1
|
Dawson LM, Alshawabkeh M, Schröer K, Arakrak F, Ehrhardt A, Zhang W. Role of homologous recombination/recombineering on human adenovirus genome engineering: Not the only but the most competent solution. ENGINEERING MICROBIOLOGY 2024; 4:100140. [PMID: 39628785 PMCID: PMC11611009 DOI: 10.1016/j.engmic.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 12/06/2024]
Abstract
Adenoviruses typically cause mild illnesses, but severe diseases may occur primarily in immunodeficient individuals, particularly children. Recently, adenoviruses have garnered significant interest as a versatile tool in gene therapy, tumor treatment, and vaccine vector development. Over the past two decades, the advent of recombineering, a method based on homologous recombination, has notably enhanced the utility of adenoviral vectors in therapeutic applications. This review summarizes recent advancements in the use of human adenoviral vectors in medicine and discusses the pivotal role of recombineering in the development of these vectors. Additionally, it highlights the current achievements and potential future impact of therapeutic adenoviral vectors.
Collapse
Affiliation(s)
| | | | | | - Fatima Arakrak
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany
| |
Collapse
|
2
|
Daradoumis J, Ragonnaud E, Skandorff I, Nielsen KN, Bermejo AV, Andersson AM, Schroedel S, Thirion C, Neukirch L, Holst PJ. An Endogenous Retrovirus Vaccine Encoding an Envelope with a Mutated Immunosuppressive Domain in Combination with Anti-PD1 Treatment Eradicates Established Tumours in Mice. Viruses 2023; 15:v15040926. [PMID: 37112906 PMCID: PMC10141008 DOI: 10.3390/v15040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.
Collapse
Affiliation(s)
- Joana Daradoumis
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isabella Skandorff
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | - Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne-Marie Andersson
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | | | - Lasse Neukirch
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Whittle L, Chapman R, van Diepen M, Rybicki EP, Williamson AL. Characterization of a Novel Chimeric Theileria parva p67 Antigen Which Incorporates into Virus-like Particles and Is Highly Immunogenic in Mice. Vaccines (Basel) 2022; 10:vaccines10020210. [PMID: 35214669 PMCID: PMC8880696 DOI: 10.3390/vaccines10020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
The current method to protect cattle against East Coast Fever (ECF) involves the use of live Theileria parva sporozoites. Although this provides immunity, using live parasites has many disadvantages, such as contributing to the spread of ECF. Subunit vaccines based on the sporozoite surface protein p67 have been investigated as a replacement for the current method. In this study, two DNA vaccines expressing recombinant forms of p67 designed to display on retrovirus-like particles were constructed with the aim of improving immunogenicity. The native leader sequence was replaced with the human tissue plasminogen activator leader in both vaccines. The full-length p67 gene was included in the first DNA vaccine (p67); in the second, the transmembrane domain and cytoplasmic tail were replaced with those of an influenza A virus hemagglutinin 5 (p67HA). Immunofluorescent staining of fixed and live transfected mammalian cells showed that both p67 and p67HA were successfully expressed, and p67HA localised on the cell surface. Furthermore, p67HA was displayed on the surface of both bovine leukaemia virus (BLV) Gag and HIV-1 Gag virus-like particles (VLPs) made in the same cells. Mice vaccinated with DNA vaccines expressing p67 and p67HA alone, or p67HA with BLV or HIV-1 Gag, developed high titres of p67 and BLV Gag-binding antibodies. Here we show that it is possible to integrate a form of p67 containing all known antigenic domains into VLPs. This p67HA–VLP combination has the potential to be incorporated into a vaccine against ECF, as a DNA vaccine or as other vaccine platforms.
Collapse
Affiliation(s)
- Leah Whittle
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Ros Chapman
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Correspondence:
| | - Michiel van Diepen
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Edward P. Rybicki
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7925, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; (L.W.); (M.v.D.); (E.P.R.); (A.-L.W.)
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Virus-Like Particle Vaccines Against Respiratory Viruses and Protozoan Parasites. Curr Top Microbiol Immunol 2021; 433:77-106. [PMID: 33650036 DOI: 10.1007/82_2021_232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The field of vaccinology underwent massive advances over the past decades with the introduction of virus-like particles (VLPs), a supra-molecular nanoparticle vaccine platform that resembles viral structures without the ability to replicate in hosts. This innovative approach has been remarkably effective, as evidenced by its profound immunogenicity and safety. These highly desirable intrinsic properties enabled their further development as vaccines against a multitude of diseases. To date, several VLP-based vaccines have already been commercialized and many more are undergoing clinical evaluation prior to FDA approval. However, efficacious vaccines against a plethora of pathogens are still lacking, which imposes a tremendous socioeconomic burden and continues to threaten public health throughout the globe. This is especially the case for several respiratory pathogens and protozoan parasites. In this review, we briefly describe the fundamentals of VLP vaccines and the unique properties that enable these to be such valuable vaccine candidates and summarize current advances in VLP-based vaccines targeting respiratory and parasitic diseases of global importance.
