1
|
Lin G, Poleon S, Hamilton A, Salvekar N, Jara M, Haghpanah F, Lanzas C, Hazel A, Blumberg S, Lenhart S, Lloyd AL, Vullikanti A, Klein E. The contribution of community transmission to the burden of hospital-associated pathogens: A systematic scoping review of epidemiological models. One Health 2025; 20:100951. [PMID: 39816238 PMCID: PMC11733049 DOI: 10.1016/j.onehlt.2024.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
Healthcare-associated infections (HAI), particularly those involving multi-drug resistant organisms (MDRO), pose a significant public health threat. Understanding the transmission of these pathogens in short-term acute care hospitals (STACH) is crucial for effective control. Mathematical and computational models play a key role in studying transmission but often overlook the influence of long-term care facilities (LTCFs) and the broader community on transmission. In a systematic scoping review of 4,733 unique studies from 2016 to 2022, we explored the modeling landscape of the hospital-community interface in HAI-causing pathogen transmission. Among the 29 eligible studies, 28 % (n = 8) exclusively modeled LTCFs, 45 % (n = 13) focused on non-healthcare-related community settings, and 31 % (n = 9) considered both settings. Studies emphasizing screening and contact precautions were more likely to include LTCFs but tended to neglect the wider community. This review emphasizes the crucial need for comprehensive modeling that incorporates the community's impact on both clinical and public health outcomes.
Collapse
Affiliation(s)
- Gary Lin
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | - Manuel Jara
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | | | - Cristina Lanzas
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Ashley Hazel
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Seth Blumberg
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Anil Vullikanti
- Department of Computer Science and Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA
| | - Eili Klein
- One Health Trust, Washington DC, USA
- Department of Emergency Medicine and Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - For the CDC MInD Healthcare Network
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
- One Health Trust, Washington DC, USA
- The College Preparatory School, Oakland, CA, USA
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, USA
- Department of Computer Science and Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA
- Department of Emergency Medicine and Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Sauvat L, Verhoeven PO, Gagnaire J, Berthelot P, Paul S, Botelho-Nevers E, Gagneux-Brunon A. Vaccines and monoclonal antibodies to prevent healthcare-associated bacterial infections. Clin Microbiol Rev 2024; 37:e0016022. [PMID: 39120140 PMCID: PMC11391692 DOI: 10.1128/cmr.00160-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
SUMMARYHealthcare-associated infections (HAIs) represent a burden for public health with a high prevalence and high death rates associated with them. Pathogens with a high potential for antimicrobial resistance, such as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and Clostridioides difficile, are responsible for most HAIs. Despite the implementation of infection prevention and control intervention, globally, HAIs prevalence is stable and they are mainly due to endogenous pathogens. It is undeniable that complementary to infection prevention and control measures, prophylactic approaches by active or passive immunization are needed. Specific groups at-risk (elderly people, chronic condition as immunocompromised) and also healthcare workers are key targets. Medical procedures and specific interventions are known to be at risk of HAIs, in addition to hospital environmental exposure. Vaccines or monoclonal antibodies can be seen as attractive preventive approaches for HAIs. In this review, we present an overview of the vaccines and monoclonal antibodies in clinical development for prevention of the major bacterial HAIs pathogens. Based on the current state of knowledge, we look at the challenges and future perspectives to improve prevention by these means.
