1
|
Tan M, Zhang R, Shen T, Li A, Hou X, Zhang Y, Wang T, Zhang B, Sun P, Gong X, Li L, Wu J, Wu J, Zhang R, Liu B. Systematic evaluation of the induction of efficient neutralizing antibodies by recombinant multicomponent subunit vaccines against monkeypox virus. Vaccine 2024; 42:126384. [PMID: 39321566 DOI: 10.1016/j.vaccine.2024.126384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Mpox (formerly known as monkeypox), which has symptoms similar to smallpox, is a zoonotic disease caused by the monkeypox virus (MPXV). From 1 January 2022 to 31 March 2024, 117 countries, territories, or areas reported 95,226 laboratory-confirmed cases of Mpox (including 185 deaths) to the World Health Organization. However, as there is no licensed specific MPXV vaccine available globally, the vaccines currently used for mpox prevention are mostly smallpox vaccines. Thus, the rapid development of safe and effective vaccines is urgently required. In the present study, the key MPXV proteins A35, B6R, E8L, A29, M1R, and H3L were expressed and prepared using a prokaryotic expression system (Escherichia coli) and a eukaryotic expression system (yeast), and the fusion antigens A35-A29 and A35-M1R were constructed based on the dimerization characteristics of the A35 protein. By combining the antigens with aluminum hydroxide and CpG adjuvants in different combinations, we developed nine multicomponent MPXV subunit vaccine candidates. Each antigen (10 μg) and fusion antigen (20 μg) were used to immunize the mice. The first two doses produced a mean titer of 10(Petersen et al., 2016 [5]), and the third dose maintained the same potent antibody-specific response as the previous two immunizations. The protective activity of different antigen combinations was determined using the cell neutralization test of vaccinia virus (VACV), which showed that the subunit vaccine candidates with two to six components (MPXV6/5/4/3a/3b/Fa/2a) had good neutralizing activity, and antigens A35 and M1R could produce neutralizing antibodies against VACV. The neutralizing antibody titer of the fusion antigen MPXVFa (A35-M1R), detected 2 weeks after the second booster dose, was comparable with that of MPXV2a (A35 and M1R). The A35-M1R fusion protein not only provided a high level of protection as a protective antigen but also simplified the preparation of candidate antigens. In summary, we systematically investigated the different protective antigen candidates of MPXV that have been widely studied and provided critical insights into the key protective antigen composition for vaccines, thus establishing a technical and theoretical foundation for the development of MPXV subunit vaccines.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Animals
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Monkeypox virus/immunology
- Female
- Mice, Inbred BALB C
- Mpox (monkeypox)/prevention & control
- Mpox (monkeypox)/immunology
- Smallpox Vaccine/immunology
- Smallpox Vaccine/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Adjuvants, Immunologic/administration & dosage
Collapse
Affiliation(s)
- Min Tan
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; College of Life Science, Hubei Normal University, Huangshi, Hubei 435002, China; Medical College, Hubei Enshi College, Enshi, Hubei 445000, China
| | - Rongrong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tingbo Shen
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; College of Life Science, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Ai Li
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xuchen Hou
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yanru Zhang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Tiantian Wang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bin Zhang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Peng Sun
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xin Gong
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Lu Li
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jianxin Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Runfeng Zhang
- College of Life Science, Hubei Normal University, Huangshi, Hubei 435002, China; Huangshi Biomedicine Industry and Technology Research Institute, Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002, China.
