1
|
SONG BM, LEE GH, KANG SM, TARK D. Evaluation of vaccine efficacy with 2B/T epitope conjugated porcine IgG-Fc recombinants against foot-and-mouth disease virus. J Vet Med Sci 2024; 86:999-1007. [PMID: 39069487 PMCID: PMC11422696 DOI: 10.1292/jvms.23-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
The inactivated vaccine is effective in controlling foot-and-mouth disease (FMD), but it has drawbacks such as the need for a biosafety level 3 laboratory facility to handle live foot-and-mouth disease virus (FMDV), high production costs, and biological safety risks. In response to these challenges, we developed a new recombinant protein vaccine (2BT-pIgG-Fc) containing porcine IgG-Fc to enhance protein stability in the body. This vaccine incorporates two-repeat B-cell and one-single T-cell epitope derived from O/Jincheon/SKR/2014. Our study confirmed that 2BT-pIgG-Fc and a commercial FMDV vaccine induced FMDV-specific antibodies in guinea pigs at 28 days post-vaccination. The percentage inhibition (PI) value of 2BT-pIgG-Fc was 90.43%, and the commercial FMDV vaccine was 81.75%. The PI value of 2BT-pIgG-Fc was 8.68% higher than that of commercial FMDV vaccine. In pigs, the primary target animals for FMDV, all five individuals produced FMDV-specific antibodies 42 days after vaccination with 2BT-pIgG-Fc. Furthermore, serum from 2BT-pIgG-Fc-vaccinated pigs exhibited neutralizing ability against FMDV infection. Intriguingly, the 2BT-pIgG-Fc recombinant demonstrated FMDV-specific antibody production rates and neutralization efficiency similar to commercial inactivated vaccines. This study illustrates the potential to enhance vaccine efficacy by strategically combining well-known antigenic domains in the development of recombinant protein-based vaccines.
Collapse
MESH Headings
- Vaccine Efficacy
- Foot-and-Mouth Disease/prevention & control
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Animals
- Swine
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Guinea Pigs
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/blood
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
Collapse
Affiliation(s)
- Byeong-Min SONG
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Gun-Hee LEE
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Sang-Min KANG
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Dongseob TARK
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
2
|
Mushtaq H, Shah SS, Zarlashat Y, Iqbal M, Abbas W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses 2024; 16:512. [PMID: 38675855 PMCID: PMC11054764 DOI: 10.3390/v16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hassan Mushtaq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Syed Salman Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| |
Collapse
|
3
|
Zhang J, Ge J, Li J, Li J, Zhang Y, Shi Y, Sun J, Wang Q, Zhang X, Zhao X. Expression of FMD virus-like particles in yeast Hansenula polymorpha and immunogenicity of combine with CpG and aluminum adjuvant. J Vet Sci 2023; 24:e15. [PMID: 36726280 PMCID: PMC9899949 DOI: 10.4142/jvs.22227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Inactivated vaccines are limited in preventing foot-and-mouth disease (FMD) due to safety problems. Recombinant virus-like particles (VLPs) are an excellent candidate for a novel vaccine for preventing FMD, given that VLPs have similar immunogenicity as natural viruses and are replication- and infection-incompetent. OBJECTIVES The 3C protease and P1 polyprotein of type O FMD virus (FDMV) was expressed in yeast Hansenula polymorpha to generate self-resembling VLPs, and the potential of recombinant VLPs as an FMD vaccine was evaluated. METHODS BALB/c mice were immunized with recombinant purified VLPs using CpG oligodeoxynucleotide and aluminum hydroxide gel as an adjuvant. Cytokines and lymphocytes from serum and spleen were analyzed by enzyme-linked immunosorbent assay, enzyme-linked immunospot assay, and flow cytometry. RESULTS The VLPs of FMD were purified successfully from yeast protein with a diameter of approximately 25 nm. The immunization of mice showed that animals produced high levels of FMDV antibodies and a higher level of antibodies for a longer time. In addition, higher levels of interferon-γ and CD4+ T cells were observed in mice immunized with VLPs. CONCLUSIONS The expression of VLPs of FMD in H. polymorpha provides a novel strategy for the generation of the FMDV vaccine.
