1
|
Zahid A, Wilson JC, Grice ID, Peak IR. Otitis media: recent advances in otitis media vaccine development and model systems. Front Microbiol 2024; 15:1345027. [PMID: 38328427 PMCID: PMC10847372 DOI: 10.3389/fmicb.2024.1345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Otitis media is an inflammatory disorder of the middle ear caused by airways-associated bacterial or viral infections. It is one of the most common childhood infections as globally more than 80% of children are diagnosed with acute otitis media by 3 years of age and it is a common reason for doctor's visits, antibiotics prescriptions, and surgery among children. Otitis media is a multifactorial disease with various genetic, immunologic, infectious, and environmental factors predisposing children to develop ear infections. Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis are the most common culprits responsible for acute otitis media. Despite the massive global disease burden, the pathogenesis of otitis media is still unclear and requires extensive future research. Antibiotics are the preferred treatment to cure middle ear infections, however, the antimicrobial resistance rate of common middle ear pathogens has increased considerably over the years. At present, pneumococcal and influenza vaccines are administered as a preventive measure against otitis media, nevertheless, these vaccines are only beneficial in preventing carriage and/or disease caused by vaccine serotypes. Otitis media caused by non-vaccine serotype pneumococci, non-typeable H. influenza, and M. catarrhalis remain an important healthcare burden. The development of multi-species vaccines is an arduous process but is required to reduce the global burden of this disease. Many novel vaccines against S. pneumoniae, non-typeable H. influenza, and M. catarrhalis are in preclinical trials. It is anticipated that these vaccines will lower the disease burden and provide better protection against otitis media. To study disease pathology the rat, mouse, and chinchilla are commonly used to induce experimental acute otitis media to test new therapeutics, including antibiotics and vaccines. Each of these models has its advantages and disadvantages, yet there is still a need to develop an improved animal model providing a better correlated mechanistic understanding of human middle ear infections, thereby underpinning the development of more effective otitis media therapeutics. This review provides an updated summary of current vaccines against otitis media, various animal models of otitis media, their limitations, and some future insights in this field providing a springboard in the development of new animal models and novel vaccines for otitis media.
Collapse
Affiliation(s)
- Ayesha Zahid
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jennifer C. Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - I. Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
2
|
Ullah S, Liu Q, Wang S, Jan AU, Sharif HMA, Ditta A, Wang G, Cheng H. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165726. [PMID: 37495153 DOI: 10.1016/j.scitotenv.2023.165726] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Chromium (Cr) is released into the environment through anthropogenic activities and has gained significant attention in the recent decade as environmental pollution. Its contamination has adverse effects on human health and the environment e.g. decreases soil fertility, alters microbial activity, and reduces plant growth. It can occur in different oxidation states, with Cr(VI) being the most toxic form. Cr contamination is a significant environmental and health issue, and phytoremediation offers a promising technology for remediating Cr-contaminated soils. Globally, over 400 hyperaccumulator plant species from 45 families have been identified which have the potential to remediate Cr-contaminated soils through phytoremediation. Phytoremediation can be achieved through various mechanisms, such as phytoextraction, phytovolatilization, phytodegradation, phytostabilization, phytostimulation, and rhizofiltration. Understanding the sources and impacts of Cr contamination, as well as the factors affecting Cr uptake in plants and remediation techniques such as phytoremediation and mechanisms behind it, is crucial for the development of effective phytoremediation strategies. Overall, phytoremediation offers a cost-effective and sustainable solution to the problem of Cr pollution. Further research is needed to identify plant species that are more efficient at accumulating Cr and to optimize phytoremediation methods for specific environmental conditions. With continued research and development, phytoremediation has the potential to become a widely adopted technique for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Sadeeq Ullah
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Amin Ullah Jan
- Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan
