1
|
Blanco FC, Marini MR, Klepp LI, Vázquez CL, García EA, Bigi MM, Canal A, Bigi F. Long-term evaluation in BALBc mice of a triple mutant of Mycobacterium bovis and the Bacillus Calmette-Guérin as potential vaccines against bovine tuberculosis. Vet Microbiol 2025; 302:110371. [PMID: 39798450 DOI: 10.1016/j.vetmic.2025.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
There is currently no commercial vaccine available against bovine tuberculosis (bTB). Mycobacterium bovis is the primary causative agent of bTB and is closely related to Mycobacterium tuberculosis, the pathogen responsible for human TB. Despite their limitations, mouse models are invaluable in early vaccine development due to their genetic diversity, cost-effectiveness, and the availability of research tools. Researchers have tested many TB vaccines in mice, although few specifically target bTB. In this study, we developed a mutant strain of M. bovis lacking the esxA, esxB genes and the virulence gene fbpA to evaluate its long-term protective efficacy in BALB/c mice. We also analysed local immune responses and compared the results with those of BCG vaccination. Both BCG and the triple mutant strain Mb303ΔesxABΔfbpA demonstrated protection in BALB/c mice against M. bovis challenge, as evidenced by reduced bacterial lung loads. A histopathological analysis revealed the absence of ZN+ bacteria in the lungs of M. bovis-challenged mice vaccinated with BCG. In addition, mice vaccinated with the triple mutant exhibited a higher profile of protective immune CD4 + T cells in the lungs than those vaccinated with BCG. Notably, there was a negative correlation between the bacterial loads in the lungs of mice and the T cell subpopulations CD4 +KLRG1-PD1 +CCR7 + and CD4 +KLRG1-CXCR3 + , indicating that these T cell phenotypes are potential markers of protection against bTB. These findings indicate that the Mb303ΔesxABΔfbpA strain provides long-term protection against bTB. Furthermore, the results reaffirm the potential of BCG as a vaccine against this disease.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina
| | - María Rocío Marini
- Laboratorio de Anatomía Patológica, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral-Esperanza, Santa Fe, Argentina
| | - Laura Inés Klepp
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina
| | - Cristina Lourdes Vázquez
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina
| | - Elizabeth Andrea García
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina
| | | | - Ana Canal
- Laboratorio de Anatomía Patológica, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral-Esperanza, Santa Fe, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular, (IABIMO) INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, N. Repetto and De los Reseros, Hurlingham, Buenos Aires 1686, Argentina.
| |
Collapse
|
2
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Kaveh DA, Garcia-Pelayo MC, Bull NC, Sanchez-Cordon PJ, Spiropoulos J, Hogarth PJ. Airway delivery of both a BCG prime and adenoviral boost drives CD4 and CD8 T cells into the lung tissue parenchyma. Sci Rep 2020; 10:18703. [PMID: 33127956 PMCID: PMC7603338 DOI: 10.1038/s41598-020-75734-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Heterologous BCG prime-boost regimens represent a promising strategy for an urgently required improved tuberculosis vaccine. Identifying the mechanisms which underpin the enhanced protection induced by such strategies is one key aim which would significantly accelerate rational vaccine development. Experimentally, airway vaccination induces greater efficacy than parenteral delivery; in both conventional vaccination and heterologous boosting of parenteral BCG immunisation. However, the effect of delivering both the component prime and boost immunisations via the airway is not well known. Here we investigate delivery of both the BCG prime and adenovirus boost vaccination via the airway in a murine model, and demonstrate this approach may be able to improve the protective outcome over parenteral prime/airway boost. Intravascular staining of T cells in the lung revealed that the airway prime regimen induced more antigen-specific multifunctional CD4 and CD8 T cells to the lung parenchyma prior to challenge and indicated the route of both prime and boost to be critical to the location of induced resident T cells in the lung. Further, in the absence of a defined phenotype of vaccine-induced protection to tuberculosis; the magnitude and phenotype of vaccine-specific T cells in the parenchyma of the lung may provide insights into potential correlates of immunity.