Collapse
Affiliation(s)
- Léo Sauvat
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O Verhoeven
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Agents and Hygiene, University-Hospital of Saint-Etienne, Saint-Etienne, France
| | - Julie Gagnaire
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Infection Control Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Amandine Gagneux-Brunon
- CIRI - Centre International de Recherche en Infectiologie, GIMAP team, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France
- CIC 1408 Inserm, Axe vaccinologie, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
3
|
Agnew E, Davies KA, Viprey VF, Evans S, Davis GL, Hope R, Wilcox MH, Wingen-Heimann SM, Robotham JV. Impact of testing on Clostridioides difficile infection in hospitals across Europe: a mathematical model. Clin Microbiol Infect 2023:S1198-743X(23)00057-5. [PMID: 36773769 DOI: 10.1016/j.cmi.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES The prevalence of Clostridioides difficile infection (CDI) has been shown to vary markedly between European countries, both in hospitals and in the community. Determining the true prevalence has proven challenging. Without systematic testing in hospitals, the unchecked transmission of CDI can lead to large outbreaks in more susceptible cohorts. We investigate the success of CDI surveillance and control measures across Europe, by examining the dynamics of disease spread from the community into a hospital setting. We focus on national differences, such as variability in testing and sampling, disease prevalence in communities and hospitals, and antimicrobial usage. METHODS We developed a stochastic, compartmental, dynamic mathematical model parameterized using sampling and testing rate data from COMBACTE-CDI, a multicountry study in which all diarrhoeal stool samples (N = 3163) from European laboratories were tested for CDI, and data for antimicrobial usage and incidence of hospital cases sourced from the European Centre for Disease Prevention and Control. RESULTS The framework estimates the prevalence of CDI among hospital patients across European countries and explores how national differences impact the dynamics, transmission, and relative incidence of CDI within the hospital setting. The model illustrates the mechanisms influencing these national differences, namely, antimicrobial usage rates, national sampling and testing rates, and community prevalence of CDI. DISCUSSION Differential costs for testing and practicalities of scaling up testing mean every country needs to consider balancing CDI testing costs against the costs of treatment and care of patients with CDI.
Collapse
Affiliation(s)
- Emily Agnew
- Healthcare Associated Infection and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK.
| | - Kerrie A Davies
- COMBACTE-CDI European Coordinator Laboratory, Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, UK
| | - Virginie F Viprey
- COMBACTE-CDI European Coordinator Laboratory, Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Stephanie Evans
- Healthcare Associated Infection and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
| | - Georgina L Davis
- COMBACTE-CDI European Coordinator Laboratory, Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Russell Hope
- Healthcare Associated Infection and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
| | - Mark H Wilcox
- COMBACTE-CDI European Coordinator Laboratory, Healthcare Associated Infections Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, UK
| | - Sebastian M Wingen-Heimann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; FOM University of Applied Sciences, Cologne, Germany
| | - Julie V Robotham
- Healthcare Associated Infection and Antimicrobial Resistance Division, National Infection Service, Public Health England, London, UK
| | | |
Collapse
|
4
|
Amandine GB, Gagnaire J, Pelissier C, Philippe B, Elisabeth BN. Vaccines for healthcare associated infections without vaccine prevention to date. Vaccine X 2022; 11:100168. [PMID: 35600984 PMCID: PMC9118472 DOI: 10.1016/j.jvacx.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
In spite of the widespread implementation of preventive strategies, the prevalence of healthcare-associated infections (HAIs) remains high. The prevalence of multidrug resistant organisms is high in HAIs. In 2019, the World Health Organization retained antimicrobial resistance as one of the ten issues for global health. The development of vaccines may contribute to the fight against antimicrobial resistance to reduce the burden of HAIs. Staphylococcus aureus, Gram negative bacteria and Clostridium difficile are the most frequent pathogens reported in HAIs. Consequently, the development of vaccines against these pathogens is crucial. At this stage, the goal of obtaining effective vaccines against S.aureus and Gram negative bacteria has not yet been achieved. However, we can expect in the near future availability of a vaccine against C. difficile. In addition, identifying populations who may benefit from these vaccines is complex, as at-risk patients are not great responders to vaccines, or as vaccination may occur too late, when they are already confronted to the risk. Vaccinating healthcare workers (HCWs) against these pathogens may have an impact only if HCWs play a role in the transmission and in the pathogens acquisition in patients, if the vaccine is effective to reduce pathogens carriage and if vaccine coverage is sufficient to protect patients. Acceptance of these potential vaccines should be evaluated and addressed in patients and in HCWs.
Collapse
Affiliation(s)
- Gagneux-Brunon Amandine
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.,CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France.,Department of Infectious Diseases, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Julie Gagnaire
- Department of Infectious Diseases, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.,Infection Control Unit, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Carole Pelissier
- Occupational Health Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Berthelot Philippe
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France.,Department of Infectious Diseases, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.,Infection Control Unit, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| | - Botelho-Nevers Elisabeth
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.,CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France.,Department of Infectious Diseases, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France
| |
Collapse
|
5
|
Lanzas C, Jara M, Tucker R, Curtis S. A review of epidemiological models of Clostridioides difficile transmission and control (2009-2021). Anaerobe 2022; 74:102541. [PMID: 35217149 DOI: 10.1016/j.anaerobe.2022.102541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile is the leading cause of infectious diarrhea and one of the most common healthcare-acquired infections worldwide. We performed a systematic search and a bibliometric analysis of mathematical and computational models for Clostridioides difficile transmission. We identified 33 publications from 2009 to 2021. Models have underscored the importance of asymptomatic colonized patients in maintaining transmission in health-care settings. Infection control, antimicrobial stewardship, active testing, and vaccination have often been evaluated in models. Despite active testing and vaccination being not currently implemented, they are the most commonly evaluated interventions. Some aspects of C. difficile transmission, such community transmission and interventions in health-care settings other than in acute-care hospitals, remained less evaluated through modeling.
