1
|
Fang XL, Cao XP, Xiao J, Hu Y, Chen M, Raza HK, Wang HY, He X, Gu JF, Zhang KJ. Overview of role of survivin in cancer: expression, regulation, functions, and its potential as a therapeutic target. J Drug Target 2024; 32:223-240. [PMID: 38252514 DOI: 10.1080/1061186x.2024.2309563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/11/2023] [Indexed: 01/24/2024]
Abstract
Survivin holds significant importance as a member of the inhibitor of apoptosis protein (IAP) family due to its predominant expression in tumours rather than normal terminally differentiated adult tissues. The high expression level of survivin in tumours is closely linked to chemotherapy resistance, heightened tumour recurrence, and increased tumour aggressiveness and serves as a negative prognostic factor for cancer patients. Consequently, survivin has emerged as a promising therapeutic target for cancer treatment. In this review, we delve into the various biological characteristics of survivin in cancers and its pivotal role in maintaining immune system homeostasis. Additionally, we explore different therapeutic strategies aimed at targeting survivin.
Collapse
Affiliation(s)
- Xian-Long Fang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Xue-Ping Cao
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yun Hu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Mian Chen
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Hafiz Khuram Raza
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Huai-Yuan Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu He
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Fa Gu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Kang-Jian Zhang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Koeneman BJ, Schreibelt G, Gorris MAJ, Hins - de Bree S, Westdorp H, Ottevanger PB, de Vries IJM. Dendritic cell vaccination combined with carboplatin/paclitaxel for metastatic endometrial cancer patients: results of a phase I/II trial. Front Immunol 2024; 15:1368103. [PMID: 38444861 PMCID: PMC10912556 DOI: 10.3389/fimmu.2024.1368103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Background Metastatic endometrial cancer (mEC) continues to have a poor prognosis despite the introduction of several novel therapies including immune checkpoints inhibitors. Dendritic cell (DC) vaccination is known to be a safe immunotherapeutic modality that can induce immunological and clinical responses in patients with solid tumors. Platinum-based chemotherapy is known to act synergistically with immunotherapy by selectively depleting suppressive immune cells. Therefore, we investigated the immunological efficacy of combined chemoimmunotherapy with an autologous DC vaccine and carboplatin/paclitaxel chemotherapy. Study design This is a prospective, exploratory, single-arm phase I/II study (NCT04212377) in 7 patients with mEC. The DC vaccine consisted of blood-derived conventional and plasmacytoid dendritic cells, loaded with known mEC antigens Mucin-1 and Survivin. Chemotherapy consisted of carboplatin/paclitaxel, given weekly for 6 cycles and three-weekly for 3 cycles. The primary endpoint was immunological vaccine efficacy; secondary endpoints were safety and feasibility. Results Production of DC vaccines was successful in five out of seven patients. These five patients started study treatment and all were able to complete the entire treatment schedule. Antigen-specific responses could be demonstrated in two of the five patients who were treated. All patients had at least one adverse event grade 3 or higher. Treatment-related adverse events grade ≥3 were related to chemotherapy rather than DC vaccination; neutropenia was most common. Suppressive myeloid cells were selectively depleted in peripheral blood after chemotherapy. Conclusion DC vaccination can be safely combined with carboplatin/paclitaxel in patients with metastatic endometrial cancer and induces antigen-specific responses in a minority of patients. Longitudinal immunological phenotyping is suggestive of a synergistic effect of the combination.
Collapse
Affiliation(s)
- Bouke J. Koeneman
- Department of Medical BioSciences, Radboudumc, Nijmegen, Netherlands
- Department of Medical Oncology, Radboudumc, Nijmegen, Netherlands
| | - Gerty Schreibelt
- Department of Medical BioSciences, Radboudumc, Nijmegen, Netherlands
| | - Mark A. J. Gorris
- Department of Medical BioSciences, Radboudumc, Nijmegen, Netherlands
| | | | - Harm Westdorp
- Department of Medical BioSciences, Radboudumc, Nijmegen, Netherlands
- Department of Medical Oncology, Radboudumc, Nijmegen, Netherlands
| | | | | |
Collapse
|
3
|
Guo Q, Wang L, Wuriqimuge, Dong L, Feng M, Bao X, Zhang K, Cai Z, Qu X, Zhang S, Wu J, Wu H, Wang C, Yu X, Kong W, Zhang H. Metformin improved a heterologous prime-boost of dual-targeting cancer vaccines to inhibit tumor growth in a melanoma mouse model. Int Immunopharmacol 2024; 128:111431. [PMID: 38244520 DOI: 10.1016/j.intimp.2023.111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Therapeutic cancer vaccines, which induce anti-tumor immunity by targeting specific antigens, constitute a promising approach to cancer therapy. Our previous work proposed an optimized heterologous immunization strategy using cancer gene vaccines co-targeting MUC1 and survivin. Administration of a DNA vaccine three times within a week followed by a single recombinant MVA (rMVA) boost was able to efficiently induce anti-tumor immunity and inhibit tumor growth in tumor-bearing mouse models However, the complex immunosuppressive tumor microenvironment always limits infiltration by vaccine-induced T cells. Modifying the immunosuppressive microenvironment of tumors would be a breakthrough in enhancing the therapeutic effects of a cancer vaccine. Recent studies have reported that metformin, a type 2 diabetes drug, may ameliorate the tumor microenvironment, thereby enhancing anti-tumor immunity. Here, we tested whether the combinational therapeutic strategy of cancer vaccines administered with a heterologous prime-boost strategy with metformin enhanced anti-tumor effects in a melanoma mouse model. The results showed that metformin promoted the transition of M2-tumor-associated macrophages (M2-TAM) to M1-TAM, induced more tumor-infiltrating proliferative CD4 and CD8 T cells, and decreased exhausted T cells. This combinational treatment induced anti-tumor immunity from cancer vaccines, ameliorating the tumor microenvironment, showing improved tumor inhibition, and prolonging survival in tumor-bearing mice compared with either a cancer vaccine or metformin alone.
