1
|
Sordo-Puga Y, Rodríguez-Moltó MP, Pérez-Pérez D, Naranjo-Valdés P, Sardina-González T, Méndez-Orta MK, Santana-Rodríguez E, Vargas-Hernández M, Laura Perera C, Duarte CA, Suárez-Pedroso M. Porvac ® Subunit Vaccine Protects Against Three Field Isolates of Classical Swine Fever Virus. Vaccines (Basel) 2025; 13:196. [PMID: 40006741 PMCID: PMC11861752 DOI: 10.3390/vaccines13020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 02/27/2025] Open
Abstract
The control of classical swine fever (CSF) in endemic areas has been attempted with modified live vaccines. However, in some regions, the implementation of imperfect vaccination programs has led to a reduction in the genetic diversity of the circulating CSF virus (CSFV) strains and a change in their virulence. Porvac® subunit vaccine has been shown to provide a rapid onset of protection against the "Margarita" strain. The aim of this study was to evaluate whether the immune response induced by Porvac® is also effective against autochthonous CSFV isolates of low, medium or high virulence. All pigs vaccinated with Porvac® were protected against the disease after challenge. PR-11/10-3 isolate caused a very mild disease in controls, whilst Holguin_2009 isolate produced mild to moderate signs of CSF and one of the pigs died. Finally, controls inoculated with PR-2016 isolate developed moderate to severe signs of CSF and two of them died. Viral replication was detected in controls, but not in pigs immunized with Porvac®. Finally, anti-Erns antibodies were induced in five out of six control pigs but not in any of the vaccinated pigs. These results support the use of Porvac® for the control and elimination of CSF in Cuba and other endemic regions.
Collapse
Affiliation(s)
- Yusmel Sordo-Puga
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| | - María Pilar Rodríguez-Moltó
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| | - Danny Pérez-Pérez
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| | - Paula Naranjo-Valdés
- Unidad del Laboratorio Central para la Salud Animal (ULCSA), La Habana 11400, Cuba;
| | - Talía Sardina-González
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| | - Mary Karla Méndez-Orta
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| | - Elaine Santana-Rodríguez
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| | - Milagros Vargas-Hernández
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| | - Carmen Laura Perera
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas 32700, Cuba
| | - Carlos A. Duarte
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| | - Marisela Suárez-Pedroso
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana 10600, Cuba; (M.P.R.-M.); (D.P.-P.); (T.S.-G.); (M.K.M.-O.); (E.S.-R.); (C.A.D.); (M.S.-P.)
| |
Collapse
|
2
|
Sordo-Puga Y, Santana-Rodríguez E, Pérez-Pérez D, Méndez-Orta MK, Sardina-González T, Vargas-Hernández M, Duarte CA, Rodríguez-Moltó MP, Estrada MP, Ambagala A, Suárez-Pedroso M. Porvac ® subunit vaccine induces neutralizing antibodies against all three main classical swine fever virus genotypes. Arch Virol 2024; 170:22. [PMID: 39690193 DOI: 10.1007/s00705-024-06198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/20/2024] [Indexed: 12/19/2024]
Abstract
Classical swine fever (CSF) is endemic in Cuba and is one of the major health problems of the Cuban swine industry. The current efforts to control the disease in Cuba include vaccination with Porvac®, a subunit marker vaccine. Although the efficacy of Porvac against CSF virus (CSFV) subgenotype 1.4 has been extensively documented, little is known about the ability of the antibodies induced by this vaccine to neutralize other CSFV genotypes. In this study, sera collected from three pigs vaccinated with Porvac were able to efficiently neutralize CSFV strains belonging to genotypes 1, 2, and 3. The findings from this study indicate that additional in vivo studies are warranted to confirm the ability of this vaccine to protect pigs against CSFV genotypes 2 and 3.
Collapse
Affiliation(s)
- Yusmel Sordo-Puga
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| | - Danny Pérez-Pérez
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| | - Mary Karla Méndez-Orta
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| | - Talía Sardina-González
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| | - Carlos A Duarte
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba.
| | - María Pilar Rodríguez-Moltó
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| | - Mario P Estrada
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| | - Aruna Ambagala
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, R3E 3M4, Canada.
| | - Marisela Suárez-Pedroso
- Departamento de Salud Animal, Centro de Ingeniería Genética y Biotecnología, Apdo 6162, La Habana, 10600, Cuba
| |
Collapse
|
3
|
Sardina-González T, Vargas-Hernández M, Sordo-Puga Y, Naranjo-Valdéz P, Rodríguez-Moltó MP, Méndez-Orta MK, Hernández-García ML, Santana-Rodríguez E, Pena-Guimaraes W, Moreira-Rubio A, Mateu-Hernández R, Cabrales-Rico A, Duarte CA, Pérez-Pérez D, Suárez-Pedroso M. Stability of closed and needle-punctured vials of Porvac® subunit vaccine against classical swine fever subjected to thermal stress. BMC Vet Res 2024; 20:514. [PMID: 39548490 PMCID: PMC11566387 DOI: 10.1186/s12917-024-04354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Classical Swine Fever (CSF) is still one of the most economically important viral diseases of pigs. In endemic countries, the disease is controlled mostly through vaccination; hence, the availability of safe and effective vaccines is of utmost importance. Vaccines intended for application in developing countries must also be thermally stable, since the infrastructure needed to maintain a cold chain in those countries is usually lacking. Porvac® is a second-generation subunit marker vaccine against CSF that has demonstrates to be safe and protective. Previous studies have also shown that the vaccine is stable for 1 week at 37 oC and have a shelf life of at least 36 months at 2-8 oC. The aim of this work was to further explore the accelerated stability of Porvac® by assessing the physicochemical properties of the emulsion, and the safety and immunogenicity of the vaccine subjected to more drastic conditions of thermal stress: (1) 25 oC for 12 months; (2) 30oC and 37 oC for one month and (3) 15 days at 37 °C after the cap of the vials had been needle-punctured. RESULTS The vaccine subjected to all these conditions did not show significant changes in the physicochemical properties of the emulsion; did not produce local or systemic adverse reactions in pigs, and the chromatographic profile of the recovered antigen was preserved. All vaccinated swine developed neutralizing antibody titers ≥ 1:1000 at 28 days post vaccination. CONCLUSIONS Porvac® is stable in all the experimental conditions tested, even after cap puncture, and retains the capacity to induce high titers of neutralizing antibodies, well above the threshold of protection. These results reinforce the robustness of the vaccine, and support its use as a very attractive alternative to modified live vaccines in developing countries endemic for CSF.
