed anthrax drug substance AVA adjuvanted with CpG7909, induces high levels of toxin neutralizing antibodies in healthy adults using fewer doses than AVA. This study compares the ability of one- or two-dose regimens of AV7909 to induce a protective immune response in guinea pigs challenged with a lethal dose of aerosolized B. anthracis spores 6 weeks after the last vaccine dose. The results indicated that AV7909 was less effective when delivered as a single dose compared to the two-dose regimen that resulted in dose-dependent protection against death. The toxin neutralizing assay (TNA) titer and anti-PA IgG responses were proportional to the protective efficacy, with a 50% TNA neutralizing factor (NF50) greater than 0.1 associated with survival in animals receiving two doses of vaccine. The strong protection at relatively low TNA NF50 titers in this guinea pig model supports the exploration of lower doses in clinical trials to determine if these protective levels of neutralizing antibodies can be achieved in humans; however, protection with a single dose may not be feasible.
Collapse
Affiliation(s)
- Lisa Henning
- Battelle Biomedical Research Center, Columbus, OH, USA
| | | | | | - Tammy Smith
- Battelle Biomedical Research Center, Columbus, OH, USA
| | - Kevin Boyce
- Battelle Biomedical Research Center, Columbus, OH, USA
| | | | - Alex Ridenour
- Battelle Biomedical Research Center, Columbus, OH, USA
| | - Jason Eng
- Battelle Biomedical Research Center, Columbus, OH, USA
| | | | - Ehran Wilson
- Battelle Biomedical Research Center, Columbus, OH, USA
| | - Carol L. Sabourin
- Tunnell Government Services, Inc, Supporting BARDA, Washington, DC, USA
| | - Lily E. Adams
- Oak Ridge Institute for Science and Education (ORISE) fellow at BARDA, Washington, DC, USA
| | - Tahar Babas
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - Lindsay Parish
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - Daniel Wolfe
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| |
Collapse
|
2
|
Safety and immunogenicity of the two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in children in Sierra Leone: a randomised, double-blind, controlled trial. THE LANCET. INFECTIOUS DISEASES 2021; 22:110-122. [PMID: 34529962 PMCID: PMC7613317 DOI: 10.1016/s1473-3099(21)00128-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/18/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
Abstract
Background Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vectorbased vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone. Methods This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1–17 years were enrolled in three age cohorts (12–17 years, 4–11 years, and 1–3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494. Findings From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1–3 years after placebo injection to 21% (30 of 144) of children aged 4–11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12–17 years and 4–11 years age cohorts after the first and second dose, and pyrexia in the 1–3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12–17 years (9929 ELISA units [EU]/mL [95% CI 8172–12 064]), in 119 (99%) of 120 aged 4–11 years (10 212 EU/mL [8419–12 388]), and in 118 (98%) of 121 aged 1–3 years (22 568 EU/mL [18 426–27 642]). Interpretation The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1–17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children. Funding Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.
Collapse
|
3
|
Bower WA, Schiffer J, Atmar RL, Keitel WA, Friedlander AM, Liu L, Yu Y, Stephens DS, Quinn CP, Hendricks K. Use of Anthrax Vaccine in the United States: Recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm Rep 2019; 68:1-14. [PMID: 31834290 PMCID: PMC6918956 DOI: 10.15585/mmwr.rr6804a1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This report updates the 2009 recommendations from the CDC Advisory Committee on Immunization Practices (ACIP) regarding use of anthrax vaccine in the United States (Wright JG, Quinn CP, Shadomy S, Messonnier N. Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices [ACIP)], 2009. MMWR Recomm Rep 2010;59[No. RR-6]). The report 1) summarizes data on estimated efficacy in humans using a correlates of protection model and safety data published since the last ACIP review, 2) provides updated guidance for use of anthrax vaccine adsorbed (AVA) for preexposure prophylaxis (PrEP) and in conjunction with antimicrobials for postexposure prophylaxis (PEP), 3) provides updated guidance regarding PrEP vaccination of emergency and other responders, 4) summarizes the available data on an investigational anthrax vaccine (AV7909), and 5) discusses the use of anthrax antitoxins for PEP. Changes from previous guidance in this report include the following: 1) a booster dose of AVA for PrEP can be given every 3 years instead of annually to persons not at high risk for exposure to Bacillus anthracis who have previously received the initial AVA 3-dose priming and 2-dose booster series and want to maintain protection; 2) during a large-scale emergency response, AVA for PEP can be administered using an intramuscular route if the subcutaneous route of administration poses significant materiel, personnel, or clinical challenges that might delay or preclude vaccination; 3) recommendations on dose-sparing AVA PEP regimens if the anthrax vaccine supply is insufficient to vaccinate all potentially exposed persons; and 4) clarification on the duration of antimicrobial therapy when used in conjunction with vaccine for PEP. These updated recommendations can be used by health care providers and guide emergency preparedness officials and planners who are developing plans to provide anthrax vaccine, including preparations for a wide-area aerosol release of B. anthracis spores. The recommendations also provide guidance on dose-sparing options, if needed, to extend the supply of vaccine to increase the number of persons receiving PEP in a mass casualty event.
