1
|
Ramírez H, Vilte DA, Hozbor D, Zurita E, Bottero D, Casabonne MC, Cataldi ÁA, Wigdorovitz A, Larzábal M. A Novel Vaccine for Bovine Diarrhea Complex Utilizing Recombinant Enterotoxigenic Escherichia coli and Salmonella Expressing Surface-Displayed Chimeric Antigens from Enterohemorrhagic Escherichia coli O157:H7. Vaccines (Basel) 2025; 13:124. [PMID: 40006671 PMCID: PMC11860786 DOI: 10.3390/vaccines13020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a zoonotic pathogen primarily found in cattle, causes Hemolytic Uremic Syndrome (HUS) in humans, often through contaminated food. Its Type Three Secretion System (T3SS) facilitates gut colonization. In contrast, neonatal calf diarrhea (NCD) is mainly caused by pathogens like enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Bovine Coronavirus (BCoV), and Bovine Rotavirus type A (BRoVA). This study engineered a chimeric protein combining EspB and Int280γ, two T3SS components, expressed in the membranes of Salmonella Dublin and ETEC. METHODS Immune responses in vaccinated mice and guinea pigs were assessed through ELISA assays. RESULTS Successful membrane anchorage and stability of the chimera were confirmed. Immune evaluations showed no enhancement from combining recombinant bacteria, indicating either bacterium suffices in a single formulation. Chimeric expression yielded immunogenicity equivalent to 10 µg of recombinant protein, with similar antibody titers. IgG1/IgG2a levels and Th1, Th2, and Th17 markers indicated a mixed immune response, providing broad humoral and cellular protection. Responses to BCoV, BRoVA, ETEC, and Salmonella antigens remained strong and did not interfere with chimera-specific responses, potentially boosting NCD vaccine efficacy. CONCLUSIONS The chimera demonstrated robust immunogenicity, supporting its potential as a viable vaccine candidate against EHEC O157:H7. This approach could enhance NCD vaccine valency by offering broader protection against calf diarrhea while reducing HUS transmission risks to humans.
Collapse
Affiliation(s)
| | - Daniel A. Vilte
- Instituto de Patobiología Veterinaria (IPVet) INTA-CONICET, Hurlingham B1686, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1900, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1900, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata B1900, Argentina
| | - María C. Casabonne
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham B1686, Argentina
| | - Ángel A. Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham B1686, Argentina
| | - Andrés Wigdorovitz
- Bioinnovo S.A., Hurlingham B1686, Argentina; (H.R.)
- INCUINTA Instituto de Virología e Innovaciones Tecnológicas (IVIT) INTA-CONICET, Hurlingham B1686, Argentina
| | - Mariano Larzábal
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham B1686, Argentina
| |
Collapse
|
2
|
Hotinger JA, May AE. Antibodies Inhibiting the Type III Secretion System of Gram-Negative Pathogenic Bacteria. Antibodies (Basel) 2020; 9:antib9030035. [PMID: 32726928 PMCID: PMC7551047 DOI: 10.3390/antib9030035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogenic bacteria are a global health threat, with over 2 million infections caused by Gram-negative bacteria every year in the United States. This problem is exacerbated by the increase in resistance to common antibiotics that are routinely used to treat these infections, creating an urgent need for innovative ways to treat and prevent virulence caused by these pathogens. Many Gram-negative pathogenic bacteria use a type III secretion system (T3SS) to inject toxins and other effector proteins directly into host cells. The T3SS has become a popular anti-virulence target because it is required for pathogenesis and knockouts have attenuated virulence. It is also not required for survival, which should result in less selective pressure for resistance formation against T3SS inhibitors. In this review, we will highlight selected examples of direct antibody immunizations and the use of antibodies in immunotherapy treatments that target the bacterial T3SS. These examples include antibodies targeting the T3SS of Pseudomonas aeruginosa, Yersinia pestis, Escherichia coli, Salmonella enterica, Shigella spp., and Chlamydia trachomatis.