| | - Hafiz M Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Zhao F, Xu H, Chen Y, Xiao J, Zhang M, Li Z, Liu J, Qi C. Actinobacillus pleuropneumoniae FliY and YdjN are involved in cysteine/cystine utilization, oxidative resistance, and biofilm formation but are not determinants of virulence. Front Microbiol 2023; 14:1169774. [PMID: 37250053 PMCID: PMC10213525 DOI: 10.3389/fmicb.2023.1169774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a member of Actinobacillus in family Pasteurellaceae. It is the causative agent of porcine pleuropneumonia, which has caused huge economic losses to pig industry over the world. Cysteine is a precursor of many important biomolecules and defense compounds in the cell. However, molecular mechanisms of cysteine transport in A. pleuropneumoniae are unclear. Methods In this study, gene-deleted mutants were generated and investigated, to reveal the roles of potential cysteine/cystine transport proteins FliY and YdjN of A. pleuropneumoniae. Results Our results indicated that the growth of A. pleuropneumoniae was not affected after fliY or ydjN single gene deletion, but absence of both FliY and YdjN decreased the growth ability significantly, when cultured in the chemically defined medium (CDM) supplemented with cysteine or cystine as the only sulfur source. A. pleuropneumoniae double deletion mutant ΔfliYΔydjN showed increased sensitivity to oxidative stress. Besides, trans-complementation of YdjN into ΔfliYΔydjN and wild type leads to increased biofilm formation in CDM. However, the virulence of ΔfliYΔydjN was not attenuated in mice or pigs. Discussion These findings suggest that A. pleuropneumoniae FliY and YdjN are involved in the cysteine/cystine acquisition, oxidative tolerance, and biofilm formation, but not contribute to the pathogenicity of A. pleuropneumoniae.
Collapse
|
4
|
Srivastava D, Tiwari M, Dutta P, Singh P, Chawda K, Kumari M, Chakrabarty D. Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation. SUSTAINABILITY 2021; 13:4629. [DOI: 10.3390/su13094629] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive industrial activities resulted in an increase in chromium (Cr) contamination in the environment. The toxicity of Cr severely affects plant growth and development. Cr is also recognized as a human carcinogen that enters the human body via inhalation or by consuming Cr-contaminated food products. Taking consideration of Cr enrichment in the environment and its toxic effects, US Environmental Protection Agency and Agency for Toxic Substances and Disease Registry listed Cr as a priority pollutant. In nature, Cr exists in various valence states, including Cr(III) and Cr(VI). Cr(VI) is the most toxic and persistent form in soil. Plants uptake Cr through various transporters such as phosphate and sulfate transporters. Cr exerts its effect by generating reactive oxygen species (ROS) and hampering various metabolic and physiological pathways. Studies on genetic and transcriptional regulation of plants have shown the various detoxification genes get up-regulated and confer tolerance in plants under Cr stress. In recent years, the ability of the plant to withstand Cr toxicity by accumulating Cr inside the plant has been recognized as one of the promising bioremediation methods for the Cr contaminated region. This review summarized the Cr occurrence and toxicity in plants, role of detoxification genes in Cr stress response, and various plants utilized for phytoremediation in Cr-contaminated regions.
Collapse
Affiliation(s)
- Dipali Srivastava
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prasanna Dutta
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puja Singh
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Khushboo Chawda
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monica Kumari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Gao L, Zhang L, Xu H, Zhao F, Ke W, Chen J, Yang J, Qi C, Liu J. The Actinobacillus pleuropneumoniae sulfate-binding protein is required for the acquisition of sulfate and methionine, but is not essential for virulence. Vet Microbiol 2020; 245:108704. [DOI: 10.1016/j.vetmic.2020.108704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
|
6
|
Thornton RB, Hakansson A, Hood DW, Nokso-Koivisto J, Preciado D, Riesbeck K, Richmond PC, Su YC, Swords WE, Brockman KL. Panel 7 - Pathogenesis of otitis media - a review of the literature between 2015 and 2019. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109838. [PMID: 31879085 PMCID: PMC7062565 DOI: 10.1016/j.ijporl.2019.109838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To perform a comprehensive review of the literature from July 2015 to June 2019 on the pathogenesis of otitis media. Bacteria, viruses and the role of the microbiome as well as the host response are discussed. Directions for future research are also suggested. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS PubMed was searched for any papers pertaining to OM pathogenesis between July 2015 and June 2019. If in English, abstracts were assessed individually for their relevance and included in the report. Members of the panel drafted the report based on these searches and on new data presented at the 20th International Symposium on Recent Advances in Otitis Media. CONCLUSIONS The main themes that arose in OM pathogenesis were around the need for symptomatic viral infections to develop disease. Different populations potentially having different mechanisms of pathogenesis. Novel bacterial otopathogens are emerging and need to be monitored. Animal models need to continue to be developed and used to understand disease pathogenesis. IMPLICATIONS FOR PRACTICE The findings in the pathogenesis panel have several implications for both research and clinical practice. The most urgent areas appear to be to continue monitoring the emergence of novel otopathogens, and the need to develop prevention and preventative therapies that do not rely on antibiotics and protect against the development of the initial OM episode.
