1
|
Suri A, Satani S, Dobrovolny HM. Analyzing Differences in Viral Dynamics Between Vaccinated and Unvaccinated RSV Patients. EPIDEMIOLOGIA 2025; 6:16. [PMID: 40265347 PMCID: PMC12015914 DOI: 10.3390/epidemiologia6020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Respiratory syncytial virus (RSV) is a common respiratory virus that can cause serious illness in infants and the elderly. Vaccines for RSV have recently been introduced and have been shown to reduce the severity of the disease. However, there has been limited examination of how viral dynamics differ between vaccinated and unvaccinated individuals. Methods: Here, we use data from the MVA-BN-RSV Phase II vaccine study to quantify the dynamical differences between vaccinated and unvaccinated patients challenged with RSV. We use an ordinary differential equation model of within host viral dynamics to fit viral load data. Results: We find statistically significant differences in viral clearance rate and basic reproduction number. We also find that vaccinated patients experience a higher response variance than the placebo group. Conclusions: While the differences in viral clearance and basic reproduction number are promising, the high variability in response to the vaccine could leave many vaccinated patients without adequate protection.
Collapse
Affiliation(s)
| | | | - Hana M. Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX 76129, USA
| |
Collapse
|
2
|
Cilloniz C, Videla AJ, Pulido L, Uy-King MJ. Viral community-acquired pneumonia: what's new since COVID-19 emerged? Expert Rev Respir Med 2025; 19:347-362. [PMID: 40077864 DOI: 10.1080/17476348.2025.2479611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION All over the world, viral pneumonia has a significant impact on morbidity and mortality, especially among vulnerable populations. The most common respiratory viruses causing pneumonia include influenza virus, respiratory syncytial virus, adenoviruses and rhinovirus. The COVID-19 pandemic has changed the landscape of viral pneumonia and has reshaped our understanding of the role of viruses in this disease. We are now more aware of the importance of early diagnosis, the impact of co-infections, the effects of viral variants, and the long-term consequences of post-viral pneumonia. AREAS COVERED We discuss the latest scientific evidence regarding epidemiology, diagnosis, treatment, and prevention of viral pneumonia. This review summarizes findings from a PubMed search on respiratory viruses in community-acquired pneumonia. EXPERT OPINION Our experience during the COVID-19 pandemic has changed our perspective on respiratory viruses and their role in viral pneumonia. Diagnostic advances have been made, co-infections have received greater recognition, immune responses to viral infections are better understood, and approaches to treating viral pneumonia have expanded. Despite this progress, however, research on the impact of respiratory viruses on pneumonia must continue to pursue the development of new antivirals and vaccines, and investigate the long-term sequelae, especially in cases of severe viral pneumonia.
Collapse
Affiliation(s)
- Catia Cilloniz
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Health Sciences, Continental University, Huancayo, Peru
| | - Alejandro J Videla
- Pulmonology Department, University Austral Hospital, Austral University, Buenos Aires, Argentina
| | - Laura Pulido
- Pulmonology Department, Italian Hospital of Rosario, Rosario, Argentina
| | - Mary Joy Uy-King
- Chairman Medical Research and Training Committee, Healthway QualiMed Hospital, San Jose Del Monte, Philippines
| |
Collapse
|
3
|
Tramuto F, Maida CM, Randazzo G, Guzzetta V, Santino A, Li Muli R, Costantino C, Graziano G, Amodio E, Mazzucco W, Vitale F. Whole-Genome Sequencing and Genetic Diversity of Human Respiratory Syncytial Virus in Patients with Influenza-like Illness in Sicily (Italy) from 2017 to 2023. Viruses 2024; 16:851. [PMID: 38932144 PMCID: PMC11209242 DOI: 10.3390/v16060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Monitoring the genetic variability of human respiratory syncytial virus (hRSV) is of paramount importance, especially for the potential implication of key antigenic mutations on the emergence of immune escape variants. Thus, to describe the genetic diversity and evolutionary dynamics of hRSV circulating in Sicily (Italy), a total of 153 hRSV whole-genome sequences collected from 770 hRSV-positive subjects between 2017 and 2023, before the introduction of expanded immunization programs into the population, were investigated. The phylogenetic analyses indicated that the genotypes GA.2.3.5 (ON1) for hRSV-A and GB.5.0.5a (BA9) for hRSV-B co-circulated in our region. Amino acid (AA) substitutions in the surface and internal proteins were evaluated, including the F protein antigenic sites, as the major targets of immunoprophylactic monoclonal antibodies and vaccines. Overall, the proportion of AA changes ranged between 1.5% and 22.6% among hRSV-A, whereas hRSV-B varied in the range 0.8-16.9%; the latter was more polymorphic than hRSV-A within the key antigenic sites. No AA substitutions were found at site III of both subgroups. Although several non-synonymous mutations were found, none of the polymorphisms known to potentially affect the efficacy of current preventive measures were documented. These findings provide new insights into the global hRSV molecular epidemiology and highlight the importance of defining a baseline genomic picture to monitor for future changes that might be induced by the selective pressures of immunological preventive measures, which will soon become widely available.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Carmelo Massimo Maida
