1
|
Ramzan M, Abusalah MAHA, Ahmed N, Yean CY, Zeshan B. Green Synthesis and Characterization of Silver Nanoparticles Using Zingiber officinale Extracts to Investigate Their Antibacterial Potential. Int J Nanomedicine 2024; 19:13319-13338. [PMID: 39679248 PMCID: PMC11646397 DOI: 10.2147/ijn.s475656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/28/2024] [Indexed: 12/17/2024] Open
Abstract
Background and Purpose Antimicrobial resistance (AMR) has emerged as a significant global concern. To combat this growing threat, various strategies have been employed, including the use of plant extracts and the biosynthesis of nanoparticles (NPs). The current study was designed to evaluate the phytochemical analysis of ginger (Zingiber officinale) extracts, characterize the silver nanoparticles (AgNPs) and to see their antibacterial potentials against multi-drug resistant (MDR) bacterial strains. Methods The extracts were prepared and initially assessed for their phytochemical composition and antibacterial activity. Then, AgNPs were synthesized from these extracts at room temperature, and various analytical techniques, including UV-visible spectroscopy, X-ray diffraction (XRD), ATIR-FTIR, zeta sizer, scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDXA), were used to characterize the NPs. After confirmation of prepared NPs, they were subjected to their antibacterial activity. Results HPLC analysis demonstrated the presence of eight phytoconstituents in organic ginger extracts. The absorption spectra of the silver suspension exhibited surface plasmon resonance peaks with maxima between 420 and 448 nm. Functional groups like C-H, N-H, OH, C-O-C, C=O, and C-O were identified in both the organic and aqueous extracts of Z. officinale, playing a key role in the formation of AgNPs, as characterized by ATR-FTIR analysis. Both ginger organic and aqueous extract synthesized AgNPs crystalline structure was shown in XRD analysis and the particle size distribution showed average diameter of 200.5 nm of AgNPs from aqueous extracts. Scanning Electron Microscopy displayed spherical structure and EDA results showed the percentage of elements in synthesized AgNPs using plant extracts. Most promising antibacterial activity was obtained against Escherichia coli ie 20.83±0.53 for 100 µg/mL. Conclusion The results of the current study showed that AgNPs synthesized from different ginger extracts have promising antibacterial properties and can be potential candidates for alternative treatment options for bacterial infections.
Collapse
Affiliation(s)
- Muhammad Ramzan
- Department of Microbiology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Mai Abdel Haleem A Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Malaysia
| | - Basit Zeshan
- Department of Microbiology, Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
2
|
Abstract
This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.
Collapse
Affiliation(s)
- Roy Curtiss
- College of Veterinary Medicine, University of Florida, Gainesville, Florida,
| |
Collapse
|
3
|
Li Y, Tian S, Yang L, Bao X, Su L, Zhang X, Liu S, Zhu Y, Yang J, Lin H, Zhang J, Zeng J, Wang C, Tang T. Combined transcriptomic and metabolomic analysis of Salmonella in the presence or absence of PhoP-PhoQ system under low Mg 2+ conditions. Metabolomics 2022; 18:93. [PMID: 36378357 DOI: 10.1007/s11306-022-01946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/16/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Previous reports revealed the role played by Salmonella PhoP-PhoQ system in virulence activation, antimicrobial tolerance and intracellular survival, the impact of PhoP-PhoQ on cell metabolism has been less extensively described. OBJECTIVES The aim of this study is to address whether and how the PhoP-PhoQ system affects the cell metabolism of Salmonella. METHODS We constructed a Salmonella phoP deletion mutant strain TT-81 (PhoP-OFF), a Salmonella PhoP constitutively expressed strain TT-82 (PhoP-ON) and a wild-type Salmonella PhoP strain TT-80 (PhoP-N), using P22-mediated generalized transduction or λ Red-mediated targeted mutagenesis. We then measured the in vitro growth kinetics of all test strains and determined their metabolomic and transcriptomic profiles using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) and RNA-seq technique, respectively. RESULTS Low-Mg2+ conditions impaired the growth of the phoP deletion mutant strain TT-81 (PhoP-OFF) dramatically. 42 metabolites in the wild-type PhoP strain TT-80 (PhoP-N) and 28 metabolites in the PhoP constitutively expressed strain TT-82 (PhoP-ON) changed by the absence of phoP. In contrast, the level of 19 compounds in TT-80 (PhoP-N) changed comparing to the PhoP constitutively expressed strain TT-82 (PhoP-N). The mRNA level of 95 genes in TT-80 (PhoP-N) changed when phoP was disrupted, wherein 78 genes downregulated and 17 genes upregulated. 106 genes were determined to be differentially expressed between TT-81 (PhoP-OFF) and TT-82 (PhoP-ON). While only 16 genes were found to differentially expressed between TT-82 (PhoP-ON) and TT-80 (PhoP-N). CONCLUSION Our findings confirmed the impact of PhoP-PhoQ system on lipopolysaccharide (LPS) modification, energy metabolism, and the biosynthesis or transport of amino acids. Most importantly, we demonstrated that the turnover of a given metabolite could respond differentially to the level of phoP. Taken together, the present study provided new insights into the adaptation of Salmonella to the host environment and helped to characterize the impact of the PhoP-PhoQ system on the cell metabolism.