Collapse
Affiliation(s)
- Talía Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba.
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | | | - María Pilar Rodríguez-Moltó
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | - Mary Karla Méndez-Orta
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | - Mara Laura Hernández-García
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | | | | | - Rosaili Mateu-Hernández
- Departamento de Química Física, Centro de Ingeniería Genética y Biotecnología, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | - Ania Cabrales-Rico
- Departamento de Química Física, Centro de Ingeniería Genética y Biotecnología, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | - Carlos A Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| | - Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana, 1600, Cuba
| |
Collapse
|
4
|
Lao T, Avalos I, Rodríguez EM, Zamora Y, Rodriguez A, Ramón A, Alvarez Y, Cabrales A, Andújar I, González LJ, Puente P, García C, Gómez L, Valdés R, Estrada MP, Carpio Y. Production and characterization of a chimeric antigen, based on nucleocapsid of SARS-CoV-2 fused to the extracellular domain of human CD154 in HEK-293 cells as a vaccine candidate against COVID-19. PLoS One 2023; 18:e0288006. [PMID: 37751460 PMCID: PMC10522030 DOI: 10.1371/journal.pone.0288006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/16/2023] [Indexed: 09/28/2023] Open
Abstract
Despite that more than one hundred vaccines against SARS-CoV-2 have been developed and that some of them were evaluated in clinical trials, the latest results revealed that these vaccines still face great challenges. Among the components of the virus, the N-protein constitutes an attractive target for a subunit vaccine because it is the most abundant, highly conserved and immunogenic protein. In the present work, a chimeric protein (N-CD protein) was constructed by the fusion of the N-protein to the extracellular domain of human CD154 as the molecular adjuvant. HEK-293 cells were transduced with lentiviral vector bearing the N-CD gene and polyclonal cell populations were obtained. The N-CD protein was purified from cell culture supernatant and further characterized by several techniques. Immunogenicity studies in mice and non-human primates showed the N-CD protein induced high IgG titers in both models after two doses. Moreover, overall health monitoring of non-human primates demonstrated that animals were healthy during 228 days after first immunization. Data obtained support further investigation in order to develop this chimeric protein as vaccine candidate against COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ileanet Avalos
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Elsa María Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yasser Zamora
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Alianet Rodriguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ailyn Ramón
- Center for Genetic Engineering and Biotechnology, Laboratory of Molecular Oncology, Havana, Cuba
| | - Yanitza Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | - Ivan Andújar
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | | | - Pedro Puente
- Center for Genetic Engineering and Biotechnology, Animal housing, Havana, Cuba
| | - Cristina García
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Leonardo Gómez
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Rodolfo Valdés
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| |
Collapse
|
5
|
Suárez-Pedroso M, Sordo-Puga Y, Rodríguez-Moltó MP, Naranjo-Valdés P, Pérez-Pérez D, Sosa-Teste I, Montero-Espinosa C, Fuentes-Rodríguez Y, Sardina-González T, Santana-Rodríguez E, Vargas-Hernández M, Oliva-Cárdenas A, González-Fernández N, Bover-Fuentes E, Duarte CA, Estrada-García MP. Neutralizing antibodies as a correlate of protection against classical swine fever in Porvac® vaccinated pigs. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Porvac is a classical swine fever (CSF) subunit vaccine. It is safe and induces a robust neutralizing antibody response, sterilizing immunity, and early protection, and it prevents vertical transmission in pregnant sows. The methodology to approve Porvac batches is a challenging experiment in pigs with a virulent CSF virus strain. However, there is an ethical reason to reduce, at minimum, the use of animals in these lethal experiments. The knowledge indicates that neutralizing antibody titers in the blood could be a good correlate of protection. The results of 22 challenge experiments involving 116 Porvac vaccinated and 38 unvaccinated animals were analyzed. All vaccinated animals remained free from CSF clinical signs and pathological lesions and were negative for viral isolation after the challenge.
In contrast, all unvaccinated pigs developed clinical and pathological signs of the disease and had to be euthanized eight days post-challenge. All vaccinated pigs exhibited high neutralizing antibody titers, with a geometric mean value of 1: 5153. The lower titer registered was 1: 800. A complete correspondence between neutralizing antibody titers and protection was demonstrated. These results support substituting the viral challenge test for the neutralizing peroxidase-linked assay in the release of Porvac® batches.