Collapse
|
4
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
5
|
Kang CK, Kim NH, Kim CJ, Rhie GE, Jo SK, Ahn M, Kang J, Choe PG, Park WB, Kim NJ, Oh MD. Immunogenicity and safety of a novel recombinant protective antigen anthrax vaccine (GC1109), a randomized, single-blind, placebo controlled phase II clinical study. Vaccine 2019; 37:3820-3824. [PMID: 31151800 DOI: 10.1016/j.vaccine.2019.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND The demand on effective and safe anthrax vaccine is increasing as a part of the preparedness for possible bioterrorism in the future. We performed a randomized, single-blind, placebo controlled phase II clinical study to evaluate the immunogenicity and safety of a novel recombinant protective antigen (rPA) anthrax vaccine, GC1109, in healthy adult volunteers. METHODS Participants were randomized to experiment groups (0.3 mL, 0.5 mL, and 1.0 mL of GC1109) or placebo group (normal saline 0.5 mL) in 2:2:2:1 ratio. They received respective vaccines intramuscularly at 0, 4 and 8 weeks. Immunogenicity was evaluated by seroconversion rate and geometric mean titer (GMT) of lethal toxin neutralizing assay (TNA) and anti-PA IgG by ELISA. Safety was assessed by laboratory tests, and solicited and unsolicited adverse events on diary cards. RESULTS 30, 29, 30 participants were randomized to 0.3, 0.5, and 1.0 mL of GC1109 groups, respectively, while 15 to placebo group. 92 participants received all three doses. In per-protocol analysis, TNA GMTs at week 12 were 296.5, 285.2, and 433.2 in the three groups, respectively. Seroconversion rates measured by ELISA were 100% at week 12 in the three groups. Local and systemic vaccine-related adverse events were frequent; however, most of them were mild, and no serious events were observed. CONCLUSIONS A new rPA anthrax vaccine GC1109 was immunogenic after three doses of intramuscular administration, and was well-tolerated.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nak-Hyun Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungju, Republic of Korea
| | - Su Kyoung Jo
- Division of High-risk Pathogens, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Chungju, Republic of Korea
| | - Misun Ahn
- GC Pharma Central Research Center, Yongin, Republic of Korea
| | - Jieun Kang
- GC Pharma Central Research Center, Yongin, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nam-Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Henning LN, Carpenter S, Stark GV, Serbina NV. Development of Protective Immunity in New Zealand White Rabbits Challenged with Bacillus anthracis Spores and Treated with Antibiotics and Obiltoxaximab, a Monoclonal Antibody against Protective Antigen. Antimicrob Agents Chemother 2018; 62:e01590-17. [PMID: 29133571 PMCID: PMC5786786 DOI: 10.1128/aac.01590-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
The recommended management of inhalational anthrax, a high-priority bioterrorist threat, includes antibiotics and antitoxins. Obiltoxaximab, a chimeric monoclonal antibody against anthrax protective antigen (PA), is licensed under the U.S. Food and Drug Administration's (FDA's) Animal Rule for the treatment of inhalational anthrax. Because of spore latency, disease reemergence after treatment cessation is a concern, and there is a need to understand the development of endogenous protective immune responses following antitoxin-containing anthrax treatment regimens. Here, acquired protective immunity was examined in New Zealand White (NZW) rabbits challenged with a targeted lethal dose of Bacillus anthracis spores and treated with antibiotics, obiltoxaximab, or a combination of both. Survivors of the primary challenge were rechallenged 9 months later and monitored for survival. Survival rates after primary and rechallenge for controls and animals treated with obiltoxaximab, levofloxacin, or a combination of both were 0, 65, 100, and 95%, and 0, 100, 95, and 89%, respectively. All surviving immune animals had circulating antibodies to PA and serum toxin-neutralizing titers prior to rechallenge. Following rechallenge, systemic bacteremia and toxemia were not detected in most animals, and the levels of circulating anti-PA IgG titers increased starting at 5 days postrechallenge. We conclude that treatment with obiltoxaximab, alone or combined with antibiotics, significantly improves the survival of rabbits that received a lethal inhalation B. anthracis spore challenge dose and does not interfere with the development of immunity. Survivors of primary challenge are protected against reexposure, have rare incidents of systemic bacteremia and toxemia, and have evidence of an anamnestic response.