Collapse
Affiliation(s)
- Qianqian Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wuriqimuge
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ling Dong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Mengfan Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Bao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ke Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zongyu Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueli Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shiqi Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Zhang K, Wuri Q, Cai Z, Qu X, Zhang S, Wu H, Wu J, Wang C, Yu X, Kong W, Zhang H. The XCL1-Mediated DNA Vaccine Targeting Type 1 Conventional Dendritic Cells Combined with Gemcitabine and Anti-PD1 Antibody Induces Potent Antitumor Immunity in a Mouse Lung Cancer Model. Int J Mol Sci 2024; 25:1880. [PMID: 38339158 PMCID: PMC10855623 DOI: 10.3390/ijms25031880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
With the advent of cancer immunotherapy, there is a growing interest in vaccine development as a means to activate the cellular immune system against cancer. Despite the promise of DNA vaccines in this regard, their effectiveness is hindered by poor immunogenicity, leading to modest therapeutic outcomes across various cancers. The role of Type 1 conventional dendritic cells (cDC1), capable of cross-presenting vaccine antigens to activate CD8+T cells, emerges as crucial for the antitumor function of DNA vaccines. To address the limitations of DNA vaccines, a promising approach involves targeting antigens to cDC1 through the fusion of XCL1, a ligand specific to the receptor XCR1 on the surface of cDC1. Here, female C57BL/6 mice were selected for tumor inoculation and immunotherapy. Additionally, recognizing the complexity of cancer, this study explored the use of combination therapies, particularly the combination of cDC1-targeted DNA vaccine with the chemotherapy drug Gemcitabine (Gem) and the anti-PD1 antibody in a mouse lung cancer model. The study's findings indicate that fusion antigens with XCL1 effectively enhance both the immunogenicity and antitumor effects of DNA vaccines. Moreover, the combination of the cDC1-targeted DNA vaccine with Gemcitabine and anti-PD1 antibody in the mouse lung cancer model demonstrates an improved antitumor effect, leading to the prolonged survival of mice. In conclusion, this research provides important support for the clinical investigation of cDC1-targeting DNA vaccines in combination with other therapies.
Collapse
Affiliation(s)
- Ke Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Qimuge Wuri
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Zongyu Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Xueli Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Shiqi Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| |
Collapse
|
5
|
Lu J, Tang H, Chen L, Huang N, Hu G, Li C, Luo K, Li F, Liu S, Liao S, Feng W, Zhan X, Miao J, Liu Y. Association of survivin positive circulating tumor cell levels with immune escape and prognosis of osteosarcoma. J Cancer Res Clin Oncol 2023; 149:13741-13751. [PMID: 37526661 DOI: 10.1007/s00432-023-05165-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Function of survivin protein (encoded by BIRC5) in circulating tumor cells (CTCs) of osteosarcoma (OS) has not been investigated. The goal of this study is to determine whether the expression of survivin protein of CTCs is associated with circulating immune cell infiltration and disease prognosis of OS. METHODS Blood samples of 20 patients with OS were collected. CanPatrol™ CTC enrichment technology combined with in situ hybridization (ISH) was applied to enrich and test CTCs and survivin protein. Bioinformation analysis combined with data of routine blood test was used to verify the association between survivin and immune cell infiltration in circulatory system. To screen independent prognostic factors, Kaplan-Meier survival curve, univariate and multivariable Cox regression analyses were performed. RESULTS Bioinformatics analysis showed that BIRC5 was strongly negatively related to lymphocyte, including T cell, NK cell and B cell, which released that BIRC5 played a key role in immune escape via reducing immune cell infiltration in circulatory system. Meanwhile, the number of survivin+ CTCs was significantly negatively connection with lymphocyte count (R = -0.56, p = 0.011), which was consistent with bioinformatics analysis. Kaplan-Meier curve showed that the overall survival rate in high survivin+ CTCs group was significantly lower than low group (88.9% vs 36.4%, p = 0.04). Multivariable Cox regression analyses showed that survivin+ CTCs were an independent prognostic factor (p = 0.019). CONCLUSION These findings suggested that survivin protein played a key role in immune escape of CTCs and the presence of survivin+ CTCs might be a promising prognostic factor in OS patients.
