1
|
Zhao H, Guo T, Zhou Y, Zhao F, Sun Y, Wang Y, Bian Y, Tian G, Wu C, Cui Q, Zhou X, Cui J, Si H, Hao Y. Major Causative Bacteria of Dairy Cow Mastitis in the Inner Mongolia Autonomous Region, China, 2015-2024: An Epidemiologic Survey and Analysis. Vet Sci 2025; 12:197. [PMID: 40266927 PMCID: PMC11945761 DOI: 10.3390/vetsci12030197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 04/25/2025] Open
Abstract
In this study, we sought to evaluate the prevalence of bacterial pathogens of mastitis in dairy cattle in the Inner Mongolia Autonomous Region, China. The study was conducted from 2015 to 2024 using a total of 12,053 clinical mastitis (CM) and sub-clinical mastitis (SCM) samples. The pathogens were isolated and identified by standard bacteriological and mycological methods. The most common pathogens isolated were Escherichia coli (13.82%), Staphylococcus aureus (10.28%), Klebsiella spp. (8.96%), Streptococcus agalactiae (7.45%), Streptococcus uberis (6.60%), coagulase-negative staphylococci (5.84%), and Streptococcus dysgalactiae (4.21%). From 2015 to 2017, the primary pathogens responsible for causing mastitis in cows were Staphylococcus aureus and Streptococcus agalactiae. In 2018, the most frequently isolated pathogen was Staphylococcus aureus. Notably, the isolation rate of Escherichia coli increased from 12.31% to 21.72%, and the isolation rate of Klebsiella spp. increased from 7.52% to 14.01% from 2019-2024. Mycoplasma was only detected in clinical mastitis cases, with a separation rate as high as 6.95%. In summary, the isolation rate of environmental pathogens is gradually increasing, while that of contagious pathogens has been continuously declining. This indicates that the current prevention strategies for infectious pathogens are effective. As a next step, it will be important to develop new strategies specifically targeting environmental pathogenic microorganisms.
Collapse
Affiliation(s)
- Hongmei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Ting Guo
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yaping Zhou
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Fengmiao Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Yajie Sun
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Yuchen Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Yuchen Bian
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Guangyuan Tian
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Chunxia Wu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Qi Cui
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Xue Zhou
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| | - Jinlei Cui
- Inner Mongolia Tongliao Agricultural and Animal Husbandry Science Research Institute, Tongliao 028000, China
| | - Han Si
- Inner Mongolia Hulunbuir Animal Disease Control Center, Hulunbuir 021000, China
| | - Yongqing Hao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.Z.)
| |
Collapse
|
2
|
Yang F, Yang M, Si D, Sun J, Liu F, Qi Y, He S, Guo Y. UHPLC/MS-Based Untargeted Metabolomics Reveals Metabolic Characteristics of Clinical Strain of Mycoplasma bovis. Microorganisms 2023; 11:2602. [PMID: 37894260 PMCID: PMC10608813 DOI: 10.3390/microorganisms11102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Mycoplasma bovis is a global concern for the cattle industry owing to its high rates of infection and resulting morbidity, but its pathogenesis remains poorly understood. Metabolic pathways and characteristics of M. bovis clinical strain were elucidated by comparing the differential expression of metabolites between M. bovis clinical strain NX114 and M. bovis international reference strain PG45. Metabolites of M. bovis in the logarithmic stage were analyzed based on the non-targeted metabolomic technology of ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). We found 596 metabolites with variable expression, of which, 190 had substantial differences. Differential metabolite analysis of M. bovis NX114 showed organic acids and their derivatives, nucleosides, and nucleotide analogs as important components. We found O-Phospho-L-serine (SEP) as a potential signature metabolite and indicator of pathogenicity. The difference in nucleic acid metabolites reflects the difference in growth phenotypes between both strains of M. bovis. According to KEGG enrichment analysis, the ABC transporter synthesis route had the most differential metabolites of the first 15 differential enrichment pathways. This study reflects the species-specific differences between two strains of M. bovis and further enriches our understanding of its metabolism, paving the way for further research into its pathogenesis.
Collapse
Affiliation(s)
- Fei Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Mengmeng Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Duoduo Si
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Jialin Sun
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Fan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Yanrong Qi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Shenghu He
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (F.Y.); (M.Y.); (D.S.); (J.S.); (F.L.); (Y.Q.)
| | - Yanan Guo
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| |
Collapse
|
3
|
Dudek K, Szacawa E, Nicholas RAJ. Recent Developments in Vaccines for Bovine Mycoplasmoses Caused by Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides. Vaccines (Basel) 2021; 9:549. [PMID: 34073966 PMCID: PMC8225212 DOI: 10.3390/vaccines9060549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Two of the most important diseases of cattle are caused by mycoplasmas. Mycoplasma bovis is a world-wide bovine pathogen that can cause pneumonia, mastitis and arthritis. It has now spread to most, if not all, cattle-rearing countries. Due to its increasing resistance to antimicrobial therapy, vaccination is the principal focus of the control of infection, but effective vaccines are currently lacking. Despite being eradicated from most parts of the world, Mycoplasma mycoides subsp. mycoides, the cause of contagious bovine pleuropneumonia (CBPP), continues to plague sub-Saharan Africa, affecting at least 25 countries. Numerous new experimental vaccines have been developed over the last 20 years to improve on protection afforded by the T1/44, a live vaccine in continuous use in Africa for over 60 years, but none so far have succeeded; indeed, many have exacerbated the disease. Tools for diagnosis and control are adequate for eradication but what is necessary are resources to improve vaccine coverage to levels last seen in the 1970s, when CBPP was restricted to a few countries in Africa. This paper summarizes the results of the main studies in the field of experimental mycoplasma vaccines, reviews data on commercially available bacterin vaccines and addresses issues relating to the search for new candidates for effective vaccines to reduce economic losses in the cattle industry caused by these two mycoplasmas.
Collapse
Affiliation(s)
- Katarzyna Dudek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24100 Pulawy, Poland;
| | - Ewelina Szacawa
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24100 Pulawy, Poland;
| | | |
Collapse
|