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
2
|
Wang T, Zheng J, Xu H, Wang Z, Sun P, Hou X, Gong X, Zhang B, Wu J, Liu B. A Delta-Omicron Bivalent Subunit Vaccine Elicited Antibody Responses in Mice against Both Ancestral and Variant Strains of SARS-CoV-2. Vaccines (Basel) 2023; 11:1539. [PMID: 37896942 PMCID: PMC10611268 DOI: 10.3390/vaccines11101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Continued mutation of the SARS-CoV-2 genome has led to multiple waves of COVID-19 infections, and new variants have continued to emerge and dominate. The emergence of Omicron and its subvariants has substantially increased the infectivity of SARS-CoV-2. RBD genes of the wild-type SARS-CoV-2 strain and the Delta, Omicron BA.1 and Omicron BA.2 variants were used to construct plasmids and express the proteins in glycoengineered Pichia pastoris. A stable 4 L-scale yeast fermentation and purification process was established to obtain high-purity RBD proteins with a complex glycoform N-glycosyl structure that was fucose-free. The RBD glycoproteins were combined with two adjuvants, Al(OH)3 and CpG, which mitigated the typical disadvantage of low immunogenicity associated with recombinant subunit vaccines. To improve the broad-spectrum antiviral activity of the candidate vaccine, Delta RBD proteins were mixed with BA.2 RBD proteins at a ratio of 1:1 and then combined with two adjuvants-Al(OH)3 and CpG-to prepare a bivalent vaccine. The bivalent vaccine effectively induced mice to produce pseudovirus-neutralizing antibodies against SARS-CoV-2 variants, Delta, Beta, and Omicron sublineages BA.1, BA.2, BA.5. The bivalent vaccine could neutralize the authentic wild-type SARS-CoV-2 strain, Delta, BA.1.1, BA.2.2, BA2.3, and BA.2.12.1 viruses, providing a new approach for improving population immunity and delivering broad-spectrum protection under the current epidemic conditions.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Jing Zheng
- Xiamen Center for Disease Control and Prevention, Xiamen 361000, China;
| | - Huifang Xu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Zhongyi Wang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Peng Sun
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Xuchen Hou
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Xin Gong
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Bin Zhang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| |
Collapse
|
3
|
Xifeng W, Jiahua Z, Ningxing L, Guowu Z, Yunxia S, Xuepeng C, Jun Q, Xianzhu X, Qingling M. The regulatory roles of Fasciola hepatica GSTO1 protein in inflammatory cytokine expression and apoptosis in murine macrophages. Acta Trop 2023; 245:106977. [PMID: 37399980 DOI: 10.1016/j.actatropica.2023.106977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Fascioliasis, a global zoonotic parasitic disease, is mainly caused by Fasciola hepatica (F. hepatica) parasitizing in the livers of hosts, mainly humans and herbivores. Glutathione S-transferase (GST) is one of the important excretory- secretory products (ESPs) from F. hepatica, however, the regulatory roles of its Omega subtype in the immunomodulatory effects remain unknown. Here, we expressed F. hepatica recombinant GSTO1 protein (rGSTO1) in Pichia pastoris and analyzed its antioxidant properties. Then, the interaction between F. hepatica rGSTO1 and RAW264.7 macrophages and its effects on inflammatory responses and cell apoptosis were further explored. The results revealed that GSTO1 of F. hepatica owned the potent ability to resist oxidative stress. F. hepatica rGSTO1 could interact with RAW264.7 macrophages and inhibit its cell viability, furthermore, it may suppress the production of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, but promote the expression of anti-inflammatory cytokine IL-10. In addition, F. hepatica rGSTO1 may down-regulate the ratio of Bcl-2/Bax, and increase the expression of pro-apoptotic protein caspase-3, thereby eliciting the apoptosis of macrophages. Notably, F. hepatica rGSTO1 inhibited the activation of nuclear factor-κB (NF-κB) and mitogen‑activated protein kinases (MAPKs p38, ERK and JNK) pathways in LPS-activated RAW264.7 cells, exerting potent modulatory effects on macrophages. These findings suggested that F. hepatica GSTO1 can modulate the host immune response, which provided new insights into the immune evasion mechanism of F. hepatica infection in host.