Collapse
Affiliation(s)
- Jili Lu
- Department of Joint Surgery, Baise People's Hospital, Baise, Guangxi, China
- Department of Joint Surgery, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Haijun Tang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Lin Chen
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Nenggan Huang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Guofang Hu
- Department of Joint Surgery, Baise People's Hospital, Baise, Guangxi, China
- Department of Joint Surgery, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chong Li
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Kai Luo
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Feicui Li
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Shangyu Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenyu Feng
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 32, West University Road, 530005, Nanning, Guangxi, China
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China
| | - Jifeng Miao
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 32, West University Road, 530005, Nanning, Guangxi, China.
| | - Yun Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, 530021, Nanning, Guangxi, China.
| |
Collapse
|
6
|
Khayyati Kohnehshahri M, Sarkesh A, Mohamed Khosroshahi L, HajiEsmailPoor Z, Aghebati-Maleki A, Yousefi M, Aghebati-Maleki L. Current status of skin cancers with a focus on immunology and immunotherapy. Cancer Cell Int 2023; 23:174. [PMID: 37605149 PMCID: PMC10440946 DOI: 10.1186/s12935-023-03012-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
Skin cancer is one of the most widespread cancers, with a significant global health effect. UV-induced DNA damage in skin cells triggers them to grow and proliferate out of control, resulting in cancer development. Two common types of skin cancer include melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC). Melanoma is the most lethal form of skin cancer, and NMSC includes basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and other forms. The incidence of skin cancer is increasing in part owing to a demographic shift toward an aging population, which is more prone to NMSC, imposing a considerable financial strain on public health services. The introduction of immunostimulatory approaches for cancer cell eradication has led to significant improvements in skin cancer treatment. Over the last three decades, monoclonal antibodies have been used as powerful human therapeutics besides scientific tools, and along with the development of monoclonal antibody production and design procedures from chimeric to humanized and then fully human monoclonal antibodies more than 6 monoclonal antibodies have been approved by the food and drug administration (FDA) and have been successful in skin cancer treatment. In this review, we will discuss the epidemiology, immunology, and therapeutic approaches of different types of skin cancer.
Collapse
Affiliation(s)
- Mahsa Khayyati Kohnehshahri
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Aila Sarkesh
- Student’s Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, LoGrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191:114542. [PMID: 36179916 DOI: 10.1016/j.addr.2022.114542] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | | | - Bob A Lubamba
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Queeny Dasgupta
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02115, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United Kingdom.
| |
Collapse
|
8
|
Epitope-based minigene vaccine targeting fibroblast activation protein α induces specific immune responses and anti-tumor effects in 4 T1 murine breast cancer model. Int Immunopharmacol 2022; 112:109237. [PMID: 36152535 DOI: 10.1016/j.intimp.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022]
Abstract
Fibroblast activation protein (FAPα) is a tumor stromal antigen expressed by cancer-associated fibroblasts (CAFs) in more than 90 % of malignant epithelial carcinomas. FAPα-based immunotherapy has been reported and showed that FAPα-specific immune response can remold immune microenvironment and contribute to tumor regression. Many FAPα-based vaccines have been investigated in preclinical trials, which can elicit strong and durable cytolytic T lymphocytes (CTL) with good safety. However, epitope-based FAPα vaccines are rarely reported. To break tolerance against self-antigens, analogue epitopes with modified peptides at the anchor residues are typically used to improve epitope immunogenicity. To investigate the feasibility of a FAPα epitope-based vaccine for cancer immunotherapy in vivo, we conducted a preclinical study to identify a homologous CTL epitope of human and mouse FAPα and obtained its analogue epitope in BALB/c mice, and explored the anti-tumor activity of their minigene vaccines in 4 T1 tumor-bearing mice. By using in silico epitope prediction tools and immunogenicity assays, immunodominant epitope FAP.291 (YYFSWLTWV) and its analogue epitope FAP.291I9 (YYFSWLTWI) were identified. The FAP.291-based epitope minigene vaccine successfully stimulated CTLs targeting CAFs and exhibited anti-tumor activity in a 4 T1 murine breast cancer model. Furthermore, although the analogue epitope FAP.291I9 enhanced FAP.291-specific immune responses, improvement of anti-tumor immunity effects was not observed. Check of immunosuppressive factors revealed that the high levels of IL-10, IL-13, myeloid-derived suppressor cells and iNOS induced by FAP.291I9 increased, which considered the main cause of the failure of the analogue epitope-based vaccine. Thus, we demonstrated for the first time that the FAP.291 minigene vaccine could induce mouse CTLs and also function as a tumor regression antigen, providing the basis for future studies of FAPα epitope-based vaccines. This study may also be valuable for further improvement of the immunogenicity of analogue epitope vaccines.