Collapse
Affiliation(s)
- Jianhui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jun Ge
- Grand Theravac Life Sciences (Nanjing) Co., Ltd., Nanjing 210000, China
| | - Juyin Li
- Jiangsu Argi-animal Husbandry Vocational College, Taizhou 225300, China
| | - Jianqiang Li
- Grand Theravac Life Sciences (Nanjing) Co., Ltd., Nanjing 210000, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yinghui Shi
- Grand Theravac Life Sciences (Nanjing) Co., Ltd., Nanjing 210000, China
| | - Jiaojiao Sun
- Grand Theravac Life Sciences (Nanjing) Co., Ltd., Nanjing 210000, China
| | - Qiongjin Wang
- Grand Theravac Life Sciences (Nanjing) Co., Ltd., Nanjing 210000, China
| | - Xiaobo Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210000, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Xie Y, Chang H, Li Z, Zhang Y. Adenovirus-Vectored Capsid Proteins of the Serotype A Foot-and-Mouth Disease Virus Protect Guinea Pigs Against Challenge. Front Microbiol 2020; 11:1449. [PMID: 32733405 PMCID: PMC7363769 DOI: 10.3389/fmicb.2020.01449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Type A foot-and-mouth disease virus (FMDV) has been detected on China’s pig farms since 2015, and all suspected samples have been strain A/GDMM/CHA/2013. To overcome the shortcomings of inactive FMDV vaccines, we expressed the capsid protein precursor P1-2A and mutated viral 3C protease of FMDV strain A/GDMM/CHA/2013 in a replication-deficient human adenovirus type 5 vector in this study. A significant humoral immune response, T-cell-mediated antiviral response, and mucosa-mediated antiviral response were induced by the adenovirus-vectored FMDV vaccines in BALB/c mice. Immunization of guinea pigs with the adenovirus-vectored FMD vaccines induced significant neutralizing antibodies and anti-FMDV immunoglobulin A antibodies. The recombinant adenovirus rAdv-P12A3CG38SF48S-GD protected 100% of guinea pigs against challenge when administered intramuscularly. Our study demonstrated the potential utility of rAdv-P12A3CG38SF48S-GD as a vaccine against type A FMDV.
Collapse
Affiliation(s)
- Yinli Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhiyong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Enhanced Immune Responses with Serum Proteomic Analysis of Hu Sheep to Foot-and-Mouth Disease Vaccine Emulsified in a Vegetable Oil Adjuvant. Vaccines (Basel) 2020; 8:vaccines8020180. [PMID: 32326379 PMCID: PMC7349086 DOI: 10.3390/vaccines8020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous study demonstrated that a vegetable oil consisting of soybean oil, vitamin E, and ginseng saponins (SO-VE-GS) had an adjuvant effect on a foot-and-mouth disease (FMD) vaccine in a mouse model. The present study was to compare the adjuvant effects of SO-VE-GS and the conventional ISA 206 on an FMD vaccine in Hu sheep. Animals were intramuscularly (i.m.) immunized twice at a 3-week interval with 1 mL of an FMD vaccine adjuvanted with SO-VE-GS (n = 10) or ISA 206 (n = 9). Animals without immunization served as control (n = 10). Blood was sampled prior to vaccination and at 2, 4, 6, and 8 weeks post the booster immunization to detect FMD virus (FMDV)-specific IgG. Blood collected at 8 weeks after the booster was used for the analyses of IgG1 and IgG2, serum neutralizing (SN) antibody, IL-4 and IFN-γ production, and proteomic profiles. The results showed that IgG titers rose above the protection level (1:128) in SO-VE-GS and ISA 206 groups after 2 and 4 weeks post the booster immunization. At 6 weeks post the booster, the ISA 206 group had 1 animal with IgG titer less than 1:128 while all the animals in the SO-VE-GS group retained IgG titers of more than 1:128. At 8 weeks post the booster, 6 of 9 animals had IgG titers less than 1:128 with a protective rate of 33.3% in the ISA 206 group, while only 1 of 10 animals had IgG titer less than 1:128 with a protective rate of 90% in the SO-VE-GS group, with statistical significance. In addition, IgG1, IgG2, SN antibodies, IL-4, and IFN-γ in the SO-VE-GS group were significantly higher than those of the ISA 206 group. Different adjuvant effects of SO-VE-GS and ISA 206 may be explained by the different proteomic profiles in the two groups. There were 39 and 47 differentially expressed proteins (DEPs) identified in SO-VE-GS compared to the control or ISA 206 groups, respectively. In SO-VE-GS vs. control, 3 immune related gene ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were detected, while 2 immune related GO terms and 5 KEGG pathways were found in ISA 206 vs. control. GO and KEGG analyses indicated that 'positive regulation of cytokine secretion', 'Th1/Th2 cell differentiation', and 'Toll-like receptor signaling pathways', were obviously enriched in the SO-VE-GS group compared to the other groups. Coupled with protein-protein interaction (PPI) analysis, we found that B7TJ15 (MAPK14) was a key DEP for SO-VE-GS to activate the immune responses in Hu sheep. Therefore, SO-VE-GS might be a promising adjuvant for an FMD vaccine in Hu sheep.