Collapse
Affiliation(s)
- R B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia; School of Biomedical Sciences, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia
| | - A Hakansson
- Experimental Infection Medicine, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - D W Hood
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - J Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA; Division of Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - K Riesbeck
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - P C Richmond
- School of Medicine, Division of Paediatrics, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia; Perth Children's Hospital, Perth, Western Australia, Australia
| | - Y C Su
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - W E Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - K L Brockman
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Alderson MR, Murphy T, Pelton SI, Novotny LA, Hammitt LL, Kurabi A, Li JD, Thornton RB, Kirkham LAS. Panel 8: Vaccines and immunology. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109839. [PMID: 31948716 PMCID: PMC7153269 DOI: 10.1016/j.ijporl.2019.109839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To review and highlight significant advances made towards vaccine development and understanding of the immunology of otitis media (OM) since the 19th International Symposium on Recent Advances in Otitis Media (ISOM) in 2015, as well as identify future research directions and knowledge gaps. DATA SOURCES PubMed database, National Library of Medicine. REVIEW METHODS Key topics were assigned to each panel member for detailed review. Draft reviews were collated, circulated, and thoroughly discussed when the panel met at the 20th ISOM in June 2019. The final manuscript was prepared with input from all panel members. CONCLUSIONS Since 2015 there have been a number of studies assessing the impact of licensed pneumococcal vaccines on OM. While these studies have confirmed that these vaccines are effective in preventing carriage and/or disease caused by vaccine serotypes, OM caused by non-vaccine serotype pneumococci and other otopathogens remains a significant health care burden globally. Development of multi-species vaccines is challenging but essential to reducing the global burden of OM. Influenza vaccination has been shown to prevent acute OM, and with novel vaccines against nontypeable Haemophilus influenzae (NTHi), Moraxella catarrhalis and Respiratory Syncytial Virus (RSV) in clinical trials, the potential to significantly prevent OM is within reach. Research into alternative vaccine delivery strategies has demonstrated the power of maternal and mucosal vaccination for OM prevention. Future OM vaccine trials must include molecular diagnostics of middle ear effusion, for detection of viruses and bacteria that are persisting in biofilms and to enable accurate assessment of vaccine impact on OM etiology. Understanding population differences in natural and vaccine-induced immune responses to otopathogens is also important for development of the most effective OM vaccines. Improved understanding of the interaction between otopathogens will also advance development of effective therapies and encourage the assessment of the indirect benefits of vaccination. IMPLICATIONS FOR PRACTICE While NTHi and M. catarrhalis are the predominant otopathogens, funding opportunities to drive vaccine development for these species are limited due to a focus on prevention of childhood mortality rather than morbidity. Delivery of a comprehensive report on the high financial and social costs of OM, including the potential for OM vaccines to reduce antibiotic use and subsequent development of antimicrobial resistance (AMR), would likely assist in engaging stakeholders to recognize the value of prevention of OM and increase support for efforts on OM vaccine development. Vaccine trials with OM prevention as a clinical end-point are challenging, however a focus on developing assays that measure functional correlates of protection would facilitate OM vaccine development.