Keywords. Classical swine fever; virus; subunit vaccine; viral challenge; neutralizing antibodies
Collapse
Affiliation(s)
- Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - María Pilar Rodríguez-Moltó
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Paula Naranjo-Valdés
- Unidad de Laboratorio Central para Salud Agropecuaria (ULCSA), La Habana 11400, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Iliana Sosa-Teste
- Centro de Toxicología Experimental (CETEX), Centro Nacional para la Producción de Animales de Laboratorio (CENPALAB), Mayabeque 10300, Cuba
| | - Carlos Montero-Espinosa
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Yohandy Fuentes-Rodríguez
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Talía Sardina-González
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Ayme Oliva-Cárdenas
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | | | - Eddy Bover-Fuentes
- Departamento de Investigación Desarrollo. Centro de Ingeniería Genética y Biotecnología, Camagüey, Cuba
| | - Carlos A. Duarte
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| | - Mario Pablo Estrada-García
- Departamento de Biotecnología Animal. Centro de Ingeniería Genética y Biotecnología. Ave. 31 be/158 and 190, Cubanacán, Playa, Apdo 6162, La Habana 10600, Cuba
| |
Collapse
|
6
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
7
|
Ávalos I, Lao T, Rodríguez EM, Zamora Y, Rodríguez A, Ramón A, Lemos G, Cabrales A, Bequet-Romero M, Casillas D, Andújar I, Espinosa LA, González LJ, Alvarez Y, Carpio Y, Estrada MP. Chimeric Antigen by the Fusion of SARS-CoV-2 Receptor Binding Domain with the Extracellular Domain of Human CD154: A Promising Improved Vaccine Candidate. Vaccines (Basel) 2022; 10:897. [PMID: 35746505 PMCID: PMC9228316 DOI: 10.3390/vaccines10060897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
COVID-19 is a respiratory viral disease caused by a new coronavirus called SARS-CoV-2. This disease has spread rapidly worldwide with a high rate of morbidity and mortality. The receptor-binding domain (RBD) of protein spike (S) mediates the attachment of the virus to the host's cellular receptor. The RBD domain constitutes a very attractive target for subunit vaccine development due to its ability to induce a neutralizing antibody response against the virus. With the aim of boosting the immunogenicity of RBD, it was fused to the extracellular domain of CD154, an immune system modulator molecule. To obtain the chimeric protein, stable transduction of HEK-293 was carried out with recombinant lentivirus and polyclonal populations and cell clones were obtained. RBD-CD was purified from culture supernatant and further characterized by several techniques. RBD-CD immunogenicity evaluated in mice and non-human primates (NHP) indicated that recombinant protein was able to induce a specific and high IgG response after two doses. NHP sera also neutralize SARS-CoV-2 infection of Vero E6 cells. RBD-CD could improve the current vaccines against COVID-19, based in the enhancement of the host humoral and cellular response. Further experiments are necessary to confirm the utility of RBD-CD as a prophylactic vaccine and/or booster purpose.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, CIGB, Ave. 31 E/158 y 190, Havana 10600, Cuba; (I.Á.); (T.L.); (E.M.R.); (Y.Z.); (A.R.); (A.R.); (G.L.); (A.C.); (M.B.-R.); (D.C.); (I.A.); (L.A.E.); (L.J.G.); (Y.A.)
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, CIGB, Ave. 31 E/158 y 190, Havana 10600, Cuba; (I.Á.); (T.L.); (E.M.R.); (Y.Z.); (A.R.); (A.R.); (G.L.); (A.C.); (M.B.-R.); (D.C.); (I.A.); (L.A.E.); (L.J.G.); (Y.A.)
| |
Collapse
|
8
|
Li F, Li B, Niu X, Chen W, Li Y, Wu K, Li X, Ding H, Zhao M, Chen J, Yi L. The Development of Classical Swine Fever Marker Vaccines in Recent Years. Vaccines (Basel) 2022; 10:vaccines10040603. [PMID: 35455351 PMCID: PMC9026404 DOI: 10.3390/vaccines10040603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
Classical swine fever (CSF) is a severe disease that has caused serious economic losses for the global pig industry and is widely prevalent worldwide. In recent decades, CSF has been effectively controlled through compulsory vaccination with a live CSF vaccine (C strain). It has been successfully eradicated in some countries or regions. However, the re-emergence of CSF in Japan and Romania, where it had been eradicated, has brought increased attention to the disease. Because the traditional C-strain vaccine cannot distinguish between vaccinated and infected animals (DIVA), this makes it difficult to fight CSF. The emergence of marker vaccines is considered to be an effective strategy for the decontamination of CSF. This paper summarizes the progress of the new CSF marker vaccine and provides a detailed overview of the vaccine design ideas and immunization effects. It also provides a methodology for the development of a new generation of vaccines for CSF and vaccine development for other significant epidemics.
Collapse
Affiliation(s)
- Fangfang Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xinni Niu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (L.Y.)
| |
Collapse
|
9
|
Jang G, Kim EJ, Cho SC, Moon SU, Kim BS, Kim J, Jeong KJ, Song K, Mun SH, Kang WM, Lee J, Park C, Yang HS, Lee C. Field evaluation of the safety and immunogenicity of a classical swine fever virus E2 subunit vaccine in breeding and nursery animals on Jeju Island, South Korea. Clin Exp Vaccine Res 2022; 11:264-273. [DOI: 10.7774/cevr.2022.11.3.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, Korea
| | - Eun-Joo Kim
- Animal Health Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Seong-Cheol Cho
- Animal Health Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Sung-Up Moon
- Animal Health Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Byeong Soo Kim
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Jinhee Kim
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Kyoung Ju Jeong
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Kyungok Song
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Seong Hwan Mun
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Won-Myoung Kang
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Jonghoo Lee
- Jeju-si Livestock Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Changnam Park
- Seogwipo-si Livestock Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Hyoung-Seok Yang
- Seogwipo-si Livestock Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
10
|
Oliva-Cárdenas A, Fernández-Zamora F, Santana-Rodríguez E, Sordo-Puga Y, Vargas-Hernández MDLC, Rodríguez-Moltó MP, Pérez-Pérez D, Sardina-González T, Duarte CA, León-Goñi A, Blanco -Gámez D, Contreras-Pérez F, Valdés-Faure O, Hernández-Prado R, Acosta-Lago E, Sosa-Testé I, Suárez-Pedroso MF. Safety and immunogenicity in piglets of two immunization schedules initiated at two or three weeks of age with PorvacÒ, a classical swine fever subunit marker vaccine. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Classical swine fever is a highly contagious viral disease with a significant impact on food production worldwide. It currently represents one of the main limitations for the development of the pig industry in Cuba. PorvacÒ is a subunit marker vaccine that confers a very rapid onset of protection. Since there are different production systems in pig breeding, readjustments in the vaccination program are often required. This study compares the safety and efficacy in piglets of two vaccination schedules with PorvacÒ (0-2 weeks and 0-3 weeks), initiated at two or three weeks of age. Clinical monitoring was conducted, and a neutralization peroxidase-linked assay was used to measure the neutralization titers. All immunization regimens were safe and well-tolerated, without local or systemic adverse reactions in the vaccinated animals. Geometric mean neutralizing antibody titers higher than 1/1500 were detected in all groups during the six months of the trial. One month after the second immunization, piglets primed at two weeks of age, and boostered three weeks later, developed significantly higher neutralization titers (1/15644) compared to those vaccinated at a similar age but with a two-week interval between doses (1/5760). However, no significant differences in the titers were found three and six months after vaccination among the four regimens. In summary, all the variants studied are effective, but it is recommended to start vaccination at two weeks old, with the second dose at either two or three weeks later, depending on the production system and the purpose of the farm.