Collapse
|
6
|
Fei D, Guo Y, Fan Q, Li M, Sun L, Ma M, Li Y. Codon optimization, expression in Escherichia coli, and immunogenicity analysis of deformed wing virus (DWV) structural protein. PeerJ 2020; 8:e8750. [PMID: 32201647 PMCID: PMC7071823 DOI: 10.7717/peerj.8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
Background Deformed wing virus (DWV) is a serious threat to honey bees (Apis mellifera) and is considered a major cause of elevated losses of honey bee colonies. However, lack of information on the immunogenicity of DWV structural proteins has hindered the development of effective biocontrol drugs. Methods We optimized the VP1, VP2 and VP3 codons of DWV surface capsid protein genes on the basis of an Escherichia coli codon bias, and the optimized genes of roVP1, roVP2 and roVP3 were separately expressed in E. coli and purified. Next, the three recombinant proteins of roVP1, roVP2 and roVP3 were intramuscularly injected into BALB/c and the immunogenicity was evaluated by the levels of specific IgG and cytokines. Furthermore, anti-roVP-antisera (roVP1 or roVP2 or roVP3) from the immunized mice was incubated with DWV for injecting healthy white-eyed pupae for the viral challenge test, respectively. Results The optimized genes roVP1, roVP2 and roVP3 achieved the expression in E. coli using SDS-PAGE and Western blotting. Post-immunization, roVP2 and roVP3 exhibited higher immunogenicity than roVP1 and stimulated a stronger humoral immune response in the mice, which showed that the recombinant proteins of roVP3 and roVP2 induced a specific immune response in the mice. In the challenge test, data regarding quantitative real-time RT-PCR (qRT-PCR) from challenged pupae showed that the level of virus copies in the recombinant protein groups was significantly lower than that of the virus-only group at 96 h post-inoculation (P < 0.05). Among them, the degree of neutralization using antibodies raised to the recombinant proteins are between approximately 2-fold and 4-fold and the virus copies of the roVP3 group are the lowest in the three recombinant protein groups, which indicated that specific antibodies against recombinant proteins roVP1, roVP2 and roVP3 of DWV could neutralize DWV to reduce the virus titer in the pupae. Collectively, these results demonstrated that the surface capsid protein of DWV acted as candidates for the development of therapeutic antibodies against the virus.
Collapse
Affiliation(s)
- Dongliang Fei
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Yaxi Guo
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| | - Qiong Fan
- Jinzhou Agricultural and Rural Comprehensive Service Center, Jinzhou, Liaoning, China
| | - Ming Li
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Li Sun
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- Laboratory Animal Center, Jinzhou Normal University, Jinzhou, Liaoning, China
| | - Yijing Li
- College of Animal Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| |
Collapse
|
7
|
Kim MH, Yun SJ, Kim YH, Lee HS, Kim JY, Kim JY, Kang J, Kim YS, Seo MG. Evaluation of Quality Control Methods for Foot-And-Mouth Disease Vaccines by High-Performance Liquid Chromatography. Pathogens 2020; 9:E194. [PMID: 32151048 PMCID: PMC7157562 DOI: 10.3390/pathogens9030194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/28/2022] Open
Abstract
Foot-and-mouth disease (FMD) is considered one of the highly contagious viral infections affecting livestock. In Korea, an FMD vaccination policy has been implemented nationwide since 2010 for the prevention and control of FMD. Since the vaccines are imported from various countries, standardized quality control measures are critical. In this study, we aimed to validate a high-performance liquid chromatography (HPLC) device in the Animal and Plant Quarantine Agency lab and identify an appropriate FMD vaccine pretreatment method for HPLC-a simple, reliable, and practical method to measure antigen content. Based on the analyses of specificity, linearity, accuracy, repeatability, intermediate precision, limits of detection, and limits of quantification using FMD standard samples, we validated the method using a standard material. Overall, we confirmed that the HPLC technique is effective for the quantitative assessment of the FMD virus 146S antigen in Korea. Using commercial FMD vaccines, we evaluated three separation methods and identified the method using n-pentanol and trichloroethylene as optimal for HPLC analysis. Our HPLC method was effective for the analytical detection of the antigen content in FMD vaccine, and it may be useful as a reference method for national lot-release testing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min-Goo Seo
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk 39660, Korea; (M.-H.K.); (S.-J.Y.); (Y.-H.K.); (H.-S.L.); (J.-Y.K.); (Y.-S.K.)