Collapse
Affiliation(s)
| | - Tim Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Stephen I Pelton
- Boston University School of Public Health, Boston University, Boston, MA, USA
| | - Laura A Novotny
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, CA, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, GA, USA
| | - Ruth B Thornton
- School of Biomedical Sciences, University of Western Australia, Australia and Wesfarmers Centre for Vaccines and Infectious Diseases Research, Telethon Kids Institute, Perth, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre for Vaccines and Infectious Diseases Research, Telethon Kids Institute, Australia and Centre for Child Health Research, University of Western Australia, Perth, Australia
| |
Collapse
|
8
|
Gisselsson-Solén M, Tähtinen PA, Ryan AF, Mulay A, Kariya S, Schilder AGM, Valdez TA, Brown S, Nolan RM, Hermansson A, van Ingen G, Marom T. Panel 1: Biotechnology, biomedical engineering and new models of otitis media. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109833. [PMID: 31901291 PMCID: PMC7176743 DOI: 10.1016/j.ijporl.2019.109833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To summarize recently published key articles on the topics of biomedical engineering, biotechnology and new models in relation to otitis media (OM). DATA SOURCES Electronic databases: PubMed, Ovid Medline, Cochrane Library and Clinical Evidence (BMJ Publishing). REVIEW METHODS Articles on biomedical engineering, biotechnology, material science, mechanical and animal models in OM published between May 2015 and May 2019 were identified and subjected to review. A total of 132 articles were ultimately included. RESULTS New imaging technologies for the tympanic membrane (TM) and the middle ear cavity are being developed to assess TM thickness, identify biofilms and differentiate types of middle ear effusions. Artificial intelligence (AI) has been applied to train software programs to diagnose OM with a high degree of certainty. Genetically modified mice models for OM have further investigated what predisposes some individuals to OM and consequent hearing loss. New vaccine candidates protecting against major otopathogens are being explored and developed, especially combined vaccines, targeting more than one pathogen. Transcutaneous vaccination against non-typeable Haemophilus influenzae has been successfully tried in a chinchilla model. In terms of treatment, novel technologies for trans-tympanic drug delivery are entering the clinical domain. Various growth factors and grafting materials aimed at improving healing of TM perforations show promising results in animal models. CONCLUSION New technologies and AI applications to improve the diagnosis of OM have shown promise in pre-clinical models and are gradually entering the clinical domain. So are novel vaccines and drug delivery approaches that may allow local treatment of OM. IMPLICATIONS FOR PRACTICE New diagnostic methods, potential vaccine candidates and the novel trans-tympanic drug delivery show promising results, but are not yet adapted to clinical use.
Collapse
Affiliation(s)
- Marie Gisselsson-Solén
- Department of Clinical Sciences, Division of Otorhinolaryngology, Head and Neck Surgery, Lund University Hospital, Lund, Sweden
| | - Paula A Tähtinen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, USA; San Diego Veterans Affairs Healthcare System, Research Department, San Diego, CA, USA
| | - Apoorva Mulay
- The Stripp Lab, Pulmonary Department, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Shin Kariya
- Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Anne G M Schilder
- EvidENT, Ear Institute, University College London, London, UK; National Institute for Health Research University College London Biomedical Research Centre, London, UK; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tulio A Valdez
- Department of Otolaryngology Head & Neck Surgery, Stanford University, Palo Alto, CA, USA
| | - Steve Brown
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | | | - Ann Hermansson
- Department of Clinical Sciences, Division of Otorhinolaryngology, Head and Neck Surgery, Lund University Hospital, Lund, Sweden
| | - Gijs van Ingen
- Department of Otolaryngology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tal Marom
- Department of Otolaryngology-Head and Neck Surgery, Samson Assuta Ashdod University Hospital, Faculty of Health Sciences Ben Gurion University, Ashdod, Israel.
