1
|
O'Connell P, Blake MK, Godbehere S, Amalfitano A, Aldhamen YA. SLAMF7 modulates B cells and adaptive immunity to regulate susceptibility to CNS autoimmunity. J Neuroinflammation 2022; 19:241. [PMID: 36199066 PMCID: PMC9533612 DOI: 10.1186/s12974-022-02594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic, debilitating condition characterized by CNS autoimmunity stemming from a complex etiology involving both environmental and genetic factors. Our current understanding of MS points to dysregulation of the immune system as the pathogenic culprit, however, it remains unknown as to how the many genes associated with increased susceptibility to MS are involved. One such gene linked to MS susceptibility and known to regulate immune function is the self-ligand immune cell receptor SLAMF7. Methods We subjected WT and SLAMF7−/− mice to multiple EAE models, compared disease severity, and comprehensively profiled the CNS immune landscape of these mice. We identified all SLAMF7-expressing CNS immune cells and compared the entire CNS immune niche between genotypes. We performed deep phenotyping and in vitro functional studies of B and T cells via spectral cytometry and BioPlex assays. Adoptive transfer studies involving the transfer of WT and SLAMF7−/− B cells into B cell-deficient mice (μMT) were also performed. Finally, B–T cell co-culture studies were performed, and a comparative cell–cell interaction network derived from scRNA-seq data of SLAMF7+ vs. SLAMF7− human CSF immune cells was constructed. Results We found SLAMF7−/− mice to be more susceptible to EAE compared to WT mice and found SLAMF7 to be expressed on numerous CNS immune cell subsets. Absence of SLAMF7 did not grossly alter the CNS immune landscape, but allowed for altered immune cell subset infiltration during EAE in a model-dependent manner. Global lack of SLAMF7 expression increased myeloid cell activation states along with augmented T cell anti-MOG immunity. B cell profiling studies revealed increased activation states of specific plasma and B cell subsets in SLAMF7−/− mice during EAE, and functional co-culture studies determined that SLAMF7−/− B cells induce exaggerated T cell activation. Adoptive transfer studies revealed that the increased susceptibility of SLAMF7−/− mice to EAE is partly B cell dependent and reconstruction of the human CSF SLAMF7-interactome found B cells to be critical to cell–cell communication between SLAMF7-expressing cells. Conclusions Our studies have identified novel roles for SLAMF7 in CNS immune regulation and B cell function, and illuminate underpinnings of the genetic association between SLAMF7 and MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02594-9.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4108 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
O'Connell P, Blake MK, Pepelyayeva Y, Hyslop S, Godbehere S, Angarita AM, Pereira-Hicks C, Amalfitano A, Aldhamen YA. Adenoviral delivery of an immunomodulatory protein to the tumor microenvironment controls tumor growth. Mol Ther Oncolytics 2022; 24:180-193. [PMID: 35036523 PMCID: PMC8741417 DOI: 10.1016/j.omto.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/04/2021] [Indexed: 11/15/2022] Open
Abstract
Targeted modulation of the immune system against tumors can achieve responses in otherwise refractory cancers, which has spurred efforts aimed at optimizing such strategies. To this end, we have previously investigated cancer immunotherapy approaches using recombinant adenovirus vectors, as well as via modulation of the self-ligand receptor SLAMF7. Here, we present a gene transfer-based immunotherapy approach using targeted expression of a SLAMF7-Fc fusion construct directly into tumors at high concentrations via a recombinant adenoviral vector (Ad-SF7-Fc). Using multiple murine cancer models, we show that Ad-SF7-Fc can induce tumor control via augmentation of innate immunity; specifically, induction of type I interferons and activation of dendritic cells (DCs) and macrophages. Analogously, we find that modulating SLAMF7 signaling via an adenoviral vector expressing its intracellular adaptor, EAT-2, is also capable of inducing tumor control. Finally, we employ a novel in vivo prediction approach and dataset integration with machine learning to dissect how Ad-SF7-Fc modulates cell-type-specific responses in the tumor microenvironment to achieve tumor control. Thus, our novel combinatorial cancer immunotherapy highlights the benefit of multimodal immune modulation and lays a framework for combination with complementary approaches capable of inducing adaptive immune responses.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Maja K. Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Sean Hyslop
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Ariana M. Angarita
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Cristiane Pereira-Hicks
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
- Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Chakraborty A, Staudinger C, King SL, Erickson FC, Lau LS, Bernasconi A, Luscinskas FW, Perlyn C, Dimitroff CJ. Galectin-9 bridges human B cells to vascular endothelium while programming regulatory pathways. J Autoimmun 2020; 117:102575. [PMID: 33285511 DOI: 10.1016/j.jaut.2020.102575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Humoral immunity is reliant on efficient recruitment of circulating naïve B cells from blood into peripheral lymph nodes (LN) and timely transition of naive B cells to high affinity antibody (Ab)-producing cells. Current understanding of factor(s) coordinating B cell adhesion, activation and differentiation within LN, however, is incomplete. Prior studies on naïve B cells reveal remarkably strong binding to putative immunoregulator, galectin (Gal)-9, that attenuates BCR activation and signaling, implicating Gal-9 as a negative regulator in B cell biology. Here, we investigated Gal-9 localization in human tonsils and LNs and unearthed conspicuously high expression of Gal-9 on high endothelial and post-capillary venules. Adhesion analyses showed that Gal-9 can bridge human circulating and naïve B cells to vascular endothelial cells (EC), while decelerating transendothelial migration. Moreover, Gal-9 interactions with naïve B cells induced global transcription of gene families related to regulation of cell signaling and membrane/cytoskeletal dynamics. Signaling lymphocytic activation molecule F7 (SLAMF7) was among key immunoregulators elevated by Gal-9-binding, while SLAMF7's cytosolic adapter EAT-2, which is required for cell activation, was eliminated. Gal-9 also activated phosphorylation of pro-survival factor, ERK. Together, these data suggest that Gal-9 promotes B cell - EC interactions while delivering anergic signals to control B cell reactivity.