Collapse
Affiliation(s)
- Yongyu Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Sicheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Le Yang
- Shimadzu (China) Co., Ltd., Chengdu, 610063, Sichuan, People's Republic of China
| | - Xiaoming Bao
- Shimadzu (China) Co., Ltd., Chengdu, 610063, Sichuan, People's Republic of China
| | - Lin Su
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiang Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Sijing Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yalan Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jiaxue Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jing Zhang
- Technology Center of Chengdu Customs, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Ren Min Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Ramzan M, Karobari MI, Heboyan A, Mohamed RN, Mustafa M, Basheer SN, Desai V, Batool S, Ahmed N, Zeshan B. Synthesis of Silver Nanoparticles from Extracts of Wild Ginger ( Zingiber zerumbet) with Antibacterial Activity against Selective Multidrug Resistant Oral Bacteria. Molecules 2022; 27:molecules27062007. [PMID: 35335369 PMCID: PMC8949094 DOI: 10.3390/molecules27062007] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance rate is rising worldwide. Silver nanoparticles (AgNPs) are potent for fighting antimicrobial resistance (AMR), independently or synergistically. The purpose of this study was to prepare AgNPs using wild ginger extracts and to evaluate the antibacterial efficacy of these AgNPs against multidrug-resistant (MDR) Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. AgNPs were synthesized using wild ginger extracts at room temperature through different parameters for optimization, i.e., pH and variable molar concentration. Synthesis of AgNPs was confirmed by UV/visible spectroscopy and further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDXA), and Fourier-transform infrared spectroscopy (FTIR). Disc and agar well diffusion techniques were utilized to determine the in vitro antibacterial activity of plant extracts and AgNPs. The surface plasmon resonance peaks in absorption spectra for silver suspension showed the absorption maxima in the range of 400–420 nm. Functional biomolecules such as N–H, C–H, O–H, C–O, and C–O–C were present in Zingiber zerumbet (Z. zerumbet) (aqueous and organic extracts) responsible for the AgNP formation characterized by FTIR. The crystalline structure of ZZAE-AgCl-NPs and ZZEE-AgCl-NPs was displayed in the XRD analysis. SEM analysis revealed the surface morphology. The EDXA analysis also confirmed the element of silver. It was revealed that AgNPs were seemingly spherical in morphology. The biosynthesized AgNPs exhibited complete antibacterial activity against the tested MDR bacterial strains. This study indicates that AgNPs of wild ginger extracts exhibit potent antibacterial activity against MDR bacterial strains.
Collapse
Affiliation(s)
- Muhammad Ramzan
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Punjab, Pakistan; (M.R.); (S.B.)
| | - Mohmed Isaqali Karobari
- Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
- Correspondence: (M.I.K.); (A.H.); (B.Z.)
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan 0025, Armenia
- Correspondence: (M.I.K.); (A.H.); (B.Z.)
| | - Roshan Noor Mohamed
- Department of Pediatric Dentistry, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed Mustafa
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Syed Nahid Basheer
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Vijay Desai
- College of Dentistry, Ajman University, Al Jurf, Ajman P.O. Box 346, United Arab Emirates;
| | - Salma Batool
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Punjab, Pakistan; (M.R.); (S.B.)