Collapse
Affiliation(s)
- Wang Xifeng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhang Jiahua
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Li Ningxing
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhang Guowu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shang Yunxia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cai Xuepeng
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Qiao Jun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xia Xianzhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130062, China.
| | - Meng Qingling
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
4
|
Wang X, Hu M, Liu B, Xu H, Jin Y, Wang B, Zhao Y, Wu J, Yue J, Ren H. Evaluating the effect of SARS-CoV-2 spike mutations with a linear doubly robust learner. Front Cell Infect Microbiol 2023; 13:1161445. [PMID: 37153142 PMCID: PMC10154619 DOI: 10.3389/fcimb.2023.1161445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Driven by various mutations on the viral Spike protein, diverse variants of SARS-CoV-2 have emerged and prevailed repeatedly, significantly prolonging the pandemic. This phenomenon necessitates the identification of key Spike mutations for fitness enhancement. To address the need, this manuscript formulates a well-defined framework of causal inference methods for evaluating and identifying key Spike mutations to the viral fitness of SARS-CoV-2. In the context of large-scale genomes of SARS-CoV-2, it estimates the statistical contribution of mutations to viral fitness across lineages and therefore identifies important mutations. Further, identified key mutations are validated by computational methods to possess functional effects, including Spike stability, receptor-binding affinity, and potential for immune escape. Based on the effect score of each mutation, individual key fitness-enhancing mutations such as D614G and T478K are identified and studied. From individual mutations to protein domains, this paper recognizes key protein regions on the Spike protein, including the receptor-binding domain and the N-terminal domain. This research even makes further efforts to investigate viral fitness via mutational effect scores, allowing us to compute the fitness score of different SARS-CoV-2 strains and predict their transmission capacity based solely on their viral sequence. This prediction of viral fitness has been validated using BA.2.12.1, which is not used for regression training but well fits the prediction. To the best of our knowledge, this is the first research to apply causal inference models to mutational analysis on large-scale genomes of SARS-CoV-2. Our findings produce innovative and systematic insights into SARS-CoV-2 and promotes functional studies of its key mutations, serving as reliable guidance about mutations of interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Wu
- *Correspondence: Hongguang Ren, ; Junjie Yue, ; Jun Wu,
| | - Junjie Yue
- *Correspondence: Hongguang Ren, ; Junjie Yue, ; Jun Wu,
| | - Hongguang Ren
- *Correspondence: Hongguang Ren, ; Junjie Yue, ; Jun Wu,
| |
Collapse
|
5
|
A Vaccine with Multiple Receptor-Binding Domain Subunit Mutations Induces Broad-Spectrum Immune Response against SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2022; 10:vaccines10101653. [PMID: 36298518 PMCID: PMC9609383 DOI: 10.3390/vaccines10101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
With the emergence of more variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the immune evasion of these variants from existing vaccines, the development of broad-spectrum vaccines is urgently needed. In this study, we designed a novel SARS-CoV-2 receptor-binding domain (RBD) subunit (RBD5m) by integrating five important mutations from SARS-CoV-2 variants of concern (VOCs). The neutralization activities of antibodies induced by the RBD5m candidate vaccine are more balanced and effective for neutralizing different SARS-CoV-2 VOCs in comparison with those induced by the SARS-CoV-2 prototype strain RBD. Our results suggest that the RBD5m vaccine is a good broad-spectrum vaccine candidate able to prevent disease from several different SARS-CoV-2 VOCs.
Collapse
|
6
|
Liu B, Yin Y, Liu Y, Wang T, Sun P, Ou Y, Gong X, Hou X, Zhang J, Ren H, Luo S, Ke Q, Yao Y, Xu J, Wu J. A Vaccine Based on the Receptor-Binding Domain of the Spike Protein Expressed in Glycoengineered Pichia pastoris Targeting SARS-CoV-2 Stimulates Neutralizing and Protective Antibody Responses. ENGINEERING (BEIJING, CHINA) 2022; 13:107-115. [PMID: 34457370 PMCID: PMC8378774 DOI: 10.1016/j.eng.2021.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 05/24/2023]
Abstract
In 2020 and 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, caused a global pandemic. Vaccines are expected to reduce the pressure of prevention and control, and have become the most effective strategy to solve the pandemic crisis. SARS-CoV-2 infects the host by binding to the cellular receptor angiotensin converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the surface spike (S) glycoprotein. In this study, a candidate vaccine based on a RBD recombinant subunit was prepared by means of a novel glycoengineered yeast Pichia pastoris expression system with characteristics of glycosylation modification similar to those of mammalian cells. The candidate vaccine effectively stimulated mice to produce high-titer anti-RBD specific antibody. Furthermore, the specific antibody titer and virus-neutralizing antibody (NAb) titer induced by the vaccine were increased significantly by the combination of the double adjuvants Al(OH)3 and CpG. Our results showed that the virus-NAb lasted for more than six months in mice. To summarize, we have obtained a SARS-CoV-2 vaccine based on the RBD of the S glycoprotein expressed in glycoengineered Pichia pastoris, which stimulates neutralizing and protective antibody responses. A technical route for fucose-free complex-type N-glycosylation modified recombinant subunit vaccine preparation has been established.