Collapse
Affiliation(s)
- Aymé Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Fé Fernández-Zamora
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | | | - María P. Rodríguez-Moltó
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Talia Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Carlos A. Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Avelina León-Goñi
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Diurys Blanco -Gámez
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Francisco Contreras-Pérez
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Odalys Valdés-Faure
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Rosmery Hernández-Prado
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| | - Eric Acosta-Lago
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Ileana Sosa-Testé
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Carretera Tirabeque, Reparto La Unión, Boyeros, La Habana, Cuba
| | - Marisela F. Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Apdo 6162, Playa, La Habana 10600, Cuba
| |
Collapse
|
11
|
Pérez-Pérez D, Sordo-Puga Y, Rodríguez-Moltó MP, Sardina T, Santana E, Montero C, Ancizar J, Cabrera Y, Tuero Á, Naranjo P, Sosa-Testé I, Fernandez F, Valdés R, Duarte CA, Suárez-Pedroso M. E2-CD154 vaccine candidate is safe and immunogenic in pregnant sows, and the maternal derived neutralizing antibodies protect piglets from classical swine fever virus challenge. Vet Microbiol 2021; 260:109153. [PMID: 34271304 DOI: 10.1016/j.vetmic.2021.109153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
E2-CD154 subunit vaccine candidate is safe and protects swine from Classical Swine Fever (CSF). However, its safety and immunogenicity in pregnant sows, and the capacity of maternal derived neutralizing antibodies (MDNA) to protect the offspring is yet to be demonstrated. The aim of this study was to evaluate the safety and immunogenicity of E2-CD154 in pregnant sows, and the capacity of MDNA to protect the offspring. Seventeen pregnant sows were vaccinated twice with E2-CD154 in either the first or the second third of pregnancy. Pregnancy and litter parameters were compared with a control group of non-vaccinated sows. Neutralizing antibodies (NAb) were monitored. The time course of MDNA was assessed in a group of six piglets born to an E2-CD154 immunized sow, and the animals were challenged with CSFV at day 63 after birth. No local or systemic adverse effects were found. Neither abortions, nor congenital malformations, nor stillbirths were observed. All sows develop high NAb titers after the first immunization. Piglets born to an E2-CD154 vaccinated sow still showed MDNA titers of 1:100 at day 63 after birth. Five animals were negative for virus isolation after challenge, and showed neither signs of CSF, nor macroscopic lesions in the organs. The other piglet was positive for CSFV isolation, and macroscopic lesions were observed in the spleen, although no clinical signs of CSF other than fever were detected. E2-CD154 vaccine candidate was safe and immunogenic in pregnant sows, and the passive immunity transmitted to the offspring was still protective by day 63 after birth.
Collapse
Affiliation(s)
- Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 e/158 y 190, Apdo 6162, Cubanacán, Playa, La Habana, 10600, Cuba.
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 e/158 y 190, Apdo 6162, Cubanacán, Playa, La Habana, 10600, Cuba
| | - María Pilar Rodríguez-Moltó
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 e/158 y 190, Apdo 6162, Cubanacán, Playa, La Habana, 10600, Cuba
| | - Talía Sardina
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 e/158 y 190, Apdo 6162, Cubanacán, Playa, La Habana, 10600, Cuba
| | - Elaine Santana
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 e/158 y 190, Apdo 6162, Cubanacán, Playa, La Habana, 10600, Cuba
| | - Carlos Montero
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 e/158 y 190, Apdo 6162, Cubanacán, Playa, La Habana, 10600, Cuba
| | - Julio Ancizar
- Instituto de Investigaciones Porcinas, Guatao, km 1(½), Punta Brava, La Lisa, La Habana, 19200, Cuba
| | - Yaneris Cabrera
- Instituto de Investigaciones Porcinas, Guatao, km 1(½), Punta Brava, La Lisa, La Habana, 19200, Cuba
| | - Ángela Tuero
- Dirección de Estudios Clínicos, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | - Iliana Sosa-Testé
- Centro de Toxicología Experimental (CETEX), Centro para la Producción de Animales de Laboratorio (CENPALAB), Mayabeque, Cuba
| | - Fé Fernandez
- Centro de Toxicología Experimental (CETEX), Centro para la Producción de Animales de Laboratorio (CENPALAB), Mayabeque, Cuba
| | - Rodolfo Valdés
- Departamento de Producción de Anticuerpos Monoclonales, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Carlos A Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 e/158 y 190, Apdo 6162, Cubanacán, Playa, La Habana, 10600, Cuba
| | - Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 e/158 y 190, Apdo 6162, Cubanacán, Playa, La Habana, 10600, Cuba
| |
Collapse
|
12
|
Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021; 13:v13030445. [PMID: 33801868 PMCID: PMC7998128 DOI: 10.3390/v13030445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is one of the most devastating viral epizootic diseases of swine in many countries. To control the disease, highly efficacious and safe live attenuated vaccines have been used for decades. However, the main drawback of these conventional vaccines is the lack of differentiability of infected from vaccinated animals (DIVA concept). Advances in biotechnology and our detailed knowledge of multiple basic science disciplines have facilitated the development of effective and safer DIVA vaccines to control CSF. To date, two types of DIVA vaccines have been developed commercially, including the subunit vaccines based on CSFV envelope glycoprotein E2 and chimeric pestivirus vaccines based on infectious cDNA clones of CSFV or bovine viral diarrhea virus (BVDV). Although inoculation of these vaccines successfully induces solid immunity against CSFV, none of them could ideally meet all demands regarding to safety, efficacy, DIVA potential, and marketability. Due to the limitations of the available choices, researchers are still striving towards the development of more advanced DIVA vaccines against CSF. This review summarizes the present status of candidate CSFV vaccines that have been developed. The strategies and approaches revealed here may also be helpful for the development of new-generation vaccines against other diseases.