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Basit Zeshan
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Punjab, Pakistan; (M.R.); (S.B.)
- Faculty of Sustainable Agriculture, University Malaysia Sabah, Sandakan Campus, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
- Correspondence: (M.I.K.); (A.H.); (B.Z.)
| |
Collapse
|
5
|
Tian S, Wang C, Li Y, Bao X, Zhang Y, Tang T. The Impact of SlyA on Cell Metabolism of Salmonella typhimurium: A Joint Study of Transcriptomics and Metabolomics. J Proteome Res 2020; 20:184-190. [PMID: 32969666 DOI: 10.1021/acs.jproteome.0c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SlyA is an important transcriptional regulator in Salmonella typhimurium (S. typhimurium). Numerous reports have indicated the impact of SlyA on the virulence of S. typhimurium. Less information regarding the role of SlyA in the cell metabolism of S. typhimurium is available. To close this gap, we compared the growth kinetics of an S. typhimurium wild-type strain to a slyA deletion mutant strain. The data suggested that the cell growth of S. typhimurium was impaired when slyA abolished, indicating that SlyA might affect the cell metabolism of S. typhimurium. To determine the role of SlyA in cell metabolism, we analyzed the metabolite profiles of S. typhimurium in the presence or absence of slyA using gas chromatography coupled with tandem mass spectrometry (GC-MS-MS). With the aim of appropriately interpreting the results obtained from metabolomics, a transcriptomic analysis on both the wild-type S. typhimurium and the slyA deletion mutant was performed. The metabolome data indicated that several glycolysis and lipid metabolism-associated pathways, including the turnover of glycerolipid, pyruvate, butanoate, and glycerophospholipid, were affected in the absence of slyA. In addition, the mRNA levels of several genes associated with glycolysis and lipid turnover were downregulated when slyA was deleted, including pagP, fadL, mgtB, iacp, and yciA. Collectively, these evidence suggested that SlyA affects the glycolysis and lipid turnover of S. typhimurium at a transcriptional level. The raw data of metabolomics is available in the MetaboLights database with an access number of MTBLS1858. The raw data of transcriptome is available in the Sequence Read Archive (SRA) database with an access number of PRJNA656165.
Collapse
Affiliation(s)
- Sicheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Yongyu Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoming Bao
- Shimadzu (China) Co., Ltd., Sanse Road, Spirit Industry Business District, Chengdu, Sichuan Province 610063, P.R. China
| | - Yunwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Tian S, Wang C, Yang L, Zhang Y, Tang T. Comparison of Five Extraction Methods for Intracellular Metabolites of Salmonella typhimurium. Curr Microbiol 2019; 76:1247-1255. [PMID: 31375861 DOI: 10.1007/s00284-019-01750-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 07/24/2019] [Indexed: 11/25/2022]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) causes food poisoning in human and animals. Its infection rate is the highest among all salmonella serotypes. Metabolomics is a potential way to study the pathogenesis of S. typhimurium via analysis of various small molecular substances. Due to the lack of a uniform protocol for the extraction of metabolites, we evaluated five commonly used extraction methods including cold methanol (CM), hot ethanol (HE), chloroform-methanol cocktail (CMC), perchloric acid (PCA), and alkali (AL) for their efficacy in extracting the intracellular metabolites of S. typhimurium. Samples were quenched in 60% methanol at - 40 °C, and then the five methods were used to extract the metabolites. After derivatization, all samples were analyzed on a gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). Our results suggest that CM and HE extraction methods provide the best compromise allowing identification of 98 and 95 metabolites in a single analysis. For targeted metabolome analysis, the optimal extraction method for alcohols and organic acids is HE. CMC preferentially extracted lipid metabolites. PCA is suitable for extraction of small molecular carbohydrates. The optimal extraction method for macromolecular carbohydrates is the CM method.