Collapse
|
7
|
Longstreth J, Skiadopoulos MH, Hopkins RJ. Licensure strategy for pre- and post-exposure prophylaxis of biothrax vaccine: the first vaccine licensed using the FDA animal rule. Expert Rev Vaccines 2016; 15:1467-1479. [DOI: 10.1080/14760584.2016.1254556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Janice Longstreth
- Biodefense Division, Emergent BioSolutions Inc., Gaithersburg, MD, US
| | | | - Robert J. Hopkins
- Biodefense Division, Emergent BioSolutions Inc., Gaithersburg, MD, US
| |
Collapse
|
8
|
Schiffer JM, McNeil MM, Quinn CP. Recent developments in the understanding and use of anthrax vaccine adsorbed: achieving more with less. Expert Rev Vaccines 2016; 15:1151-62. [PMID: 26942655 PMCID: PMC9041331 DOI: 10.1586/14760584.2016.1162104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax™) is the only Food and Drug Administration (FDA) approved vaccine for the prevention of anthrax in humans. Recent improvements in pre-exposure prophylaxis (PrEP) use of AVA include intramuscular (IM) administration and simplification of the priming series to three doses over 6 months. Administration IM markedly reduced the frequency, severity and duration of injection site reactions. Refinement of animal models for inhalation anthrax, identification of immune correlates of protection and cross-species modeling have created opportunities for reductions in the PrEP booster schedule and were pivotal in FDA approval of a post-exposure prophylaxis (PEP) indication. Clinical and nonclinical studies of accelerated PEP schedules and divided doses may provide prospects for shortening the PEP antimicrobial treatment period. These data may assist in determining feasibility of expanded coverage in a large-scale emergency when vaccine demand may exceed availability. Enhancements to the AVA formulation may broaden the vaccine's PEP application.
Collapse
Affiliation(s)
- Jarad M Schiffer
- a MPIR Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| | - Michael M McNeil
- b Immunization Safety Office, Division of Healthcare Quality Promotion , National Center for Emerging and Zoonotic Infectious Diseases , Atlanta , GA , USA
| | - Conrad P Quinn
- c Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| |
Collapse
|
9
|
Cross-species prediction of human survival probabilities for accelerated anthrax vaccine absorbed (AVA) regimens and the potential for vaccine and antibiotic dose sparing. Vaccine 2016; 34:6512-6517. [PMID: 27558619 DOI: 10.1016/j.vaccine.2016.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 06/06/2016] [Indexed: 11/23/2022]
Abstract
Anthrax vaccine adsorbed (AVA, BioThrax) was recently approved by the Food and Drug Administration (FDA) for a post-exposure prophylaxis (PEP) indication in adults 18-65years of age. The schedule is three doses administered subcutaneous (SC) at 2-week intervals (0, 2, and 4weeks), in conjunction with a 60-day course of antimicrobials. The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) developed an animal model to support assessment of a shortened antimicrobial PEP duration following Bacillus anthracis exposure. A nonhuman primate (NHP) study was completed to evaluate the efficacy of a two dose anthrax vaccine absorbed (AVA) schedule (0, 2weeks) aerosol challenged with high levels of B. anthracis spores at week4- the time point at which humans would receive the third vaccination of the approved PEP schedule. Here we use logistic regression models to combine the survival data from the NHP study along with serum anthrax lethal toxin neutralizing activity (TNA) and anti-PA IgG measured by enzyme linked immunosorbent assay (ELISA) data to perform a cross-species analysis to estimate survival probabilities in vaccinated human populations at this time interval (week4 of the PEP schedule). The bridging analysis demonstrated that high levels of NHP protection also yield high predicted probability of human survival just 2weeks after the second dose of vaccine with the full or half antigen dose regimen. The absolute difference in probability of human survival between the full and half antigen dose was estimated to be at most approximately 20%, indicating that more investigation of the half-antigen dose for vaccine dose sparing strategies may be warranted.