Collapse
|
13
|
Suárez-Pedroso M, Sordo-Puga Y, Sosa-Teste I, Rodriguez-Molto MP, Naranjo-Valdés P, Sardina-González T, Santana-Rodríguez E, Montero-Espinosa C, Frías-Laporeaux MT, Fuentes-Rodríguez Y, Pérez-Pérez D, Oliva-Cárdenas A, Pereda CL, González-Fernández N, Bover-Fuentes E, Vargas-Hernández M, Duarte CA, Estrada-García MP. Novel chimeric E2CD154 subunit vaccine is safe and confers long lasting protection against classical swine fever virus. Vet Immunol Immunopathol 2021; 234:110222. [PMID: 33690056 DOI: 10.1016/j.vetimm.2021.110222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
E2CD154 is a vaccine candidate against classical swine fever (CSF) based on a chimeric protein composed of the E2 glycoprotein fused to porcine CD154 antigen, and formulated in the oil adjuvant Montanide™ ISA 50 V2. This vaccine confers early protection in pigs and prevents vertical transmission in pregnant sows. The objectives of this study were to assess the safety of this immunogen in piglets, to compare several doses of antigen in the formulation, and to study the duration of the immunity provided by this vaccine for up to 9 months. Three trials were conducted by immunizing pigs with a two-dose regime of the vaccine. Challenge experiments were carried out with the highly pathogenic Margarita strain. No local or systemic adverse effects were documented, and neither macroscopic nor microscopic pathological findings were observed in the vaccinated animals. The three antigen doses explored were safe and induced CSF protective neutralizing antibodies. The dose of 50 μg was selected for further development because it provided the best clinical and virological protection. Finally, this protective immunity was sustained for at least 9 months. This study demonstrates that E2CD154 vaccine is safe; defines a vaccine dose of 50 μg antigen, and evidences the capacity of this vaccine to confer long term protection from CSFV infection for up to 9 months post- vaccination. These findings complement previous data on the evaluation of this vaccine candidate, and suggest that E2CD154 is a promising alternative to modified live vaccines in CSF endemic areas.
Collapse
Affiliation(s)
- Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba.
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Iliana Sosa-Teste
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Cuba
| | | | | | - Talía Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos Montero-Espinosa
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | | | - Yohandy Fuentes-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Ayme Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carmen Laura Pereda
- Centro Nacional de Sanidad Agropecuaria (CENSA), Apdo 10, San José de Las Lajas, Havana, Cuba
| | - Nemecio González-Fernández
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Eddy Bover-Fuentes
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos A Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Mario Pablo Estrada-García
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| |
Collapse
|
14
|
Porvac ® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus. Vaccines (Basel) 2021; 9:vaccines9020167. [PMID: 33671399 PMCID: PMC7922993 DOI: 10.3390/vaccines9020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban “Margarita” strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines.
Collapse
|
15
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
16
|
Kim C, Jeong YK, Yu J, Shin HJ, Ku KB, Cha HJ, Han JH, Hong SA, Kim BT, Kim SJ, Woo JS, Bae S. Efficient Human Cell Coexpression System and Its Application to the Production of Multiple Coronavirus Antigens. Adv Biol (Weinh) 2021; 5:e2000154. [PMID: 33852178 DOI: 10.1002/adbi.202000154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/08/2021] [Indexed: 01/14/2023]
Abstract
Coproduction of multiple proteins at high levels in a single human cell line would be extremely useful for basic research and medical applications. Here, a novel strategy for the stable expression of multiple proteins by integrating the genes into defined transcriptional hotspots in the human genome is presented. As a proof-of-concept, it is shown that EYFP is expressed at similar levels from hotspots and that the EYFP expression increases proportionally with the copy number. It is confirmed that three different fluorescent proteins, encoded by genes integrated at different loci, can be coexpressed at high levels. Further, a stable cell line is generated, producing antigens from different human coronaviruses: MERS-CoV and HCoV-OC43. Antibodies raised against these antigens, which contain human N-glycosylation, show neutralizing activities against both viruses, suggesting that the coexpression system provides a quick and predictable way to produce multiple coronavirus antigens, such as the recent 2019 novel human coronavirus.