Collapse
|
9
|
Li Y, Lu W, Yang J, Edwards M, Jiang S. Survivin as a biological biomarker for diagnosis and therapy. Expert Opin Biol Ther 2021; 21:1429-1441. [PMID: 33877952 DOI: 10.1080/14712598.2021.1918672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Survivin (SVN) is a member of the inhibitor of apoptosis (IAP) protein family that promotes cellular proliferation and inhibits apoptosis. Overexpression of SVN is associated with autoimmune disease, hyperplasia, and tumors and can be used as a biomarker in these diseases. SVN is widely recognized as a tumor-associated antigen (TAA) and has become an important target for cancer diagnosis and treatment.Areas covered: We reviewed SVN research progress from the PubMed and clinical trials focused on SVN from https://clinicaltrials.gov since 2000 and anticipate future developments in the field. The trials reviewed cover various modalities including diagnostics for early detection and disease progression, small molecule inhibitors of the SVN pathway and immunotherapy targeting SVN epitopes.Expert opinion: The most promising developments involve anti-SVN immunotherapy, with several therapeutic SVN vaccines under evaluation in phase I/II trials. SVN is an important new immune-oncology target that expands the repertoire of individualized combination treatments for cancer.
Collapse
Affiliation(s)
- Yuming Li
- Department of Oncology, University of Oxford, Oxford, UK.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenshu Lu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jiarun Yang
- Department of Oncology, University of Oxford, Oxford, UK
| | - Mark Edwards
- Department of Research and Development, Oxford Vacmedix UK Ltd, Oxford, UK
| | - Shisong Jiang
- Department of Oncology, University of Oxford, Oxford, UK.,Department of Research and Development, Oxford Vacmedix UK Ltd, Oxford, UK
| |
Collapse
|
10
|
Pierini S, Mishra A, Perales-Linares R, Uribe-Herranz M, Beghi S, Giglio A, Pustylnikov S, Costabile F, Rafail S, Amici A, Facciponte JG, Koumenis C, Facciabene A. Combination of vasculature targeting, hypofractionated radiotherapy, and immune checkpoint inhibitor elicits potent antitumor immune response and blocks tumor progression. J Immunother Cancer 2021; 9:jitc-2020-001636. [PMID: 33563772 PMCID: PMC7875275 DOI: 10.1136/jitc-2020-001636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Tumor endothelial marker 1 (TEM1) is a protein expressed in the tumor-associated endothelium and/or stroma of various types of cancer. We previously demonstrated that immunization with a plasmid-DNA vaccine targeting TEM1 reduced tumor progression in three murine cancer models. Radiation therapy (RT) is an established cancer modality used in more than 50% of patients with solid tumors. RT can induce tumor-associated vasculature injury, triggering immunogenic cell death and inhibition of the irradiated tumor and distant non-irradiated tumor growth (abscopal effect). Combination treatment of RT with TEM1 immunotherapy may complement and augment established immune checkpoint blockade. Methods Mice bearing bilateral subcutaneous CT26 colorectal or TC1 lung tumors were treated with a novel heterologous TEM1-based vaccine, in combination with RT, and anti-programmed death-ligand 1 (PD-L1) antibody or combinations of these therapies, tumor growth of irradiated and abscopal tumors was subsequently assessed. Analysis of tumor blood perfusion was evaluated by CD31 staining and Doppler ultrasound imaging. Immunophenotyping of peripheral and tumor-infiltrating immune cells as well as functional analysis was analyzed by flow cytometry, ELISpot assay and adoptive cell transfer (ACT) experiments. Results We demonstrate that addition of RT to heterologous TEM1 vaccination reduces progression of CT26 and TC1 irradiated and abscopal distant tumors as compared with either single treatment. Mechanistically, RT increased major histocompatibility complex class I molecule (MHCI) expression on endothelial cells and improved immune recognition of the endothelium by anti-TEM1 T cells with subsequent severe vascular damage as measured by reduced microvascular density and tumor blood perfusion. Heterologous TEM1 vaccine and RT combination therapy boosted tumor-associated antigen (TAA) cross-priming (ie, anti-gp70) and augmented programmed cell death protein 1 (PD-1)/PD-L1 signaling within CT26 tumor. Blocking the PD-1/PD-L1 axis in combination with dual therapy further increased the antitumor effect and gp70-specific immune responses. ACT experiments show that anti-gp70 T cells are required for the antitumor effects of the combination therapy. Conclusion Our findings describe novel cooperative mechanisms between heterologous TEM1 vaccination and RT, highlighting the pivotal role that TAA cross-priming plays for an effective antitumor strategy. Furthermore, we provide rationale for using heterologous TEM1 vaccination and RT as an add-on to immune checkpoint blockade as triple combination therapy into early-phase clinical trials.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abhishek Mishra
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Silvia Beghi
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea Giglio
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sergei Pustylnikov