Collapse
Affiliation(s)
- Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Ying Yin
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yuxiao Liu
- Medical Innovation Research Division & Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Tiantian Wang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Peng Sun
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yangqin Ou
- Shenzhen Taihe Biotechnology Co. Ltd., Shenzhen 518001, China
| | - Xin Gong
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xuchen Hou
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jun Zhang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Hongguang Ren
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shiqiang Luo
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Qian Ke
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Yongming Yao
- Medical Innovation Research Division & Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Junjie Xu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
7
|
Kong D, Chen T, Hu X, Lin S, Gao Y, Ju C, Liao M, Fan H. Supplementation of H7N9 Virus-Like Particle Vaccine With Recombinant Epitope Antigen Confers Full Protection Against Antigenically Divergent H7N9 Virus in Chickens. Front Immunol 2022; 13:785975. [PMID: 35265069 PMCID: PMC8898936 DOI: 10.3389/fimmu.2022.785975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/27/2022] [Indexed: 01/18/2023] Open
Abstract
The continuous evolution of the H7N9 avian influenza virus suggests a potential outbreak of an H7N9 pandemic. Therefore, to prevent a potential epidemic of the H7N9 influenza virus, it is necessary to develop an effective crossprotective influenza vaccine. In this study, we developed H7N9 virus-like particles (VLPs) containing HA, NA, and M1 proteins derived from H7N9/16876 virus and a helper antigen HMN based on influenza conserved epitopes using a baculovirus expression vector system (BEVS). The results showed that the influenza VLP vaccine induced a strong HI antibody response and provided effective protection comparable with the effects of commercial inactivated H7N9 vaccines against homologous H7N9 virus challenge in chickens. Meanwhile, the H7N9 VLP vaccine induced robust crossreactive HI and neutralizing antibody titers against antigenically divergent H7N9 viruses isolated in wave 5 and conferred on chickens complete clinical protection against heterologous H7N9 virus challenge, significantly inhibiting virus shedding in chickens. Importantly, supplemented vaccination with HMN antigen can enhance Th1 immune responses; virus shedding was completely abolished in the vaccinated chickens. Our study also demonstrated that viral receptor-binding avidity should be taken into consideration in evaluating an H7N9 candidate vaccine. These studies suggested that supplementing influenza VLP vaccine with recombinant epitope antigen will be a promising strategy for the development of broad-spectrum influenza vaccines.
Collapse
Affiliation(s)
- Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Taoran Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaolong Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaorong Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chunmei Ju
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Established tools and emerging trends for the production of recombinant proteins and metabolites in Pichia pastoris. Essays Biochem 2021; 65:293-307. [PMID: 33956085 DOI: 10.1042/ebc20200138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Besides bakers' yeast, the methylotrophic yeast Komagataella phaffii (also known as Pichia pastoris) has been developed into the most popular yeast cell factory for the production of heterologous proteins. Strong promoters, stable genetic constructs and a growing collection of freely available strains, tools and protocols have boosted this development equally as thorough genetic and cell biological characterization. This review provides an overview of state-of-the-art tools and techniques for working with P. pastoris, as well as guidelines for the production of recombinant proteins with a focus on small-scale production for biochemical studies and protein characterization. The growing applications of P. pastoris for in vivo biotransformation and metabolic pathway engineering for the production of bulk and specialty chemicals are highlighted as well.
Collapse
|