Collapse
Affiliation(s)
- Chonsaeng Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - You Kyeong Jeong
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Hye Jin Shin
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Keun Bon Ku
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Hyung Jin Cha
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Jun Hee Han
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Sung-Ah Hong
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Bum-Tae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
17
|
Immunogenicity of E2CD154 Subunit Vaccine Candidate against Classical Swine Fever in Piglets with Different Levels of Maternally Derived Antibodies. Vaccines (Basel) 2020; 9:vaccines9010007. [PMID: 33374172 PMCID: PMC7823626 DOI: 10.3390/vaccines9010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
E2CD154 is a novel subunit vaccine candidate against classical swine fever virus (CSFV). It contains the E2 envelope protein from CSFV fused to the porcine CD154 molecule formulated in the oil adjuvant MontanideTM ISA50 V2. Previous works evidenced the safety and immunogenicity of this candidate. Here, two other important parameters related to vaccine efficacy were assessed. First, the existence of high maternally derived antibody (MDA) titers in piglets born to sows vaccinated with E2CD154 was demonstrated. These MDA titers remained above 1:200 during the first seven weeks of life. To assess whether the titers interfere with active vaccination, 79 piglets from sows immunized with either E2CD154 or a modified live vaccine were vaccinated with E2CD154 following a 0–21-day biphasic schedule. Animals immunized at either 15, 21, or 33 days of age responded to vaccination by eliciting protective neutralizing antibody (NAb) titers higher than 1:600, with a geometric mean of 1:4335, one week after the booster. Those protective levels of NAb were sustained up to six months of age. No vaccination-related adverse effects were described. As a conclusion, E2CD154 is able to induce protective NAb in piglets with different MDA levels and at different days of age.
Collapse
|
18
|
Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020; 38:6659-6681. [DOI: 10.1016/j.vaccine.2020.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
19
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Tran HTT, Truong DA, Ly VD, Vu HT, Hoang TV, Nguyen CT, Chu NT, Nguyen VT, Nguyen DT, Miyazawa K, Kokuho T, Dang HV. The potential efficacy of the E2-subunit vaccine to protect pigs against different genotypes of classical swine fever virus circulating in Vietnam. Clin Exp Vaccine Res 2020; 9:26-39. [PMID: 32095438 PMCID: PMC7024730 DOI: 10.7774/cevr.2020.9.1.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose To date, many kinds of classical swine fever (CSF) vaccines have been developed to protect against this disease. However, the efficacy of these vaccines to protect the pig against field CSF strains needs to be considered, based on circulating strains of classical swine fever virus (CSFV). Materials and Methods Recombinant E2-CSFV protein produced by baculovirus/insect cell system was analyzed by western blots and immunoperoxidase monolayer assay. The effect of CSFV-E2 subunit vaccines was evaluated in experimental pigs with three genotypes of CSFV challenge. Anti-E2 specific and neutralizing antibodies in experimental pigs were analyzed by blocking enzyme-linked immunosorbent assay and neutralization peroxidize-linked assay. Results The data showed that CSFV VN91-E2 subunit vaccine provided clinical protection in pigs against three different genotypes of CSFV without noticeable clinical signs, symptoms, and mortality. In addition, no CSFV was isolated from the spleen of the vaccinated pigs. However, the unvaccinated pigs exhibited high clinical scores and the successful virus isolation from spleen. These results showed that the E2-specific and neutralizing antibodies induced by VN91-E2 antigen appeared at day 24 after first boost and a significant increase was observed at day 28 (p<0.01). This response reached a peak at day 35 and continued until day 63 when compared to controls. Importantly, VN91-E2 induced E2-specific and neutralizing antibodies protected experimental pigs against high virulence of CSFVs circulating in Vietnam, including genotype 1.1, 2.1, and 2.2. Conclusion These findings also suggested that CSFV VN91-E2 subunit vaccine could be a promising vaccine candidate for the control and prevention of CSFV in Vietnam.
Collapse
Affiliation(s)
- Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duc Anh Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Viet Duc Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Hao Thi Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Tuan Van Hoang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Chinh Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Vinh The Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duyen Thuy Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Kohtaro Miyazawa
- National Institute of Animal Health, The National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiro Kokuho
- National Institute of Animal Health, The National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| |
Collapse
|
21
|
Kumar R, Kumar V, Kekungu P, Barman NN, Kumar S. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach. Arch Virol 2019; 164:3007-3017. [PMID: 31598846 DOI: 10.1007/s00705-019-04425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
Classical swine fever (CSF) is an important viral disease of domestic pigs and wild boar. The structural proteins E2 and Erns of classical swine fever virus (CSFV), which participate in the attachment of the virion to the host cell surface and its subsequent entry, are immunogenic. The E2 and Erns proteins are used for diagnosis and the development of vaccines against CSFV infection in swine. Newcastle disease virus (NDV) has been successfully used as a viral vector to express heterologous proteins. In the present study, the E2 and Erns proteins of CSFV were expressed in cell culture as well as embryonated chicken eggs, using recombinant NDV (rNDV). Rescued rNDV expressing the E2 and Erns proteins induced the production of CSFV-neutralizing antibodies upon intranasal vaccination of pigs. Serum samples from vaccinated animals were found to neutralize both homologous and heterologous CSFV strains. Furthermore, rNDV expressing the E2 and Erns proteins of CSFV was used to develop an indirect ELISA, which was used to measure the the antibody titers of randomly collected serum samples. The results suggested that the ELISA based on rNDV-expressed E2 and Erns proteins could be used to screen for CSFV infections. This study shows that rNDV-based expression of CSFV antigens is potentially applicable for development of vaccines and diagnostic tests for CSFV infection. This approach could be an economically favorable alternative to the existing vaccine and diagnostics for CSFV in pigs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Vishnu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Puro Kekungu
- ICAR Research Complex for North East Hill Region, Shillong, Meghalaya, India
| | - Nagendra N Barman
- Department of Veterinary Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
22
|
Lorenzo E, Méndez L, Rodríguez E, Gonzalez N, Cabrera G, Pérez C, Pimentel R, Sordo Y, Molto MP, Sardina T, Rodríguez-Mallon A, Estrada MP. Plasticity of the HEK-293 cells, related to the culture media, as platform to produce a subunit vaccine against classical swine fever virus. AMB Express 2019; 9:139. [PMID: 31486941 PMCID: PMC6728104 DOI: 10.1186/s13568-019-0864-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/27/2023] Open
Abstract
Classical swine fever (CSF) is a contagious disease that causes a high mortality to domestic and wild pigs. Its causative agent is an enveloped Pestivirus named Classical Swine Fever Virus (CSFV). Due to the huge economic affectations produced by this disease to porcine industry, several vaccines have been developed using principally the CSFV E2 glycoprotein. Recently, a subunit vaccine based on this structural protein of the CSFV fused to the porcine CD154 molecule as immunomodulator named E2-CD154 was assayed by us. This chimeric protein was produced in the Human Embryonic Kidney (HEK-293) cell line. In this work, the growth and the expression profiles of HEK-293 E2-CD154 cells in four commercially available culture media were studied. The oligosaccharide structures in the N-glycosylation patterns of the E2-CD154 protein produced by this cell line in 10 L fermenters with two different culture media were also analyzed. In addition, the neutralizing antibody response generated in mice vaccinated with these antigens was assayed. Our results suggest that the culture media CDM4HEK293 and SFM4HEK293 which are recommended for HEK-293 growth are the best choice to growth the cell clone expressing the E2-CD154 protein. The glycosylation pattern and the neutralizing antibody response generated by the E2-CD154 protein were independent of the culture medium used which demonstrates the high reproducibility and consistency among protein batches produced by HEK-293 cells even in different culture conditions.