Collapse
|
3
|
Heterologous expression of Intimin and IpaB fusion protein in Lactococcus lactis and its mucosal delivery elicit protection against pathogenicity of Escherichia coli O157 and Shigella flexneri in a murine model. Int Immunopharmacol 2020; 85:106617. [PMID: 32464569 DOI: 10.1016/j.intimp.2020.106617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022]
Abstract
Escherichia coli O157:H7 and Shigella flexneri are the predominant diarrhoeal pathogens and those strains producing Shiga toxins cause life-threatening sequelae including hemolytic uremic syndrome (HUS) upon their entry into the host. Intimate adherence of E. coli O157 and invasion of S. flexneri in the host intestinal epithelial cells is mainly mediated by Intimin and IpaB proteins, respectively. In this study, we have synthesized chimera of immunodominant regions of Intimin (eae) and IpaB (ipaB) designated as EI and expressed it in Lactococcus lactis (LL-EI) to develop a combinatorial oral vaccine candidate. Immune parameters and protective efficacy of orally administered LL-EI were assessed in the murine model. Significant EI-specific serum IgG, IgA, and fecal IgA antibody titer were observed in the LL-EI group. Considerable increase in EI-specific splenocyte proliferation and a concurrent upregulation of both Th1 and Th2 cytokines was observed in LL-EI immunized mice. Flow cytometry analysis also revealed a significant increase in CD4 and CD8 cell counts in LL-EI immunized group compared to PBS, LL control group.In vitro studies using LL-EI immunized mice sera showed substantial protection against bacterial adhesion and invasion caused by E. coli O157 and Shigella flexneri¸ respectively. LL-EI immunized group challenged with E. coli O157 ceased fecal shedding within 6 days, and mice challenged with S. flexneri showed 93% survival with minimal bacterial load in the lungs. Our results indicate that LL-EI immunization elicits systemic, mucosal and cell-mediated immune responses, and can be a promising candidate for oral vaccine development against these pathogens.
Collapse
|
4
|
Caballero-Flores G, Sakamoto K, Zeng MY, Wang Y, Hakim J, Matus-Acuña V, Inohara N, Núñez G. Maternal Immunization Confers Protection to the Offspring against an Attaching and Effacing Pathogen through Delivery of IgG in Breast Milk. Cell Host Microbe 2019; 25:313-323.e4. [PMID: 30686564 DOI: 10.1016/j.chom.2018.12.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
Owing to immature immune systems and impaired colonization resistance mediated by the microbiota, infants are more susceptible to enteric infections. Maternal antibodies can provide immunity, with maternal vaccination offering a protective strategy. We find that oral infection of adult females with the enteric pathogen Citrobacter rodentium protects dams and offspring against oral challenge. Parenteral immunization of dams with heat-inactivated C. rodentium reduces pathogen loads and mortality in offspring but not mothers. IgG, but not IgA or IgM, transferred through breast milk to the intestinal lumen of suckling offspring, coats the pathogen and reduces intestinal colonization. Protective IgG largely recognizes virulence factors encoded within the locus of enterocyte effacement (LEE) pathogenicity island, including the adhesin Intimin and T3SS filament EspA, which are major antigens conferring protection. Thus, pathogen-specific IgG in breast milk induced during maternal infection or immunization protects neonates against infection with an attaching and effacing pathogen.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kei Sakamoto
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melody Y Zeng
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yaqiu Wang
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Jill Hakim
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Violeta Matus-Acuña
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico; School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Rojas-Lopez M, Monterio R, Pizza M, Desvaux M, Rosini R. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Front Microbiol 2018; 9:440. [PMID: 29615989 PMCID: PMC5869917 DOI: 10.3389/fmicb.2018.00440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC) plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America). Intestinal pathotypes such as enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC) are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS). Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.