Collapse
|
5
|
Tomlinson A, Semblat JP, Gamain B, Chêne A. VAR2CSA-Mediated Host Defense Evasion of Plasmodium falciparum Infected Erythrocytes in Placental Malaria. Front Immunol 2021; 11:624126. [PMID: 33633743 PMCID: PMC7900151 DOI: 10.3389/fimmu.2020.624126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/04/2022] Open
Abstract
Over 30 million women living in P. falciparum endemic areas are at risk of developing malaria during pregnancy every year. Placental malaria is characterized by massive accumulation of infected erythrocytes in the intervillous space of the placenta, accompanied by infiltration of immune cells, particularly monocytes. The consequent local inflammation and the obstruction of the maternofetal exchanges can lead to severe clinical outcomes for both mother and child. Even if protection against the disease can gradually be acquired following successive pregnancies, the malaria parasite has developed a large panel of evasion mechanisms to escape from host defense mechanisms and manipulate the immune system to its advantage. Infected erythrocytes isolated from placentas of women suffering from placental malaria present a unique phenotype and express the pregnancy-specific variant VAR2CSA of the Plasmodium falciparum Erythrocyte Membrane Protein (PfEMP1) family at their surface. The polymorphic VAR2CSA protein is able to mediate the interaction of infected erythrocytes with a variety of host cells including placental syncytiotrophoblasts and leukocytes but also with components of the immune system such as non-specific IgM. This review summarizes the described VAR2CSA-mediated host defense evasion mechanisms employed by the parasite during placental malaria to ensure its survival and persistence.
Collapse
Affiliation(s)
- Alice Tomlinson
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Arnaud Chêne
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
6
|
Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, McGwire BS, Satoskar AR, Parinandi NL. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. ACTA ACUST UNITED AC 2020; 4. [PMID: 33089078 PMCID: PMC7575144 DOI: 10.20517/2574-1209.2020.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is a vital component in maintaining the structure and function of blood vessels. The endothelial cells (ECs) mediate vital regulatory functions such as the proliferation of cells, permeability of various tissue membranes, and exchange of gases, thrombolysis, blood flow, and homeostasis. The vascular endothelium also regulates inflammation and immune cell trafficking, and ECs serve as a replicative niche for many bacterial, viral, and protozoan infectious diseases. Endothelial dysfunction can lead to vasodilation and pro-inflammation, which are the hallmarks of many severe diseases. Exosomes are nanoscale membrane-bound vesicles that emerge from cells and serve as important extracellular components, which facilitate communication between cells and maintain homeostasis during normal and pathophysiological states. Exosomes are also involved in gene transfer, inflammation and antigen presentation, and mediation of the immune response during pathogenic states. Protozoa are a diverse group of unicellular organisms that cause many infectious diseases in humans. In this regard, it is becoming increasingly evident that many protozoan parasites (such as Plasmodium, Trypanosoma, Leishmania, and Toxoplasma) utilize exosomes for the transfer of their virulence factors and effector molecules into the host cells, which manipulate the host gene expression, immune responses, and other biological activities to establish and modulate infection. In this review, we discuss the role of the vascular endothelium and exosomes in and their contribution to pathogenesis in malaria, African sleeping sickness, Chagas disease, and leishmaniasis and toxoplasmosis with an emphasis on their actions on the innate and adaptive immune mechanisms of resistance.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA.,Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Erin A Holcomb
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Jodi C McDaniel
- College of Nursing, The Ohio State University, Columbus, OH 43201, USA
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Nidhi Srivastava
- Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
7
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
8
|
Fougeroux C, Turner L, Bojesen AM, Lavstsen T, Holst PJ. Modified MHC Class II-Associated Invariant Chain Induces Increased Antibody Responses against Plasmodium falciparum Antigens after Adenoviral Vaccination. THE JOURNAL OF IMMUNOLOGY 2019; 202:2320-2331. [PMID: 30833346 DOI: 10.4049/jimmunol.1801210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
Abstract
Adenoviral vectors can induce T and B cell immune responses to Ags encoded in the recombinant vector. The MHC class II invariant chain (Ii) has been used as an adjuvant to enhance T cell responses to tethered Ag encoded in adenoviral vectors. In this study, we modified the Ii adjuvant by insertion of a furin recognition site (Ii-fur) to obtain a secreted version of the Ii. To test the capacity of this adjuvant to enhance immune responses, we recombined vectors to encode Plasmodium falciparum virulence factors: two cysteine-rich interdomain regions (CIDR) α1 (IT4var19 and PFCLINvar30 var genes), expressed as a dimeric Ag. These domains are members of a highly polymorphic protein family involved in the vascular sequestration and immune evasion of parasites in malaria. The Ii-fur molecule directed secretion of both Ags in African green monkey cells and functioned as an adjuvant for MHC class I and II presentation in T cell hybridomas. In mice, the Ii-fur adjuvant induced a similar T cell response, as previously demonstrated with Ii, accelerated and enhanced the specific Ab response against both CIDR Ags, with an increased binding capacity to the cognate endothelial protein C receptor, and enhanced the breadth of the response toward different CIDRs. We also demonstrate that the endosomal sorting signal, secretion, and the C-terminal part of Ii were needed for the full adjuvant effect for Ab responses. We conclude that engineered secretion of Ii adjuvant-tethered Ags establishes a single adjuvant and delivery vehicle platform for potent T and B cell-dependent immunity.