Collapse
|
23
|
Lentiviral-mediated delivery of classical swine fever virus Erns gene into porcine kidney-15 cells for production of recombinant ELISA diagnostic antigen. Mol Biol Rep 2019; 46:3865-3876. [PMID: 31016614 DOI: 10.1007/s11033-019-04829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Classical swine fever virus (CSFV), a member of the Pestivirus genus within the Flaviviridae family causes contagious fatal disease in swine. Antibodies against E2, Erns and NS3 proteins of virus can be detected in infected animals. Development of an ELISA coating antigen to improve the sensitivity of detecting Erns-specific antibodies in pig sera is always desirable for diagnosis as well as for differentiation of infected from vaccinated animals. In present study, a lentivirus-based gene delivery system was used to develop a stable PK-15 cell line expressing Erns (PK-Erns) for production of diagnostic antigen. The Lenti-Erns virus was purified from the supernatant of co-transfected 293LTV cells and used to transduce PK-15 cells. The homogenous PK-Erns cell line was produced by single cell cloning by monitoring eGFP expression. The Erns gene in the genomic DNA and RNA transcripts in total RNA isolated from PK-Erns cells were detected by PCR and RT-PCR, respectively. Expression of 45 kDa Erns glycoprotein was detected in western blot using CSFV-specific hyperimmune sera. The use of PK-Erns cell lysate as antigen in serial dilution and single dilution ELISAs with known positive and negative pig sera was investigated. The PK-Erns ELISA revealed sensitivity equivalent to commercial HerdChek ELISA kit. The sensitivity, specificity and accuracy of the PK-Erns ELISA was 95%, 100% and 96.66%, respectively compared to ELISA using purified CSFV as coating antigen. When field pig sera (n = 69) were tested in PK-Erns ELISA, a significant correlation between the titers from serial dilution and single dilution ELISA was observed. This indicated that PK-Erns cell line can serve as continuous source of ELISA diagnostic antigen for detection of CSFV-specific antibodies in pig sera.
Collapse
|
24
|
Montesino R, Gutiérrez N, Camacho F, Farnós O, Andrades S, González A, Acosta J, Cortez-San Martín M, Sánchez O, Ruiz A, Toledo J. Multi-antigenic recombinant subunit vaccine against Lawsonia intracellularis: The etiological agent of porcine proliferative enteropathy. Vaccine 2019; 37:1340-1349. [DOI: 10.1016/j.vaccine.2019.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/30/2022]
|
25
|
Aksular M, Calvo-Pinilla E, Marín-López A, Ortego J, Chambers AC, King LA, Castillo-Olivares J. A single dose of African horse sickness virus (AHSV) VP2 based vaccines provides complete clinical protection in a mouse model. Vaccine 2018; 36:7003-7010. [PMID: 30309744 PMCID: PMC6219453 DOI: 10.1016/j.vaccine.2018.09.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
Baculovirus-expressed AHS-VP2 and MVA-VP2 vaccines were evaluated in mice. Clinical protection was complete in mice receiving one or two doses of MVA-VP2. Clinical protection complete after two doses of baculovirus-expressed VP2. Significant reduction of viraemia in all vaccinated groups. Significant levels of immunity were achieved with one dose of either vaccine.
African horse sickness is a severe, often fatal, arboviral disease of equids. The control of African horse sickness virus (AHSV) in endemic countries is based currently on the use of live attenuated vaccines despite some biosafety concerns derived from its biological properties. Thus, experimental vaccination platforms have been developed over the years in order to avoid the biosafety concerns associated with the use of attenuated vaccines. Various studies showed that baculovirus-expressed AHSV-VP2 or modified Vaccinia Ankara virus expressing AHSV-VP2 (MVA-VP2) induced virus neutralising antibodies and protective immunity in small animals and horses. AHSV is an antigenically diverse pathogen and immunity against AHS is serotype-specific. Therefore, AHS vaccines for use in endemic countries need to induce an immune response capable of protecting against all existing serotypes. For this reason, current live attenuated vaccines are administered as polyvalent preparations comprising combinations of AHSV attenuated strains of different serotypes. Previous studies have shown that it is possible to induce cross-reactive virus neutralising antibodies against different serotypes of AHSV by using polyvalent vaccines comprising combinations of either different serotype-specific VP2 proteins, or MVA-VP2 viruses. However, these strategies could be difficult to implement if induction of protective immunity is highly dependent on using a two-dose vaccination regime for each serotype the vaccine intends to protect against. In our study, we have tested the protective capacity of MVA-VP2 and baculovirus-expressed VP2 vaccines when a single dose was used. Groups of interferon alpha receptor knock-out mice were inoculated with either MVA-VP2 or baculovirus-expressed VP2 vaccines using one dose or the standard two-dose vaccination regime. After vaccination, all four vaccinated groups were challenged with AHSV and clinical responses, lethality and viraemia compared between the groups. Our results show that complete clinical protection was achieved after a single vaccination with either MVA-VP2 or baculovirus sub-unit VP2 vaccines.