Collapse
Affiliation(s)
- Cristina Lanzas
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA.
| | - Manuel Jara
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Rachel Tucker
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Savannah Curtis
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | -
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Smith DR, Temime L, Opatowski L. Microbiome-pathogen interactions drive epidemiological dynamics of antibiotic resistance: A modeling study applied to nosocomial pathogen control. eLife 2021; 10:68764. [PMID: 34517942 PMCID: PMC8560094 DOI: 10.7554/elife.68764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The human microbiome can protect against colonization with pathogenic antibiotic-resistant bacteria (ARB), but its impacts on the spread of antibiotic resistance are poorly understood. We propose a mathematical modeling framework for ARB epidemiology formalizing within-host ARB-microbiome competition, and impacts of antibiotic consumption on microbiome function. Applied to the healthcare setting, we demonstrate a trade-off whereby antibiotics simultaneously clear bacterial pathogens and increase host susceptibility to their colonization, and compare this framework with a traditional strain-based approach. At the population level, microbiome interactions drive ARB incidence, but not resistance rates, reflecting distinct epidemiological relevance of different forces of competition. Simulating a range of public health interventions (contact precautions, antibiotic stewardship, microbiome recovery therapy) and pathogens (Clostridioides difficile, methicillin-resistant Staphylococcus aureus, multidrug-resistant Enterobacteriaceae) highlights how species-specific within-host ecological interactions drive intervention efficacy. We find limited impact of contact precautions for Enterobacteriaceae prevention, and a promising role for microbiome-targeted interventions to limit ARB spread.
Collapse
Affiliation(s)
- David Rm Smith
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.,Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France.,Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiers, Paris, France.,PACRI unit, Institut Pasteur, Conservatoire national des arts et métiers, Paris, France
| | - Lulla Opatowski
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.,Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France
| |
Collapse
|
7
|
Stephenson B, Lanzas C, Lenhart S, Ponce E, Bintz J, Dubberke ER, Day J. Comparing intervention strategies for reducing Clostridioides difficile transmission in acute healthcare settings: an agent-based modeling study. BMC Infect Dis 2020; 20:799. [PMID: 33115427 PMCID: PMC7594474 DOI: 10.1186/s12879-020-05501-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is one of the most common healthcare infections. Common strategies aiming at controlling CDI include antibiotic stewardship, environmental decontamination, and improved hand hygiene and contact precautions. Mathematical models provide a framework to evaluate control strategies. Our objective is to evaluate the effectiveness of control strategies in decreasing C. difficile colonization and infection using an agent-based model in an acute healthcare setting. METHODS We developed an agent-based model that simulates the transmission of C. difficile in medical wards. This model explicitly incorporates healthcare workers (HCWs) as vectors of transmission, tracks individual patient antibiotic histories, incorporates varying risk levels of antibiotics with respect to CDI susceptibility, and tracks contamination levels of ward rooms by C. difficile. Interventions include two forms of antimicrobial stewardship, increased environmental decontamination through room cleaning, improved HCW compliance, and a preliminary assessment of vaccination. RESULTS Increased HCW compliance with CDI patients was ranked as the most effective intervention in decreasing colonizations, with reductions up to 56%. Antibiotic stewardship practices were highly ranked after contact precaution compliance. Vaccination and reduction of high-risk antibiotics were the most effective intervention in decreasing CDI. Vaccination reduced CDI cases to up to 90%, and the reduction of high-risk antibiotics decreased CDI cases up to 23%. CONCLUSIONS Overall, interventions that decrease patient susceptibility to colonization by C. difficile, such as antibiotic stewardship, were the most effective interventions in reducing both colonizations and CDI cases.