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francesca Costabile
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Marche, Italy
| | - John G Facciponte
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Costantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA .,Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
BIRC5 is a prognostic biomarker associated with tumor immune cell infiltration. Sci Rep 2021; 11:390. [PMID: 33431968 PMCID: PMC7801710 DOI: 10.1038/s41598-020-79736-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
BIRC5 is an immune-related gene that inhibits apoptosis and promotes cell proliferation. It is highly expressed in most tumors and leads to poor prognosis in cancer patients. This study aimed to analyze the relationship between the expression level of BIRC5 in different tumors and patient prognosis, clinical parameters, and its role in tumor immunity. Genes co-expressed with BIRC5 were analyzed, and functional enrichment analysis was performed. The relationship between BIRC5 expression and the immune and stromal scores of tumors in pan-cancer patients and the infiltration level of 22 tumor-infiltrating lymphocytes (TILs) was analyzed. The correlation of BIRC5 with immune checkpoints was conducted. Functional enrichment analysis showed that genes co-expressed with BIRC5 were significantly associated with the mitotic cell cycle, APC/C-mediated degradation of cell cycle proteins, mitotic metaphase, and anaphase pathways. Besides, the high expression of BIRC5 was significantly correlated with the expression levels of various DNA methyltransferases, indicating that BIRC5 regulates DNA methylation. We also found that BIRC5 was significantly correlated with multiple immune cells infiltrates in a variety of tumors. This study lays the foundation for future research on how BIRC5 modulates tumor immune cells, which may lead to the development of more effective targeted tumor immunotherapies.
Collapse
|
12
|
Guo Q, Wang L, Xu P, Geng F, Guo J, Dong L, Bao X, Zhou Y, Feng M, Wu J, Wu H, Yu B, Zhang H, Yu X, Kong W. Heterologous prime-boost immunization co-targeting dual antigens inhibit tumor growth and relapse. Oncoimmunology 2020; 9:1841392. [PMID: 33224629 PMCID: PMC7657584 DOI: 10.1080/2162402x.2020.1841392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Therapeutic cancer vaccines aim to induce an effective immune response against cancer, and the effectiveness of these vaccines is influenced by the choice of immunogen, vaccine type, and immunization strategy. Although treatment with cancer vaccines can improve tumor burden and survival, in most animal studies, it is challenging to achieve a complete response against tumor growth and recurrence, without the use of other therapies in combination. Here, we present a novel approach where dual antigens (survivin and MUC1) are co-targeted using three DNA vaccines, followed by a single booster of a recombinant modified vaccinia Ankara (MVA) vaccine. This heterologous vaccination strategy induced higher levels of interferon (IFN)-γ-secretion and stronger antigen-specific T-cell responses than those induced individually by the DNA vaccines and the MVA vaccine in mice. This strategy also increased the number of active tumor-infiltrating T cells that efficiently inhibit tumor growth in tumor-bearing mice. Heterologous DNA prime-MVA boost immunization was capable of inducing a robust antigen-specific immune-memory, as seen from the resistance to subsequent survivin- and MUC1-expressing tumors. Moreover, the therapeutic effects of DNA prime-MVA boost and DNA prime-adenovirus boost strategies were compared. DNA prime-MVA boost immunization performed better, as indicated by the T effector ratio and the induction of Th1 immunity. This study provides the basis for the use of heterologous DNA prime-MVA boost vaccination regime targeting two antigens simultaneously as a promising immunotherapeutic strategy against cancer.
Collapse
Affiliation(s)
- Qianqian Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ping Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Fei Geng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jie Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ling Dong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Bao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yi Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Mengfan Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Gao T, Cen Q, Lei H. A review on development of MUC1-based cancer vaccine. Biomed Pharmacother 2020; 132:110888. [PMID: 33113416 DOI: 10.1016/j.biopha.2020.110888] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Mucin 1 (MUC1) is a transmembrane mucin glycoprotein expressed on the surface of almost all epithelial cells. Aberrantly glycosylated MUC1 is associated with cellular transformation from a normal to malignant phenotype in human cancers. Therefore, MUC1 is the major target for the design and development of cancer vaccines. MUC1-based cancer vaccines are a promising strategy for preventing cancer progression and metastasis. This review summarizes the most significant milestones achieved to date in the development of different MUC-1-based vaccine approaches in clinical trials. Further, it provides perspectives for future research that may promote clinical advances in infection-associated cancers.