Collapse
Affiliation(s)
- Daryan A Kaveh
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey, UK.
| | - M Carmen Garcia-Pelayo
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey, UK
| | - Naomi C Bull
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey, UK.,Royal Veterinary College, Royal College Street, London, UK
| | | | | | - Philip J Hogarth
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey, UK
| |
Collapse
|
4
|
Bull NC, Stylianou E, Kaveh DA, Pinpathomrat N, Pasricha J, Harrington-Kandt R, Garcia-Pelayo MC, Hogarth PJ, McShane H. Enhanced protection conferred by mucosal BCG vaccination associates with presence of antigen-specific lung tissue-resident PD-1 + KLRG1 - CD4 + T cells. Mucosal Immunol 2019; 12:555-564. [PMID: 30446726 PMCID: PMC7051908 DOI: 10.1038/s41385-018-0109-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023]
Abstract
BCG, the only vaccine licensed against tuberculosis, demonstrates variable efficacy in humans. Recent preclinical studies highlight the potential for mucosal BCG vaccination to improve protection. Lung tissue-resident memory T cells reside within the parenchyma, potentially playing an important role in protective immunity to tuberculosis. We hypothesised that mucosal BCG vaccination may enhance generation of lung tissue-resident T cells, affording improved protection against Mycobacterium tuberculosis. In a mouse model, mucosal intranasal (IN) BCG vaccination conferred superior protection in the lungs compared to the systemic intradermal (ID) route. Intravascular staining allowed discrimination of lung tissue-resident CD4+ T cells from those in the lung vasculature, revealing that mucosal vaccination resulted in an increased frequency of antigen-specific tissue-resident CD4+ T cells compared to systemic vaccination. Tissue-resident CD4+ T cells induced by mucosal BCG displayed enhanced proliferative capacity compared to lung vascular and splenic CD4+ T cells. Only mucosal BCG induced antigen-specific tissue-resident T cells expressing a PD-1+ KLRG1- cell-surface phenotype. These cells constitute a BCG-induced population which may be responsible for the enhanced protection observed with IN vaccination. We demonstrate that mucosal BCG vaccination significantly improves protection over systemic BCG and this correlates with a novel population of BCG-induced lung tissue-resident CD4+ T cells.
Collapse
Affiliation(s)
- N. C. Bull
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK ,0000 0004 1765 422Xgrid.422685.fVaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey UK
| | - E. Stylianou
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| | - D. A. Kaveh
- 0000 0004 1765 422Xgrid.422685.fVaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey UK
| | - N. Pinpathomrat
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| | - J. Pasricha
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| | - R. Harrington-Kandt
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| | - M. C. Garcia-Pelayo
- 0000 0004 1765 422Xgrid.422685.fVaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey UK
| | - P. J. Hogarth
- 0000 0004 1765 422Xgrid.422685.fVaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey UK
| | - H. McShane
- 0000 0004 1936 8948grid.4991.5The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Bull NC, Kaveh DA, Garcia-Pelayo MC, Stylianou E, McShane H, Hogarth PJ. Induction and maintenance of a phenotypically heterogeneous lung tissue-resident CD4 + T cell population following BCG immunisation. Vaccine 2018; 36:5625-5635. [PMID: 30097220 PMCID: PMC6143486 DOI: 10.1016/j.vaccine.2018.07.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is the biggest cause of human mortality from an infectious disease. The only vaccine currently available, bacille Calmette-Guérin (BCG), demonstrates some protection against disseminated disease in childhood but very variable efficacy against pulmonary disease in adults. A greater understanding of protective host immune responses is required in order to aid the development of improved vaccines. Tissue-resident memory T cells (TRM) are a recently-identified subset of T cells which may represent an important component of protective immunity to TB. Here, we demonstrate that intradermal BCG vaccination induces a population of antigen-specific CD4+ T cells within the lung parenchyma which persist for >12 months post-vaccination. Comprehensive flow cytometric analysis reveals this population is phenotypically and functionally heterogeneous, and shares characteristics with lung vascular and splenic CD4+ T cells. This underlines the importance of utilising the intravascular staining technique for definitive identification of tissue-resident T cells, and also suggests that these anatomically distinct cellular subsets are not necessarily permanently resident within a particular tissue compartment but can migrate between compartments. This lung parenchymal population merits further investigation as a critical component of a protective immune response against Mycobacterium tuberculosis (M. tb).
Collapse
Affiliation(s)
- Naomi C Bull
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Daryan A Kaveh
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - M C Garcia-Pelayo
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Elena Stylianou
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Helen McShane
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Philip J Hogarth
- Vaccine Immunology Team, Department of Bacteriology, Animal & Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|