Collapse
Affiliation(s)
- Brittany Stephenson
- Department of Engineering, Computing, and Mathematical Sciences, Lewis University, 1 University Parkway, Romeoville, 60446 IL USA
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, North Carolina State University, 1052 William Moore Drive, Raleigh, 27606 NC USA
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, 1403 Circle Drive, Knoxville, 37996 TN USA
| | - Eduardo Ponce
- Department of Electrical Engineering and Computer Science, University of Tennessee, 1520 Middle Drive, Knoxville, 37996 TN USA
| | - Jason Bintz
- School of Arts and Sciences, Johnson University, Knoxville, 37998 TN USA
| | - Erik R. Dubberke
- Division of Infectious Disease, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, 63110 MO USA
| | - Judy Day
- Department of Mathematics, University of Tennessee, 1403 Circle Drive, Knoxville, 37996 TN USA
- Department of Electrical Engineering and Computer Science, University of Tennessee, 1520 Middle Drive, Knoxville, 37996 TN USA
| |
Collapse
|
8
|
Toth DJA, Keegan LT, Samore MH, Khader K, O'Hagan JJ, Yu H, Quintana A, Swerdlow DL. Modeling the potential impact of administering vaccines against Clostridioides difficile infection to individuals in healthcare facilities. Vaccine 2020; 38:5927-5932. [PMID: 32703744 DOI: 10.1016/j.vaccine.2020.06.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND A vaccine against Clostridioides difficile infection (CDI) is in development. While the vaccine has potential to both directly protect those vaccinated and mitigate transmission by reducing environmental contamination, the impact of the vaccine on C. difficile colonization remains unclear. Consequently, the transmission-reduction effect of the vaccine depends on the contribution of symptomatic CDI to overall transmission of C. difficile. METHODS We designed a simulation model of CDI among patients in a network of 10 hospitals and nursing homes and calibrated the model using estimates of transmissibility from whole genome sequencing studies that estimated the fraction of CDI attributable to transmission from other CDI patients. We assumed the vaccine reduced the rate of progression to CDI among carriers by 25-95% after completion of a 3-dose vaccine course administered to randomly chosen patients at facility discharge. We simulated the administration of this vaccination campaign and tallied effects over 5 years. RESULTS We estimated 30 times higher infectivity of CDI patients compared to other carriers. Simulations of the vaccination campaign produced an average reduction of 3-16 CDI cases per 1000 vaccinated patients, with 2-11 of those cases prevented among those vaccinated and 1-5 prevented among unvaccinated patients. CONCLUSIONS Our findings demonstrate potential for a vaccine against CDI to reduce transmissions in healthcare facilities, even with no direct effect on carriage susceptibility. The vaccine's population impact will increase if received by individuals at risk for CDI onset in high-transmission settings.
Collapse
Affiliation(s)
- Damon J A Toth
- Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA; Department of Internal Medicine (Epidemiology), University of Utah, Salt Lake City, UT, USA.
| | - Lindsay T Keegan
- Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA; Department of Internal Medicine (Epidemiology), University of Utah, Salt Lake City, UT, USA
| | - Matthew H Samore
- Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA; Department of Internal Medicine (Epidemiology), University of Utah, Salt Lake City, UT, USA.
| | - Karim Khader
- Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA; Department of Internal Medicine (Epidemiology), University of Utah, Salt Lake City, UT, USA
| | - Justin J O'Hagan
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | |
Collapse
|
9
|
Champredon D, Shoukat A, Moghadas SM. Effectiveness and cost-effectiveness of a Clostridium difficile vaccine candidate in a hospital setting. Vaccine 2020; 38:2585-2591. [PMID: 32014268 DOI: 10.1016/j.vaccine.2020.01.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/27/2022]
Abstract
Toxoid vaccines against Clostridium difficile infections (CDI) appear promising in reducing the risk of developing toxin-mediated symptoms. We sought to evaluate the effectiveness and cost-effectiveness of a vaccine candidate in a hospital setting. We developed an agent-based simulation model of nosocomial CDI in a 300-bed hospital. Targeting high-risk patients for vaccination, we estimated the reduction of symptomatic CDI. Using the net reduction of CDI-associated isolation days, we evaluated the vaccine's cost-effectiveness from a healthcare provider perspective over a 2-year period with an average monthly incidence of 5 cases per 10,000 patient-days pre-vaccination. Assuming a vaccine efficacy in the range 60-90%, vaccinating 40% of high-risk patients pre-admission reduced symptomatic CDI by 16.6% (95% CI: 15.2, 17.9). When the vaccine coverage increased to 80%, the reduction of symptomatic CDI was 34.6% (95% CI: 33.7, 35.9). For a willingness to pay (WTP) of CDN$1000 (corresponding to the average costs of case isolation per day), vaccine was cost-effective for vaccination costs per individual (VCPI) up to CDN$111 in the scenario of 40% vaccine coverage. With the same WTP, vaccine was cost-effective for VCPI up to CDN$121 when the vaccine coverage increased to 80%. A significant portion (~80%) of hospital colonization is caused by environmental transmission of C. difficile, which markedly reduced the effectiveness of vaccine below its assumed efficacy. However, due to the number of CDI-associated isolation days averted, vaccination of high-risk patients can be cost-effective depending on the WTP and the VCPI.