Collapse
Affiliation(s)
- Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
14
|
McKinnon KE, Sensharma R, Williams C, Ravix J, Getsios S, Woodruff TK. Development of human ectocervical tissue models with physiologic endocrine and paracrine signaling†. Biol Reprod 2020; 103:497-507. [PMID: 32401296 DOI: 10.1093/biolre/ioaa068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
There is a shortage of research models that adequately represent the unique mucosal environment of human ectocervix, limiting development of new therapies for treating infertility, infection, or cancer. We developed three microphysiologic human ectocervix models to study hormone action during homeostasis. First, we reconstructed ectocervix using decellularized extracellular matrix scaffolds, which supported cell integration and could be clinically useful. Secondly, we generated organotypic systems consisting of ectocervical explants co-cultured with murine ovaries or cycling exogenous hormones, which mimicked human menstrual cycles. Finally, we engineered ectocervix tissue consisting of tissue-specific stromal-equivalents and fully-differentiated epithelium that mimicked in vivo physiology, including squamous maturation, hormone response, and mucin production, and remained viable for 28 days in vitro. The localization of differentiation-dependent mucins in native and engineered tissue was identified for the first time, which will allow increased efficiency in mucin targeting for drug delivery. In summary, we developed and characterized three microphysiologic human ectocervical tissue models that will be useful for a variety of research applications, including preventative and therapeutic treatments, drug and toxicology studies, and fundamental research on hormone action in a historically understudied tissue that is critical for women's health.
Collapse
Affiliation(s)
- Kelly E McKinnon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rhitwika Sensharma
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chloe Williams
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jovanka Ravix
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Spiro Getsios
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
15
|
Xi X, Ye T, Wang S, Na X, Wang J, Qing S, Gao X, Wang C, Li F, Wei W, Ma G. Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination. SCIENCE ADVANCES 2020; 6:eaay7735. [PMID: 32494733 PMCID: PMC7244316 DOI: 10.1126/sciadv.aay7735] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Therapeutic cancer vaccines that harness the immune system to reject cancer cells have shown great promise for cancer treatment. Although a wave of efforts have spurred to improve the therapeutic effect, unfavorable immunization microenvironment along with a complicated preparation process and frequent vaccinations substantially compromise the performance. Here, we report a novel microcapsule-based formulation for high-performance cancer vaccinations. The special self-healing feature provides a mild and efficient paradigm for antigen microencapsulation. After vaccination, these microcapsules create a favorable immunization microenvironment in situ, wherein antigen release kinetics, recruited cell behavior, and acid surrounding work in a synergetic manner. In this case, we can effectively increase the antigen utilization, improve the antigen presentation, and activate antigen presenting cells. As a result, effective T cell response, potent tumor inhibition, antimetastatic effects, and prevention of postsurgical recurrence are achieved with various types of antigens, while neoantigen was encapsuled and evaluated in different tumor models.
Collapse
Affiliation(s)
- Xiaobo Xi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Qing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changlong Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Wang M, Luo Y, Sun T, Mao C, Jiang Y, Yu X, Li Z, Xie T, Wu F, Yan H, Teng L. The Ectopic Expression of SurvivinT34A and FilC Can Enhance the Oncolytic Effects of Vaccinia Virus in Murine Gastric Cancer. Onco Targets Ther 2020; 13:1011-1025. [PMID: 32099404 PMCID: PMC7006861 DOI: 10.2147/ott.s230902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Background/Aims Anti-tumor vaccines have been shown to be effective in cancer therapeutics ever since the anti-HPV vaccine was developed. Compared to conventional chemotherapy, anti-tumor vaccines can specifically target cancer cells and they have lower side effects. We developed a recombinant vaccinia virus (VACV) (Western Reserve) WR strain, and we tested its anti-tumor effects in an animal model. Methods A recombinant VACV WR strain expressing mutant survivin T34A (SurT34A) and FilC was constructed and validated. Its oncolytic effect was tested in vitro using a CCK-8 assay, and its tolerance and anti-tumor effects were tested in a murine gastric cancer model. The proportion of lymphocytes in the spleen and tumor was determined after antibody-mediated immuno-depletion. Results The recombinant VACV showed a stronger replication ability in tumor cells, and it was safe in vivo, even at high doses. The combination of vv-SurT34A and vv-FilC resulted in a stronger anti-tumor effect compared to either construct alone. However, the inhibitory effect of vv-SurT34A was stronger than the combination. The recombinant VACV activated the host immune response, as indicated by lymphocyte infiltration in the spleen and tumor tissues. Conclusion The recombinant VACV WR strain expressing SurT34A and FilC is a safe and effective anti-tumor vaccine.