| |
Collapse
|
8
|
Yuan H, Li P, Bao H, Sun P, Bai X, Bai Q, Li N, Ma X, Cao Y, Fu Y, Li K, Zhang J, Li D, Chen Y, Zhang J, Lu Z, Liu Z. Engineering viable foot-and-mouth disease viruses with increased acid stability facilitate the development of improved vaccines. Appl Microbiol Biotechnol 2020; 104:1683-1694. [PMID: 31900553 PMCID: PMC6985056 DOI: 10.1007/s00253-019-10280-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Foot-and-mouth disease virus (FMDV), the most acid-unstable virus among picornaviruses, tends to disassemble into pentamers at pH values slightly below neutrality. However, the structural integrity of intact virion is one of the most important factors that influence the induction of a protective antibody response. Thus, improving the acid stability of FMDV is required for the efficacy of vaccine preparations. According to the previous studies, a single substitution or double amino acid substitutions (VP1 N17D, VP2 H145Y, VP2 D86H, VP3 H142D, VP3 H142G, and VP1 N17D + VP2 H145Y) in the capsid were introduced into the full-length infectious clone of type O FMDV vaccine strain O/HN/CHN/93 to develop seed FMDV with improved acid stability. After the transfection into BSR/T7 cells of constructed plasmids, substitution VP1 N17D or VP2 D86H resulted in viable and genetically stable FMDVs, respectively. However, substitution VP2 H145Y or VP1 N17D + VP2 H145Y showed reverse mutation and additional mutations, and substitution VP3 H141G or VP3 H141D prevented viral viability. We found that substitution VP1 N17D or VP2 D86H could confer increased acid resistance, alkali stability, and thermostability on FMDV O/HN/CHN/93, whereas substitution VP1 N17D was observed to lead to a decreased replication ability in BHK-21 cells and mildly impaired virulence in suckling mice. In contrast, substitution VP2 D86H had no negative effect on viral infectivity. These results indicated that the mutant rD86H carrying substitution VP2 D86H firstly reported by us could be more adequate for the development of inactivated FMD vaccines with enhanced acid stability.
Collapse
Affiliation(s)
- Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Qifeng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730046, Gansu, People's Republic of China
| | | | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | | | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, , No. 1 Xujiaping, Yanchangbao, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
9
|
Early IgG Response to Foot and Mouth Disease Vaccine Formulated with a Vegetable Oil Adjuvant. Vaccines (Basel) 2019; 7:vaccines7040143. [PMID: 31600943 PMCID: PMC6963984 DOI: 10.3390/vaccines7040143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
The present study evaluated soybean oil (SO) containing vitamin E (VE) and ginseng saponins (GS) (SO-VE-GS) for their adjuvant effect on foot-and-mouth disease (FMD) vaccine. Since mineral oil ISA 206 is a common adjuvant used in the FMD vaccine, it was used as a control adjuvant in this study. VE and GS were found to have a synergistic adjuvant effect. When mice were immunized with the FMD vaccine emulsified in SO with VE and GS, significantly higher serum IgG, IgG1, and IgG2a were found than VE and GS used alone. SO-VE-GS and ISA 206 behaved differently in adjuvant activities. When mice were immunized with the FMD vaccine adjuvanted with SO-VE-GS, significantly higher and earlier production of serum IgG was found than that adjuvanted with ISA 206. Although both adjuvants significantly increased the number of bone marrow plasma cells, a stimulation index of lymphocytes (SI) as well as the production of IL-4 and IL-6, SO-VE-GS promoted significantly higher SI and the ratio of CD4+/CD8+ T cells with production of increased IFN-γ and decreased TGF-β1 as compared with the ISA 206 group. The data suggested that SO-VE-GS activated Th1/Th2 immune responses. Transcriptome analysis of splenocytes showed that differentially expressed genes (DEGs), immune-related gene ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the SO-VE-GS group. Therefore, the potent adjuvant effect of SO-VE-GS on the FMD vaccine may be attributed to the immune-related gene profile expressed in lymphocytes. Due to its plant origin and due to being much cheaper than imported mineral oil ISA 206, SO-VE-GS deserves further study in relation to vaccines used in food animals.
Collapse
|