Collapse
Affiliation(s)
- David Champredon
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada; Agent-Based Modelling Laboratory, York University, Toronto, Ontario M3J 1P3, Canada
| | - Affan Shoukat
- Center for Infectious Disease Modelling and Analysis, Yale University, New Haven, CT 06510, USA; Agent-Based Modelling Laboratory, York University, Toronto, Ontario M3J 1P3, Canada
| | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
10
|
Champredon D, Zhang K, Smieja M, Moghadas SM. Clostridium difficile intervention timelines for diagnosis, isolation, and treatment. Am J Infect Control 2019; 47:1370-1374. [PMID: 31182236 DOI: 10.1016/j.ajic.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Developing timelines of nosocomial Clostridium difficile infection (CDI) is critical to improving control and preventive measures. The objective of this study was to provide data-driven estimates of CDI timelines of diagnosis, isolation, and treatment in a hospital setting. METHODS We obtained data for all CDI inpatients with symptoms onset occurring between January 1, 2013, and December 30, 2017, from St Joseph's Healthcare in Hamilton, Canada. We analyzed full empirical distributions of timelines associated with the diagnosis, isolation, and treatment of CDI. RESULTS A total of 683 inpatients with CDI symptoms were recorded, of which 243 cases were identified as health care-associated infection (HAI). The mean time intervals between the onset of CDI symptoms after admission and the release of laboratory results were 1.2 days and 1.9 days for the HAI and community-associated infection (CAI) patient groups, respectively. The mean time intervals from symptoms onset to the start of isolation were 1.5 days and 2.6 days for the corresponding patient groups. The initiation of treatment within 2 days of symptoms onset reduced the duration of first isolation (P value < .0001); however, the type of initial antibiotic used for CDI treatment was not associated with the duration of isolation. CONCLUSIONS Estimated timelines did not differ (P values > .6) between HAI and CAI patient groups with symptoms onset after admission. These estimates are useful for evaluating the effectiveness of CDI interventions.
Collapse
|
11
|
Vaccination against Clostridium difficile by Use of an Attenuated Salmonella enterica Serovar Typhimurium Vector (YS1646) Protects Mice from Lethal Challenge. Infect Immun 2019; 87:IAI.00089-19. [PMID: 31138615 PMCID: PMC6652760 DOI: 10.1128/iai.00089-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile disease is mediated primarily by toxins A and B (TcdA and TcdB, respectively). The receptor binding domains (RBD) of TcdA and TcdB are immunogenic, and anti-RBD antibodies are protective. Since these toxins act locally, an optimal C. difficile vaccine would generate both systemic and mucosal responses. We have repurposed an attenuated Salmonella enterica serovar Typhimurium strain (YS1646) to produce such a vaccine. Plasmid-based candidates expressing either the TcdA or TcdB RBD were screened. Different vaccine routes and schedules were tested to achieve detectable serum and mucosal antibody titers in C57BL/6J mice. When given in a multimodality schedule over 1 week (intramuscularly and orally [p.o.] on day 0 and p.o. on days 2 and 4), several candidates provided 100% protection against lethal challenge. Substantial protection (82%) was achieved with combined p.o. TcdA and TcdB vaccination alone (days 0, 2, and 4). These data demonstrate the potential of the YS1646-based vaccines for C. difficile and strongly support their further development.