| |
Collapse
|
9
|
Fernández M, Rico-Jiménez M, Ortega Á, Daddaoua A, García García AI, Martín-Mora D, Torres NM, Tajuelo A, Matilla MA, Krell T. Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. Int J Mol Sci 2019; 20:ijms20205156. [PMID: 31627455 PMCID: PMC6829864 DOI: 10.3390/ijms20205156] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Solute binding proteins (SBPs) form a heterogeneous protein family that is found in all kingdoms of life. In bacteria, the ligand-loaded forms bind to transmembrane transporters providing the substrate. We present here the SBP repertoire of Pseudomonas aeruginosa PAO1 that is composed of 98 proteins. Bioinformatic predictions indicate that many of these proteins have a redundant ligand profile such as 27 SBPs for proteinogenic amino acids, 13 proteins for spermidine/putrescine, or 9 proteins for quaternary amines. To assess the precision of these bioinformatic predictions, we have purified 17 SBPs that were subsequently submitted to high-throughput ligand screening approaches followed by isothermal titration calorimetry studies, resulting in the identification of ligands for 15 of them. Experimentation revealed that PA0222 was specific for γ-aminobutyrate (GABA), DppA2 for tripeptides, DppA3 for dipeptides, CysP for thiosulphate, OpuCC for betaine, and AotJ for arginine. Furthermore, RbsB bound D-ribose and D-allose, ModA bound molybdate, tungstate, and chromate, whereas AatJ recognized aspartate and glutamate. The majority of experimentally identified ligands were found to be chemoattractants. Data show that the ligand class recognized by SPBs can be predicted with confidence using bioinformatic methods, but experimental work is necessary to identify the precise ligand profile.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
- present address: Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Isabel García García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Noel Mesa Torres
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Tajuelo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| |
Collapse
|
10
|
Perez AC, Murphy TF. A Moraxella catarrhalis vaccine to protect against otitis media and exacerbations of COPD: An update on current progress and challenges. Hum Vaccin Immunother 2017; 13:2322-2331. [PMID: 28853985 PMCID: PMC5647992 DOI: 10.1080/21645515.2017.1356951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 01/03/2023] Open
Abstract
Moraxella catarrhalis is a major cause of morbidity and mortality worldwide, especially causing otitis media in young children and exacerbations of chronic obstructive pulmonary disease in adults. This pathogen uses several virulence mechanisms to colonize and survive in its host, including adherence and invasion of host cells, formation of polymicrobial biofilms with other bacterial pathogens, and production of β-lactamase. Given the global impact of otitis media and COPD, an effective vaccine to prevent M. catarrhalis infection would have a huge impact on the quality of life in both patient populations by preventing disease, thus reducing morbidity and health care costs. A number of promising vaccine antigens have been identified for M. catarrhalis. The development of improved animal models of M. catarrhalis disease and identification of a correlate of protection are needed to accelerate vaccine development. This review will discuss the current state of M. catarrhalis vaccine development, and the challenges that must be addressed to succeed.
Collapse
Affiliation(s)
- Antonia C. Perez
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Timothy F. Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Microbiology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
11
|
Blakeway LV, Tan A, Peak IRA, Seib KL. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development. MICROBIOLOGY-SGM 2017; 163:1371-1384. [PMID: 28893369 DOI: 10.1099/mic.0.000523] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moraxella catarrhalis is a human-restricted opportunistic bacterial pathogen of the respiratory mucosa. It frequently colonizes the nasopharynx asymptomatically, but is also an important causative agent of otitis media (OM) in children, and plays a significant role in acute exacerbations of chronic obstructive pulmonary disease (COPD) in adults. As the current treatment options for M. catarrhalis infection in OM and exacerbations of COPD are often ineffective, the development of an efficacious vaccine is warranted. However, no vaccine candidates for M. catarrhalis have progressed to clinical trials, and information regarding the distribution of M. catarrhalis virulence factors and vaccine candidates is inconsistent in the literature. It is largely unknown if virulence is associated with particular strains or subpopulations of M. catarrhalis, or if differences in clinical manifestation can be attributed to the heterogeneous expression of specific M. catarrhalis virulence factors in the circulating population. Further investigation of the distribution of M. catarrhalis virulence factors in the context of carriage and disease is required so that vaccine development may be targeted at relevant antigens that are conserved among disease-causing strains. The challenge of determining which of the proposed M. catarrhalis virulence factors are relevant to human disease is amplified by the lack of a standardized M. catarrhalis typing system to facilitate direct comparisons of worldwide isolates. Here we summarize and evaluate proposed relationships between M. catarrhalis subpopulations and specific virulence factors in the context of colonization and disease, as well as the current methods used to infer these associations.