Collapse
Affiliation(s)
- Sicheng Tian
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China
| | - Chuan Wang
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China
| | - Le Yang
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China
| | - Yunwen Zhang
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China
| | - Tian Tang
- Department of Laboratory Sciences of Public Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, South Renmin Road, West China, Chengdu, People's Republic of China.
| |
Collapse
|
7
|
Tang T, Wu Y, Lin H, Li Y, Zuo H, Gao Q, Wang C, Pei X. The drug tolerant persisters of Riemerella anatipestifer can be eradicated by a combination of two or three antibiotics. BMC Microbiol 2018; 18:137. [PMID: 30340538 PMCID: PMC6194556 DOI: 10.1186/s12866-018-1303-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/04/2018] [Indexed: 11/29/2022] Open
Abstract
Background Riemerella anatipestifer (RA), the causative agent of duck infectious serositis, leads to high mortality in duck flocks and great economic losses in duck industry. Previous studies on RA are largely focused on its detection, virulence factors, serology, epidemiology as well as antibiotic resistance. Neither drug tolerant persisters nor the persister level under the treatment of antibiotics has been revealed. The persisters are non-growing or dormant cells within an isogenic bacterial population; they play important roles in recurrent infection and formation of drug resistant mutants. The aim of this study is to detect the drug tolerant persisters from the exponentially grown population of RA reference strain (RA 11845) or RA clinical isolate (RA TQ3), and address whether a single antibiotic or a combination of two or three antimicrobials can eradicate the persisters at respective maximum serum/plasma concentration (Cmax). Result With the concentration of a test antibiotic increased, a small fraction of cells in the exponentially grown culture of RA reference strain (RA 11845) or RA clinical isolate (RA TQ3) always survived, irrespective of treatment time, indicating the presence of drug tolerant presisters. A single antibiotic cannot eradicate the persisters of both RA strains at respective Cmax, except that the Cmax of ceftiofur wiped out the population of the reference strain (RA 11845). Besides, the clinical isolate RA TQ3 presented a higher tolerance to ceftiofur in comparison to that of the reference strain (RA 11845). Combination of any two or three antimicrobials eliminated the drug tolerant persisters of RA TQ3 completely at respective Cmax. Conclusion A sub-community of drug tolerant persisters was present in RA population. Persisters of RA TQ3 are single drug tolerant and not multidrug tolerant persisters. Electronic supplementary material The online version of this article (10.1186/s12866-018-1303-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China
| | - Yanxia Wu
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China
| | - Hua Lin
- Sichuan Entry-Exit Inspection and Quarantine Bureau, Chengdu, Sichuan, People's Republic of China
| | - Yongyu Li
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China
| | - Haojiang Zuo
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Chuan Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China.
| | - Xiaofang Pei
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China.
| |
Collapse
|
8
|
Efficacy of a Salmonella live vaccine for turkeys in different age groups and antibody response of vaccinated and non-vaccinated turkeys. BMC Res Notes 2018; 11:431. [PMID: 29970192 PMCID: PMC6029038 DOI: 10.1186/s13104-018-3524-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/20/2018] [Indexed: 11/10/2022] Open
Abstract
Objective Human Salmonellosis continues to be one of the most important foodborne zoonoses worldwide, although a decrease in case numbers has been noted in recent years. It is a foodborne zoonotic infection most commonly associated with the consumption of raw egg products but also with meat consumption including the consumption of poultry products. Turkey flocks in Europe have been reported to be affected by Salmonella infection, too. The present study examines the efficacy of a newly licensed Salmonella life vaccine in reducing infections with the Salmonella serovars Typhimurium and Enteritidis in turkeys. Turkeys were vaccinated the first day of life and at the age of 6 and 16 weeks. Groups of birds which had received different numbers of vaccinations were then submitted to challenge trials with either SE or ST. Results In vaccinated birds Salmonella counts in liver and spleen and, less effectively, in caecum were reduced compared to unvaccinated birds. In several groups serum antibody-titers were statistically significantly higher in vaccinated turkeys than in non-vaccinated ones at day seven post infection, but only in one out of six groups at day 14 post infection.
Collapse
|
9
|
Yuk SS, TO EO, Kwon JH, Noh JY, Hong WT, Jeong JH, Gwon GB, Song CS. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks. Poult Sci 2017. [DOI: 10.3382/ps/pex138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|