Collapse
Affiliation(s)
- Minglong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanxi Luo
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Ting Sun
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Chenyu Mao
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yili Jiang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Fusheng Wu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Yan
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
Liu C, Lu Z, Xie Y, Guo Q, Geng F, Sun B, Wu H, Yu B, Wu J, Zhang H, Yu X, Kong W. Soluble PD-1-based vaccine targeting MUC1 VNTR and survivin improves anti-tumor effect. Immunol Lett 2018; 200:33-42. [PMID: 29894719 DOI: 10.1016/j.imlet.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/12/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
Abstract
Soluble PD-1 (sPD1) can bind with ligands PD-L1/PD-L2 on the surface of dendritic cells (DCs). Therefore, a sPD1 vaccine fused with an immunogen can increase T cell activation against cancer. Here, we constructed a MUC1 and survivin (MS) combination gene tumor vaccine expressing MS fused with soluble PD-1 (sPD1/MS). To investigate whether the sPD1/MS fusion vaccine could enhance tumor-specific immune responses, its immunogenicity and anti-tumor activity were examined after intramuscular immunization in mice. Compared with the MS DNA vaccine, the specific cytolysis rate of the sPD1/MS fusion DNA vaccine was increased from 21.64% to 34.77%. Moreover, the sPD1/MS vaccine increased the tumor suppression rate from 17.18% to 30.96% and prolonged survival from 6.96% to 19.44% in a murine colorectal cancer model. Combining the sPD1/MS vaccine with oxaliplatin improved the tumor suppression rate to 74.71% in the murine colorectal cancer model. The sPD1/MS vaccine could also exert a good anti-tumor effect, increasing the tumor infiltrated CD8+ T cells by 6.5-fold (from 0.10% to 0.65%) in the murine lung cancer model. In conclusion, the sPD1/MS vaccine showed good immunogenicity and anti-tumor effect by activating lymphocytes effectively.
Collapse
Affiliation(s)
- Chenlu Liu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Zhenzhen Lu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Yu Xie
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Qianqian Guo
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Fei Geng
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China; Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China; Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China; Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China; Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China; Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China; Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China; Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China
| |
Collapse
|
18
|
Liu C, Xie Y, Sun B, Geng F, Zhang F, Guo Q, Wu H, Yu B, Wu J, Yu X, Kong W, Zhang H. MUC1- and Survivin-based DNA Vaccine Combining Immunoadjuvants CpG and interleukin-2 in a Bicistronic Expression Plasmid Generates Specific Immune Responses and Antitumour Effects in a Murine Colorectal Carcinoma Model. Scand J Immunol 2018; 87:63-72. [PMID: 29193199 DOI: 10.1111/sji.12633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022]
Abstract
DNA vaccination is a promising cancer treatment due to its safety, but poor immunogenicity limits its application. However, immunoadjuvants, heterogeneous prime-boost strategies and combination with conventional treatments can be used to improve the antitumour immune effects. A CpG motif and interleukin-2 (IL-2) cytokine are often used as adjuvants. In this study, a DNA vaccine containing a CpG motif was constructed to evaluate its adjuvant effect. The results show that the cytotoxicity of the DNA vaccine was increased fivefold, and survival lifetime was prolonged twofold by the CpG motif adjuvant. To simplify the industrial production process, a bicistronic plasmid was constructed to carry the fusion genes of survivin/MUC1 (MS) and IL-2 and with a CpG motif in its backbone. The results showed that the antitumour effect of the bicistronic vaccine was the same as that of the two vaccine co-injected regime. Furthermore, the vaccine could suppress metastatic tumour foci by 69.1% in colorectal carcinoma-bearing mice. Moreover, the vaccine induced survivin- and MUC1-specific immune responses in splenocytes and induced the immune promoting factor CCL-19 and GM-CSF upregulated, while metastatic-associated factor MMP-9 and immunosuppressing factor PD-L1 downregulated in tumour tissue. When combining the vaccine with the chemotherapy drug oxaliplatin, the survival was prolonged by about 2.5-fold. In conclusion, the DNA vaccine containing a CpG motif in bicistronic form showed good effects on colorectal cancer by inhibiting both tumour growth and metastasis, and combination with oxaliplatin could improve its antitumour effects.