Collapse
Affiliation(s)
- Maricarmen Rojas-Lopez
- GSK, Siena, Italy.,Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | - Ricardo Monterio
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR454 MEDiS, Clermont-Ferrand, France
| | | |
Collapse
|
6
|
Hosseini ZS, Amani J, Baghbani Arani F, Nazarian S, Motamedi MJ, Shafighian F. Immunogenicity of the nanovaccine containing intimin recombinant protein in the BALB/c mice. Clin Exp Vaccine Res 2018; 7:51-60. [PMID: 29399580 PMCID: PMC5795045 DOI: 10.7774/cevr.2018.7.1.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Escherichia coli O157:H7 is one of the most important pathogens which create hemorrhagic colitis and hemolytic uremic syndrome in human. It is one of the most prevalent causes of diarrhea leading to death of many people every year. The first diagnosed gene in the locus of enterocyte effacement pathogenicity island is eae gene. The product of this gene is a binding protein called intimin belonging to the group of external membrane proteins regarded as a good stimulants of the immune system. Chitosan with its lipophilic property is an environmentally friendly agent able to return to the environment. Materials and Methods Intimin recombinant protein was expressed in pET28a vector with eae gene and purification was performed using Ni-NTA and finally the recombinant protein was approved through western blotting. This protein was encapsulated using chitosan nanoparticles and the size of nanoparticles was measured by Zetasizer. Intimin encapsulated was prescribed for three sessions among three groups of oral, injection, and oral-injection using Chitosan nanoparticles. Challenge was performed for all three groups with 108E. coli O157:H7 bacteria. Results Intimin produced by chitosan nanoparticles improves immunological responses through the adjuvant nature of chitosan nanoparticles. Chitosan may be used as a carrier for transportation of the prescribed vaccine. Among the mice, encapsulated intimin could be able to provide suitable titers of IgG and IgA by the aid of chitosan nanoparticles. Results of mice challenge showed that decreased the bacterial shedding significantly. Conclusion Results showed that the chitosan nanovaccine with intimin protein may be used as a suitable candidate vaccine against E. coli O157:H7.
Collapse
Affiliation(s)
- Zahra Sadat Hosseini
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fahimeh Baghbani Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Science, Imam Hossain University, Tehran, Iran
| | | | - Fatemeh Shafighian
- Pharmaceutical Sciences Branch, Pharmaceutical Sciences Research Center, Islamic Azad University (IAUPS), Tehran, Iran
| |
Collapse
|
7
|
Caetano BA, Rocha LB, Carvalho E, Piazza RMF, Luz D. Immunogenic Domains and Secondary Structure of Escherichia coli Recombinant Secreted Protein Escherichia coli-Secreted Protein B. Front Immunol 2017; 8:477. [PMID: 28484467 PMCID: PMC5402224 DOI: 10.3389/fimmu.2017.00477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/05/2017] [Indexed: 11/24/2022] Open
Abstract
Several pathogenic bacteria are able to induce the attaching and effacing (A/E) lesion. The A/E lesion is caused by effector proteins, such as Escherichia coli-secreted protein B (EspB), responsible together with Escherichia coli-secreted protein D for forming a pore structure on the host cell, which allows the translocation of effector proteins. Different variants of this protein can be found in E. coli strains, and during natural infection or when this protein is injected, this leads to variant-specific production of antibodies, which may not be able to recognize other variants of this bacterial protein. Herein, we describe the production of a hybrid recombinant EspB toxin that comprises all known variants of this protein. This recombinant protein could be useful as an antigen for the production of antibodies with broad-range detection of EspB-bearing bacteria, or as an antigen that could be used in vaccine formulation to generate antibodies against different EspB variants, thereby increasing immunization potential. In addition, the recombinant protein allowed us to analyze its secondary structure, to propose the immunogenic regions of EspB variants, and also to characterize anti-EspB antibodies. Our results suggest that this hybrid protein or a protein composed of the conserved immunogenic regions could be used for a variety of clinical applications.
Collapse
Affiliation(s)
- Bruna Alves Caetano
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Lin R, Zhu B, Zhang Y, Bai Y, Zhi F, Long B, Li Y, Wu Y, Wu X, Fan H. Intranasal immunization with novel EspA-Tir-M fusion protein induces protective immunity against enterohemorrhagic Escherichia coli O157:H7 challenge in mice. Microb Pathog 2017; 105:19-24. [DOI: 10.1016/j.micpath.2017.01.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
|