Collapse
Affiliation(s)
- Mine Aksular
- Department of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; Oxford Expression Technologies Ltd, Gipsy Lane, Oxford OX3 0BP, UK; The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NB, UK
| | | | | | | | - Adam C Chambers
- Oxford Expression Technologies Ltd, Gipsy Lane, Oxford OX3 0BP, UK
| | - Linda A King
- Department of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Javier Castillo-Olivares
- Department of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NB, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES Cambridge, UK.
| |
Collapse
|
26
|
Zhang C, Li LH, Wang J, Zhao Z, Li J, Tu X, Huang AG, Wang GX, Zhu B. Enhanced protective immunity against spring viremia of carp virus infection can be induced by recombinant subunit vaccine conjugated to single-walled carbon nanotubes. Vaccine 2018; 36:6334-6344. [DOI: 10.1016/j.vaccine.2018.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
27
|
Li Q, Xu Z, Wu T, Peng O, Huang L, Zhang Y, Xue C, Wen Z, Zhou Q, Cao Y. A flagellin-adjuvanted PED subunit vaccine improved protective efficiency against PEDV variant challenge in pigs. Vaccine 2018; 36:4228-4235. [PMID: 29891346 DOI: 10.1016/j.vaccine.2018.05.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
|
28
|
Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen. Biologicals 2018; 52:67-71. [DOI: 10.1016/j.biologicals.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 08/23/2017] [Accepted: 12/22/2017] [Indexed: 01/15/2023] Open
|
29
|
Li Q, Peng O, Wu T, Xu Z, Huang L, Zhang Y, Xue C, Wen Z, Zhou Q, Cao Y. PED subunit vaccine based on COE domain replacement of flagellin domain D3 improved specific humoral and mucosal immunity in mice. Vaccine 2018; 36:1381-1388. [PMID: 29426660 DOI: 10.1016/j.vaccine.2018.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Porcine epidemic diarrhea (PED) is an important re-emergent infectious disease and inflicts huge economic losses to the swine industry worldwide. To meet the pressing need of developing a safe and cost-efficient PED maternal vaccine, we generated three PED subunit vaccine candidates, using recombined Salmonella flagellin (rSF) as a mucosal molecular adjuvant. Domain D3 in rSF was replaced with COE domain of PEDV to generate rSF-COE-3D. COE fused to the flanking C'/N' terminal of rSF yielded rSF-COE-C and rSF-COE-N. As a result, rSF-COE-3D could significantly improve COE specific antibody production including serum IgG, serum IgA, mucosal IgA and PEDV neutralizing antibody. Furthermore, rSF-COE-3D elicited more CD3+CD8+ T cell and cytokine production of IFN-γ and IL-4 in mouse splenocytes. In summary, our data showed that rSF-COE-3D could improve specific humoral and mucosal immunity in mice, thus suggesting that rSF-COE-3D could be applied as a novel efficient maternal PED vaccine.
Collapse
Affiliation(s)
- Qianniu Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingting Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Licheng Huang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhifen Wen
- Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China
| | - Qingfeng Zhou
- Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China.
| |
Collapse
|
30
|
Muñoz-González S, Sordo Y, Pérez-Simó M, Suarez M, Canturri A, Rodriguez MP, Frías-Lepoureau MT, Domingo M, Estrada MP, Ganges L. Corrigendum to "Efficacy of E2 glycoprotein fused to porcine CD154 as a novel chimeric subunit vaccine to prevent classical swine fever virus vertical transmission in pregnant sows". Vet Microbiol 2017; 213:143-149. [PMID: 29126749 DOI: 10.1016/j.vetmic.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here we evaluated the effect of double vaccination with a novel subunit marker vaccine candidate based in the CSFV E2 glycoprotein fused to the porcine CD154 to prevent CSFV vertical transmission. A lentivirus-based gene delivery system was used to obtain a stable recombinant HEK 293 cell line for the expression of E2 fused to porcine CD154 molecule. Six pregnant sows were distributed in two groups and at 64days of gestation animals numbered 1-4 (group 1) were vaccinated via intramuscular inoculation with 50μg of E2-CD154 subunit vaccine. Animals from group 2 (numbered 5 and 6, control animals) were injected with PBS. Seventeen days later sows from group 1 were boosted with the same vaccine dose. Twenty-seven days after the first immunization, the sows were challenged with a virulent CSFV Margarita strain and clinical signs were registered. Samples were collected during the experiment and at necropsy to evaluate immune response and virological protection. Between 14 and 18days after challenge, the sows were euthanized, the foetuses were obtained and samples of sera and tissues were collected. E2-CD154 vaccinated animals remained clinically healthy until the end of the study; also, no adverse reaction was shown after vaccination. An effective boost effect in the neutralizing antibody response after the second immunization and viral challenge was observed and supports the virological protection detected in these animals after vaccination. Protection against CSFV vertical transmission was found in the 100% of serums samples from foetus of vaccinated sows. Only two out of 208 samples (0.96%) were positive with Ct value about 36 corresponding to one tonsil and one thymus, which may be non-infective viral particles. Besides, its DIVA potential and protection from vertical transmission, the novel CSFV E2 bound to CD154 subunit vaccine, is a promising alternative to the live-attenuated vaccine for developing countries.
Collapse
Affiliation(s)
- Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Yusmel Sordo
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Marisela Suarez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | - Albert Canturri
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Pilar Rodriguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | | | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba.
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|