Collapse
Affiliation(s)
- C Liu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Y Xie
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - B Sun
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - F Geng
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - F Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - Q Guo
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China
| | - H Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - B Yu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - J Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - X Yu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - W Kong
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - H Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| |
Collapse
|
19
|
Xia Y, Wu J, Wei W, Du Y, Wan T, Ma X, An W, Guo A, Miao C, Yue H, Li S, Cao X, Su Z, Ma G. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. NATURE MATERIALS 2018; 17:187-194. [PMID: 29300052 DOI: 10.1038/nmat5057] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/20/2017] [Indexed: 05/21/2023]
Abstract
A major challenge in vaccine formulations is the stimulation of both the humoral and cellular immune response for well-defined antigens with high efficacy and safety. Adjuvant research has focused on developing particulate carriers to model the sizes, shapes and compositions of microbes or diseased cells, but not antigen fluidity and pliability. Here, we develop Pickering emulsions-that is, particle-stabilized emulsions that retain the force-dependent deformability and lateral mobility of presented antigens while displaying high biosafety and antigen-loading capabilities. Compared with solid particles and conventional surfactant-stabilized emulsions, the optimized Pickering emulsions enhance the recruitment, antigen uptake and activation of antigen-presenting cells, potently stimulating both humoral and cellular adaptive responses, and thus increasing the survival of mice upon lethal challenge. The pliability and lateral mobility of antigen-loaded Pickering emulsions may provide a facile, effective, safe and broadly applicable strategy to enhance adaptive immunity against infections and diseases.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yiqun Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tao Wan
- State Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, PR China
| | - Xiaowei Ma
- Hualan Biological Bacterin Co., Ltd, Xinxiang 453003, PR China
| | - Wenqi An
- Hualan Biological Bacterin Co., Ltd, Xinxiang 453003, PR China
| | - Aiying Guo
- Hualan Biological Bacterin Co., Ltd, Xinxiang 453003, PR China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuoguo Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xuetao Cao
- State Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 211816, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 211816, PR China
| |
Collapse
|
20
|
Ruan J, Duan Y, Li F, Wang Z. Enhanced synergistic anti-Lewis lung carcinoma effect of a DNA vaccine harboring a MUC1-VEGFR2 fusion gene used with GM-CSF as an adjuvant. Clin Exp Pharmacol Physiol 2016; 44:71-78. [PMID: 27562635 DOI: 10.1111/1440-1681.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Junzhong Ruan
- Department of Thoracic Surgery; Beijing Chest Hospital; Capital Medical University; Beijing Tuberculosis and Thoracic Tumour Research Institute; Beijing China
| | - Yong Duan
- Department of Thoracic Surgery; Beijing Chest Hospital; Capital Medical University; Beijing Tuberculosis and Thoracic Tumour Research Institute; Beijing China
| | - Fugen Li
- Department of Thoracic Surgery; Beijing Chest Hospital; Capital Medical University; Beijing Tuberculosis and Thoracic Tumour Research Institute; Beijing China
| | - Zitong Wang
- Department of Thoracic Surgery; Beijing Chest Hospital; Capital Medical University; Beijing Tuberculosis and Thoracic Tumour Research Institute; Beijing China
| |
Collapse
|
21
|
Xia Q, Geng F, Zhang FF, Liu CL, Xu P, Lu ZZ, Xie Y, Sun B, Wu H, Yu B, Kong W, Yu XH, Zhang HH. Cyclophosphamide enhances anti-tumor effects of a fibroblast activation protein α-based DNA vaccine in tumor-bearing mice with murine breast carcinoma. Immunopharmacol Immunotoxicol 2016; 39:37-44. [PMID: 28004985 DOI: 10.1080/08923973.2016.1269337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cyclophosphamide (CY) is a DNA alkylating agent, which is widely used with other chemotherapy drugs in the treatment of various types of cancer. It can be used not only as a chemotherapeutic but also as an immunomodulatory agent to inhibit IL-10 expression and T regulatory cells (Tregs). Fibroblast activation protein α (FAPα) is expressed in cancer-associated fibroblasts in the tumor microenvironment. Immunotherapy based on FAPα, as a tumor stromal antigen, typically induces specific immune response targeting the tumor microenvironment. This study evaluated the efficacy of a previously unreported CY combination strategy to enhance the limited anti-tumor effect of a DNA vaccine targeting FAPα. The results suggested CY administration could promote the percentage of splenic CD8+ T cells and decrease the proportion of CD4 + CD25 + Foxp3+ Tregs in spleen. In tumor tissues, levels of immunosuppressive cytokines including IL-10 and CXCL-12 were also reduced. Meanwhile, the CY combination did not impair the FAPα-specific immunity induced by the DNA vaccine and further reduced tumor stromal factors. Most importantly, FAP-vaccinated mice also treated with CY chemotherapy showed a marked suppression of tumor growth (inhibition ratio =80%) and a prolongation of survival time. Thus, the combination of FAPα immunotherapy and chemotherapy with CY offers new insights into improving cancer therapies.
Collapse
Affiliation(s)
- Qiu Xia
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Fei Geng
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Fang-Fang Zhang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Chen-Lu Liu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Ping Xu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Zhen-Zhen Lu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Yu Xie
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Bo Sun
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Hui Wu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Bin Yu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Wei Kong
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Xiang-Hui Yu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Hai-Hong Zhang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| |
Collapse
|