Collapse
|
12
|
Cimolai N. Are Clostridium difficile toxins nephrotoxic? Med Hypotheses 2019; 126:4-8. [PMID: 31010497 DOI: 10.1016/j.mehy.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
Clostridium difficile-associated disease (CDAD) occurs along a spectrum from simple uncomplicated enteritis to a multi-system disease which may include nephropathy. Pathology is attributed to bacterial toxins, but it is unclear if the latter are directly nephrotoxic. Anecdotes of renal disease from human biopsy findings suggest a variation of histopathologies, but data are relatively limited. Acute renal failure does occur in patients with advanced morbidity. CDAD can complicate chronic renal failure. Kidney tissue culture cytotoxicity has long been known. Kidney function alterations among animal models or diseased humans are relatively uncommon in mild to moderate enteritis. Rare findings of toxinemia are reported. Some have proposed that renal dysfunction arises more from pre-renal compromises. Direct toxin studies on whole kidney are sparse. The role of direct toxin-associated renal disease is worthy of further investigation given the current impetus towards the development of protective and therapeutic passive and active immunity. Hypotheses of toxin-direct or pre-renal toxin compromise of renal function prevail.
Collapse
Affiliation(s)
- Nevio Cimolai
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Canada; Department of Pathology and Laboratory Medicine, Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H3V4, Canada.
| |
Collapse
|
13
|
Chamchod F, Palittapongarnpim P. Modeling Clostridium difficile in a hospital setting: control and admissions of colonized and symptomatic patients. Theor Biol Med Model 2019; 16:2. [PMID: 30704484 PMCID: PMC6357410 DOI: 10.1186/s12976-019-0098-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/08/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Clostridium difficile (C. difficile) infection is an important cause of healthcare-associated diarrhea. Several factors such as admission of colonized patients, levels of serum antibodies in patients, and control strategies may involve in determining the prevalence and the persistence of C. difficile in a hospital unit. METHODS We develop mathematical models based on deterministic and stochastic frameworks to investigate the effects of control strategies for colonized and symptomatic patients and admissions of colonized and symptomatic patients on the prevalence and the persistence of C. difficile. RESULTS Our findings suggest that control strategies and admissions of colonized and symptomatic patients play important roles in determining the prevalence and the persistence of C. difficile. Improving control of C. difficile in colonized and symptomatic patients may generally help reduce the prevalence and the persistence of C. difficile. However, if admission rates of colonized and symptomatic patients are high, the prevalence of C. difficile may remain high in a patient population even though strict control policies are applied. CONCLUSION Control strategies and admissions of colonized and symptomatic patients are important determinants of the prevalence and the persistence of C. difficile.
Collapse
Affiliation(s)
- Farida Chamchod
- Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
14
|
Gagneux-Brunon A, Lucht F, Launay O, Berthelot P, Botelho-Nevers E. Vaccines for healthcare-associated infections: present, future, and expectations. Expert Rev Vaccines 2018; 17:421-433. [DOI: 10.1080/14760584.2018.1470507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amandine Gagneux-Brunon
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, Saint-Etienne, France
- GIMAP EA 3064, University of Lyon, Saint-Etienne, France
| | - Frédéric Lucht
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, Saint-Etienne, France
- GIMAP EA 3064, University of Lyon, Saint-Etienne, France
| | - Odile Launay
- Inserm CIC 1417, I-REIVAC, University of Paris-Descartes, University Hospital of Cochin-Broca-Hôtel-Dieu, Paris, France
| | - Philippe Berthelot
- GIMAP EA 3064, University of Lyon, Saint-Etienne, France
- Infection control unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- Inserm, CIC 1408, I-REIVAC, University Hospital of Saint-Etienne, Saint-Etienne, France
- GIMAP EA 3064, University of Lyon, Saint-Etienne, France
| |
Collapse
|
15
|
Mathematical models of infection transmission in healthcare settings: recent advances from the use of network structured data. Curr Opin Infect Dis 2018; 30:410-418. [PMID: 28570284 DOI: 10.1097/qco.0000000000000390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Mathematical modeling approaches have brought important contributions to the study of pathogen spread in healthcare settings over the last 20 years. Here, we conduct a comprehensive systematic review of mathematical models of disease transmission in healthcare settings and assess the application of contact and patient transfer network data over time and their impact on our understanding of transmission dynamics of infections. RECENT FINDINGS Recently, with the increasing availability of data on the structure of interindividual and interinstitution networks, models incorporating this type of information have been proposed, with the aim of providing more realistic predictions of disease transmission in healthcare settings. Models incorporating realistic data on individual or facility networks often remain limited to a few settings and a few pathogens (mostly methicillin-resistant Staphylococcus aureus). SUMMARY To respond to the objectives of creating improved infection prevention and control measures and better understanding of healthcare-associated infections transmission dynamics, further innovations in data collection and parameter estimation in modeling is required.