Collapse
|
10
|
Evaluation of early immune response-survival relationship in cynomolgus macaques after Anthrax Vaccine Adsorbed vaccination and Bacillus anthracis spore challenge. Vaccine 2016; 34:6518-6528. [PMID: 27155494 DOI: 10.1016/j.vaccine.2016.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/02/2023]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved by the US Food and Drug Administration for post-exposure prophylaxis (PEP) of anthrax in adults. The PEP schedule is 3 subcutaneous (SC) doses (0, 14 and 28 days), in conjunction with a 60 day course of antimicrobials. The objectives of this study were to understand the onset of protection from AVA PEP vaccination and to assess the potential for shortening the duration of antimicrobial treatment (http://www.phe.gov/Preparedness/mcm/phemce/Documents/2014-phemce-sip.pdf). We determined the efficacy against inhalation anthrax in nonhuman primates (NHP) of the first two doses of the PEP schedule by infectious challenge at the time scheduled for receipt of the third PEP dose (Day 28). Forty-eight cynomolgus macaques were randomized to five groups and vaccinated with serial dilutions of AVA on Days 0 and 14. NHP were exposed to Bacillus anthracis Ames spores on Day 28 (target dose 200 LD50 equivalents). Anti-protective antigen (PA) IgG and toxin neutralizing antibody (TNA) responses to vaccination and in post-challenge survivors were determined. Post-challenge blood and selected tissue samples were assessed for B. anthracis at necropsy or end of study (Day 56). Pre-challenge humoral immune responses correlated with survival, which ranged from 24 to 100% survival depending on vaccination group. Surviving, vaccinated animals had elevated anti-PA IgG and TNA levels for the duration of the study, were abacteremic, exhibited no apparent signs of infection, and had no gross or microscopic lesions. However, survivors had residual spores in lung tissues. We conclude that the first two doses of the PEP schedule provide high levels of protection by the scheduled timing of the third dose. These data may also support consideration of a shorter duration PEP antimicrobial regimen.
Collapse
|
11
|
Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:326-38. [PMID: 26865594 DOI: 10.1128/cvi.00696-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/02/2016] [Indexed: 12/28/2022]
Abstract
Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7,r(2)= 0.86,P< 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.).
Collapse
|
12
|
Williamson ED, Dyson EH. Anthrax prophylaxis: recent advances and future directions. Front Microbiol 2015; 6:1009. [PMID: 26441934 PMCID: PMC4585224 DOI: 10.3389/fmicb.2015.01009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Anthrax is a serious, potentially fatal disease that can present in four distinct clinical patterns depending on the route of infection (cutaneous, gastrointestinal, pneumonic, or injectional); effective strategies for prophylaxis and therapy are therefore required. This review addresses the complex mechanisms of pathogenesis employed by the bacterium and describes how, as understanding of these has developed over many years, so too have current strategies for vaccination and therapy. It covers the clinical and veterinary use of live attenuated strains of anthrax and the subsequent identification of protein sub-units for incorporation into vaccines, as well as combinations of protein sub-units with spore or other components. It also addresses the application of these vaccines for conventional prophylactic use, as well as post-exposure use in conjunction with antibiotics. It describes the licensed acellular vaccines AVA and AVP and discusses the prospects for a next generation of recombinant sub-unit vaccines for anthrax, balancing the regulatory requirement and current drive for highly defined vaccines, against the risk of losing the “danger” signals required to induce protective immunity in the vaccinee. It considers novel approaches to reduce time to immunity by means of combining, for example, dendritic cell vaccination with conventional approaches and considers current opportunities for the immunotherapy of anthrax.
Collapse
Affiliation(s)
| | - Edward Hugh Dyson
- Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| |
Collapse
|