Collapse
Affiliation(s)
- Luke V Blakeway
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ian R A Peak
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
12
|
Murphy TF, Brauer AL, Johnson A, Wilding GE, Koszelak-Rosenblum M, Malkowski MG. A Cation-Binding Surface Protein as a Vaccine Antigen To Prevent Moraxella catarrhalis Otitis Media and Infections in Chronic Obstructive Pulmonary Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00130-17. [PMID: 28659326 PMCID: PMC5585693 DOI: 10.1128/cvi.00130-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 02/05/2023]
Abstract
Moraxella catarrhalis is an exclusively human respiratory tract pathogen that is a common cause of otitis media in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. A vaccine to prevent these infections would have a major impact on reducing the substantial global morbidity and mortality in these populations. Through a genome mining approach, we identified AfeA, an ∼32-kDa substrate binding protein of an ABC transport system, as an excellent candidate vaccine antigen. Recombinant AfeA was expressed and purified and binds ferric, ferrous, manganese, and zinc ions, as demonstrated by thermal shift assays. It is a highly conserved protein that is present in all strains of M. catarrhalis Immunization with recombinant purified AfeA induces high-titer antibodies that recognize the native M. catarrhalis protein. AfeA expresses abundant epitopes on the bacterial surface and induces protective responses in the mouse pulmonary clearance model following aerosol challenge with M. catarrhalis Finally, AfeA is expressed during human respiratory tract infection of adults with chronic obstructive pulmonary disease (COPD). Based on these observations, AfeA is an excellent vaccine antigen to be included in a vaccine to prevent infections caused by M. catarrhalis.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Department of Microbiology and Immunology, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Aimee L Brauer
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Antoinette Johnson
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Gregory E Wilding
- Department of Biostatistics, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Mary Koszelak-Rosenblum
- Department of Structural Biology, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Michael G Malkowski
- Department of Structural Biology, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| |
Collapse
|
13
|
Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. CHEMOSPHERE 2017; 178:513-533. [PMID: 28347915 DOI: 10.1016/j.chemosphere.2017.03.074] [Citation(s) in RCA: 510] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan.
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Marina Rafiq
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Antonio Machado, 31058 Toulouse Cedex 9, France
| | - Muhammad Imtiaz Rashid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan; Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Fan M, Chen S, Zhang L, Bi J, Peng J, Huang X, Li X, Li H, Zhou Q, Jiang S, Li J. Riemerella anatipestifer extracellular protease S blocks complement activation via the classical and lectin pathways. Avian Pathol 2017; 46:426-433. [PMID: 28277777 DOI: 10.1080/03079457.2017.1301648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Riemerella anatipestifer (RA) is the causative agent of infectious serositis in ducklings and other avian species. It is difficult to control the disease due to its 21 serotypes, poor cross-protection, and bacterial resistance to antimicrobial agents. The complement system is an important component of the innate immune system. However, bacterial pathogens exploit several strategies to evade detection by the complement system. Here, we purified and identified a 59-kDa RA extracellular protease S (EcpS) consisting of a gelatinase. In this study, we aimed to determine how EcpS interferes with complement activation and whether it could block complement-dependent neutrophil function. We found that EcpS potently blocked RA phagocytosis and killing by duck neutrophils. Furthermore, EcpS inhibited the opsonization of bacteria by complement 3b. EcpS specifically blocked complement 3b and complement 4b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. In summary, we show that RA can survive the bactericidal activity of the duck complement system. These results indicate that RA has evolved mechanisms to evade the duck complement system that may increase the efficiency by which this pathogen can gain access and colonize the inner tissues where it may cause severe infections.