Collapse
|
16
|
Gagneux-Brunon A, Lucht F, Launay O, Berthelot P, Botelho-Nevers E. Les vaccins dans la prévention des infections associées aux soins. JOURNAL DES ANTI-INFECTIEUX 2017. [PMCID: PMC7148680 DOI: 10.1016/j.antinf.2017.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Les infections associées aux soins (IAS) constituent un véritable problème de santé publique. Escherichia coli, Staphylococcus aureus, Clostridium difficile sont les plus souvent à l’origine des IAS. L’antibiorésistance fréquente complique encore la prise en charge et des impasses thérapeutiques existent à présent. Les mesures d’hygiène hospitalière bien qu’essentielles sont insuffisantes pour diminuer drastiquement les IAS. Ainsi, des stratégies alternatives à l’antibiothérapie s’avèrent nécessaires pour prévenir et traiter les IAS. Parmi celles-ci, la vaccination et l’immunisation passive sont probablement les plus prometteuses. Nous avons fait une mise au point sur les vaccins disponibles et en développement clinique pour lutter contre les IAS, chez les patients à risque d’IAS et les soignants. L’intérêt de la vaccination grippale et rotavirus chez les patients pour prévenir ces IAS virales a été examiné. Le développement d’un vaccin anti-S. aureus, déjà émaillé de 2 échecs est complexe. Toutefois, ces échecs ont permis d’améliorer les connaissances sur l’immunité anti-S. aureus. La mise à disposition d’un vaccin préventif anti-C. difficile semble plus proche. Pour les autres bactéries gram négatif responsables d’IAS, le développement est moins avancé. La vaccination des patients à risques d’IAS pose également des problèmes de réponse vaccinale qu’il faudra résoudre pour utiliser cette stratégie. Ainsi, la vaccination des soignants, de par l’effet de groupe permet également de prévenir les IAS. Nous faisons ici le point sur l’intérêt de la vaccination des soignants contre la rougeole, la coqueluche, la grippe, la varicelle, l’hépatite B pour réduire les IAS avec des vaccins déjà disponibles.
Collapse
|
17
|
Hocquart M, Lagier JC, Cassir N, Saidani N, Eldin C, Kerbaj J, Delord M, Valles C, Brouqui P, Raoult D, Million M. Early Fecal Microbiota Transplantation Improves Survival in Severe Clostridium difficile Infections. Clin Infect Dis 2017; 66:645-650. [DOI: 10.1093/cid/cix762] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
|
18
|
Pearls in Infection Control for Clostridium difficile Infections in Healthcare Facilities. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2017. [DOI: 10.1007/s40506-017-0114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Goldstein EJC, Johnson SJ, Maziade PJ, Evans CT, Sniffen JC, Millette M, McFarland LV. Probiotics and prevention of Clostridium difficile infection. Anaerobe 2016; 45:114-119. [PMID: 27988389 DOI: 10.1016/j.anaerobe.2016.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
The role of probiotics as adjunctive measures in the prevention of Clostridium difficile infection (CDI) has been controversial. However, a growing body of evidence has suggested that they have a role in primary prevention of CDI. Elements of this controversy are reviewed and the proposed mechanisms of action, the value and cost effectiveness of probiotics are addressed with a focus on three agents, Saccharomyces boulardii, Lactobacillus rhamnosus GG and the combination of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, Lactobacillus rhamnosus CLR2 (Bio-K+).
Collapse
Affiliation(s)
- E J C Goldstein
- R M Alden Research Laboratory, Santa Monica, CA, USA; UCLA School of Medicine, Los Angeles, CA, USA.
| | | | | | - C T Evans
- Department of Preventive Medicine and Center for Healthcare Studies, Northwestern University, Chicago, IL, USA; Edward Hines Jr VA Hospital, Chicago, IL, USA
| | | | - M Millette
- Bio-K Plus International Inc., Laval, Canada
| | - L V McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|