Collapse
Affiliation(s)
- Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Louise Turner
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| |
Collapse
|
9
|
Adenovirus based virus-like-vaccines targeting endogenous retroviruses can eliminate growing colorectal cancers in mice. Oncotarget 2019; 10:1458-1472. [PMID: 30858929 PMCID: PMC6402721 DOI: 10.18632/oncotarget.26680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
Endogenous retroviruses (ERVs) that make up 8% of the human genome have been associated with the development and progression of cancer. The murine model system of the melanoma associated retrovirus (MelARV), which is expressed in different murine cancer cell lines, can be used to study mechanisms and therapeutic approaches against ERVs in cancer. We designed a vaccine strategy (Ad5-MelARV) of adenoviruses encoding the MelARV proteins Gag and Env that assemble in vivo into virus-like particles displaying the cancer-associated MelARV Env to the immune system. The novel vaccine was designed to induce both humoral as well as cellular immune responses in order to attack ERV expressing tumor cells. Despite a lack of antibody induction, we found that T cell responses were strong enough to prevent colorectal CT26 tumor growth and progression in BALB/c mice after a single vaccination before or after tumor challenge. A combination with the checkpoint inhibitor anti-PD-1 further increased the efficacy of the vaccination leading to complete tumor regression. Furthermore, immune responses in vaccinated mice were not restricted to only one cancer cell line but vaccinated animals were also protected from a rechallenge with the distinct breast cancer cell line 4T1. Thus, the developed vaccine strategy could represent a novel tool to successfully target diverse ERV-bearing tumors in cancer patients.
Collapse
|
10
|
Donaldson B, Lateef Z, Walker GF, Young SL, Ward VK. Virus-like particle vaccines: immunology and formulation for clinical translation. Expert Rev Vaccines 2018; 17:833-849. [PMID: 30173619 PMCID: PMC7103734 DOI: 10.1080/14760584.2018.1516552] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Virus-like particle (VLP) vaccines face significant challenges in their translation from laboratory models, to routine clinical administration. While some VLP vaccines thrive and are readily adopted into the vaccination schedule, others are restrained by regulatory obstacles, proprietary limitations, or finding their niche amongst the crowded vaccine market. Often the necessity to supplant an existing vaccination regimen possesses an immediate obstacle for the development of a VLP vaccine, despite any preclinical advantages identified over the competition. Novelty, adaptability and formulation compatibility may prove invaluable in helping place VLP vaccines at the forefront of vaccination technology. AREAS COVERED The purpose of this review is to outline the diversity of VLP vaccines, VLP-specific immune responses, and to explore how modern formulation and delivery techniques can enhance the clinical relevance and overall success of VLP vaccines. EXPERT COMMENTARY The role of formation science, with an emphasis on the diversity of immune responses induced by VLP, is underrepresented amongst clinical trials for VLP vaccines. Harnessing such diversity, particularly through the use of combinations of select excipients and adjuvants, will be paramount in the development of VLP vaccines.
Collapse
Affiliation(s)
- Braeden Donaldson
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand.,b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Zabeen Lateef
- c Department of Pharmacology and Toxicology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| | - Greg F Walker
- d School of Pharmacy , University of Otago , Dunedin , New Zealand
| | - Sarah L Young
- b Department of Pathology , Dunedin School of Medicine, University of Otago , Dunedin , New Zealand
| | - Vernon K Ward
- a Department of Microbiology and Immunology , School of Biomedical Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
11
|
Virus-Like-Vaccines against HIV. Vaccines (Basel) 2018; 6:vaccines6010010. [PMID: 29439476 PMCID: PMC5874651 DOI: 10.3390/vaccines6010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022] Open
Abstract
Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8+ and CD4+ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.
Collapse
|
12
|
Fougeroux C, Holst PJ. Future Prospects for the Development of Cost-Effective Adenovirus Vaccines. Int J Mol Sci 2017; 18:ijms18040686. [PMID: 28420073 PMCID: PMC5412272 DOI: 10.3390/ijms18040686] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 01/13/2023] Open
Abstract
Vaccination is one of the most efficient tools for disease prevention, and a continuously growing field of research. However, despite progress, we still need more efficient and cost-effective vaccines that would improve access to those in need. In this review, we will describe the status of virus-vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes, with a focus on how they can contribute to increased vaccine cost-effectiveness. Finally, we will highlight a few successful examples of research that have attempted to improve the use of adenoviral-based vaccines by improving the transgene immunogenicity.
Collapse
Affiliation(s)
- Cyrielle Fougeroux
- Department of Immunology and Microbiology, Copenhagen University, København K 1014, Denmark.
| | - Peter J Holst
- Department of Immunology and Microbiology, Copenhagen University, København K 1014, Denmark.
| |
Collapse
|