Collapse
Affiliation(s)
- Mengnan Fan
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Sihuai Chen
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Ludan Zhang
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Junxuan Bi
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Jiasun Peng
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Xinyan Huang
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Xin Li
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Huan Li
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Qin Zhou
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Sheng Jiang
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Jixiang Li
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| |
Collapse
|
15
|
Perez AC, Murphy TF. Potential impact of a Moraxella catarrhalis vaccine in COPD. Vaccine 2017; 37:5551-5558. [PMID: 28185742 DOI: 10.1016/j.vaccine.2016.12.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/28/2016] [Indexed: 12/27/2022]
Abstract
Moraxella catarrhalis is the second most common cause of exacerbations in adults with COPD, resulting in enormous morbidity and mortality in this clinical setting. Vaccine development for M. catarrhalis has lagged behind the other two important causes of exacerbations in COPD, nontypeable Haemophilus influenzae and Streptococcus pneumoniae. While no licensed vaccine is currently available for M. catarrhalis, several promising candidate vaccine antigens have been identified and characterized and are close to entering clinical trials. Key steps that are required to advance vaccines for M. catarrhalis along the translational pipeline include standardization of assay systems to assess candidate antigens, identification of a reliable correlate of protection and expansion of partnerships between industry, academia and government to overcome regulatory hurdles. A vaccine to prevent M. catarrhalis infections in COPD would have a major impact in reducing morbidity, mortality and healthcare costs in COPD.
Collapse
Affiliation(s)
- Antonia C Perez
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA; Department of Microbiology, University at Buffalo, The State University of New York, 875 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
16
|
Murphy TF, Brauer AL, Johnson A, Kirkham C. ATP-Binding Cassette (ABC) Transporters of the Human Respiratory Tract Pathogen, Moraxella catarrhalis: Role in Virulence. PLoS One 2016; 11:e0158689. [PMID: 27391026 PMCID: PMC4938438 DOI: 10.1371/journal.pone.0158689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media (middle ear infections) in children and respiratory tract infections in adults with chronic obstructive pulmonary disease. In view of the huge global burden of disease caused by M. catarrhalis, the development of vaccines to prevent these infections and better approaches to treatment have become priorities. In previous work, we used a genome mining approach that identified three substrate binding proteins (SBPs) of ATP-binding cassette (ABC) transporters as promising candidate vaccine antigens. In the present study, we performed a comprehensive assessment of 19 SBPs of 15 ABC transporter systems in the M. catarrhalis genome by engineering knockout mutants and studying their role in assays that assess mechanisms of infection. The capacity of M. catarrhalis to survive and grow in the nutrient-limited and hostile environment of the human respiratory tract, including intracellular growth, account in part for its virulence. The results show that ABC transporters that mediate uptake of peptides, amino acids, cations and anions play important roles in pathogenesis by enabling M. catarrhalis to 1) grow in nutrient-limited conditions, 2) invade and survive in human respiratory epithelial cells and 3) persist in the lungs in a murine pulmonary clearance model. The knockout mutants of SBPs and ABC transporters showed different patterns of activity in the assay systems, supporting the conclusion that different SBPs and ABC transporters function at different stages in the pathogenesis of infection. These results indicate that ABC transporters are nutritional virulence factors, functioning to enable the survival of M catarrhalis in the diverse microenvironments of the respiratory tract. Based on the role of ABC transporters as virulence factors of M. catarrhalis, these molecules represent potential drug targets to eradicate the organism from the human respiratory tract.
Collapse
Affiliation(s)
- Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Department of Microbiology, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- * E-mail:
| | - Aimee L. Brauer
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
| | - Antoinette Johnson
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
| | - Charmaine Kirkham
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, United States of America
| |
Collapse
|