Collapse
Affiliation(s)
- Asmi Chakraborty
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Caleb Staudinger
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Sandra L King
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Frances Clemente Erickson
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Lee Seng Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Angela Bernasconi
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Francis W Luscinskas
- Department of Pathology, Vascular Research Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chad Perlyn
- Department of Surgery, Nicholas Children's Hospital, Division of Plastic Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
4
|
O’Connell P, Amalfitano A, Aldhamen YA. SLAM Family Receptor Signaling in Viral Infections: HIV and Beyond. Vaccines (Basel) 2019; 7:E184. [PMID: 31744090 PMCID: PMC6963180 DOI: 10.3390/vaccines7040184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family of receptors are expressed on the majority of immune cells. These receptors often serve as self-ligands, and play important roles in cellular communication and adhesion, thus modulating immune responses. SLAM family receptor signaling is differentially regulated in various immune cell types, with responses generally being determined by the presence or absence of two SLAM family adaptor proteins-Ewing's sarcoma-associated transcript 2 (EAT-2) and SLAM-associated adaptor protein (SAP). In addition to serving as direct regulators of the immune system, certain SLAM family members have also been identified as direct targets for specific microbes and viruses. Here, we will discuss the known roles for these receptors in the setting of viral infection, with special emphasis placed on HIV infection. Because HIV causes such complex dysregulation of the immune system, studies of the roles for SLAM family receptors in this context are particularly exciting.
Collapse
Affiliation(s)
- Patrick O’Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA, (A.A.)
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA, (A.A.)
- Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA, (A.A.)
| |
Collapse
|
5
|
O'Connell P, Pepelyayeva Y, Blake MK, Hyslop S, Crawford RB, Rizzo MD, Pereira-Hicks C, Godbehere S, Dale L, Gulick P, Kaminski NE, Amalfitano A, Aldhamen YA. SLAMF7 Is a Critical Negative Regulator of IFN-α-Mediated CXCL10 Production in Chronic HIV Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:228-238. [PMID: 30530590 DOI: 10.4049/jimmunol.1800847] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023]
Abstract
Current advances in combined antiretroviral therapy have rendered HIV infection a chronic, manageable disease; however, the problem of persistent immune activation still remains despite treatment. The immune cell receptor SLAMF7 has been shown to be upregulated in diseases characterized by chronic immune activation. In this study, we studied the function of the SLAMF7 receptor in immune cells of HIV patients and the impacts of SLAMF7 signaling on peripheral immune activation. We observed increased frequencies of SLAMF7+ PBMCs in HIV+ individuals in a clinical phenotype-dependent manner, with discordant and long-term nonprogressor patients showing elevated SLAMF7 levels, and elite controllers showing levels comparable to healthy controls. We also noted that SLAMF7 was sensitive to IFN-⍺ stimulation, a factor elevated during HIV infection. Further studies revealed SLAMF7 to be a potent inhibitor of the monocyte-derived proinflammatory chemokine CXCL10 (IP-10) and other CXCR3 ligands, except in a subset of HIV+ patients termed SLAMF7 silent (SF7S). Studies utilizing small molecule inhibitors revealed that the mechanism of CXCL10 inhibition is independent of known SLAMF7 binding partners. Furthermore, we determined that SLAMF7 activation on monocytes is able to decrease their susceptibility to HIV-1 infection in vitro via downregulation of CCR5 and upregulation of the CCL3L1 chemokine. Finally, we discovered that neutrophils do not express SLAMF7, are CXCL10+ at baseline, are able to secrete CXCL10 in response to IFN-⍺ and LPS, and are nonresponsive to SLAMF7 signaling. These findings implicate the SLAMF7 receptor as an important regulator of IFN-⍺-driven innate immune responses during HIV infection.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Sean Hyslop
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Robert B Crawford
- Center for Integrative Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Michael D Rizzo
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Cristiane Pereira-Hicks
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Linda Dale
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Peter Gulick
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Norbert E Kaminski
- Center for Integrative Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824.,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; and
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; .,College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
6
|
Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol 2017; 48:50-65. [PMID: 28960320 DOI: 10.1002/eji.201646762] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Stipan Jonjić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Vanda Juranić Lisnić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|