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Giulia Randazzo
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Valeria Guzzetta
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Arianna Santino
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Rita Li Muli
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Claudio Costantino
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Giorgio Graziano
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Emanuele Amodio
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
| | - Walter Mazzucco
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Francesco Vitale
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| |
Collapse
|
4
|
Topalidou X, Kalergis AM, Papazisis G. Respiratory Syncytial Virus Vaccines: A Review of the Candidates and the Approved Vaccines. Pathogens 2023; 12:1259. [PMID: 37887775 PMCID: PMC10609699 DOI: 10.3390/pathogens12101259] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Respiratory syncytial virus (RSV) is responsible for a significant proportion of global morbidity and mortality affecting young children and older adults. In the aftermath of formalin-inactivated RSV vaccine development, the effort to develop an immunizing agent was carefully guided by epidemiologic and pathophysiological evidence of the virus, including various vaccine technologies. The pipeline of RSV vaccine development includes messenger ribonucleic acid (mRNA), live-attenuated (LAV), subunit, and recombinant vector-based vaccine candidates targeting different virus proteins. The availability of vaccine candidates of various technologies enables adjustment to the individualized needs of each vulnerable age group. Arexvy® (GSK), followed by Abrysvo® (Pfizer), is the first vaccine available for market use as an immunizing agent to prevent lower respiratory tract disease in older adults. Abrysvo is additionally indicated for the passive immunization of infants by maternal administration during pregnancy. This review presents the RSV vaccine pipeline, analyzing the results of clinical trials. The key features of each vaccine technology are also mentioned. Currently, 24 vaccines are in the clinical stage of development, including the 2 licensed vaccines. Research in the field of RSV vaccination, including the pharmacovigilance methods of already approved vaccines, promotes the achievement of successful prevention.
Collapse
Affiliation(s)
- Xanthippi Topalidou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Clinical Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Ruckwardt TJ. The road to approved vaccines for respiratory syncytial virus. NPJ Vaccines 2023; 8:138. [PMID: 37749081 PMCID: PMC10519952 DOI: 10.1038/s41541-023-00734-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
After decades of work, several interventions to prevent severe respiratory syncytial virus (RSV) disease in high-risk infant and older adult populations have finally been approved. There were many setbacks along the road to victory. In this review, I will discuss the impact of RSV on human health and how structure-based vaccine design set the stage for numerous RSV countermeasures to advance through late phase clinical evaluation. While there are still many RSV countermeasures in preclinical and early-stage clinical trials, this review will focus on products yielding long-awaited efficacy results. Finally, I will discuss some challenges and next steps needed to declare a global victory against RSV.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Chuang YC, Lin KP, Wang LA, Yeh TK, Liu PY. The Impact of the COVID-19 Pandemic on Respiratory Syncytial Virus Infection: A Narrative Review. Infect Drug Resist 2023; 16:661-675. [PMID: 36743336 PMCID: PMC9897071 DOI: 10.2147/idr.s396434] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common respiratory viruses. It not only affects young children but also the elderly and immunocompromised patients. After the emergence of SARS-CoV-2 and the corona virus disease 2019 (COVID-19) era, a dramatic reduction in RSV activity was found, which coincided with the implementation of public health and social measures (PHSMs). However, the correlation is more complicated than we initially thought. After PHSMs were gradually lifted, a seasonality shift and a delayed RSV outbreak with greater number of infected patients were found in numerous countries, such as Israel, Australia, South Africa, New Zealand, France, United States, and Japan. Several hypotheses and possible reasons explaining the interaction between SARS-CoV-2 and RSV were mentioned. Since RSV vaccinations are still under investigation, administration of palivizumab should be considered in high-risk patients. In the post-COVID-19 era, greater attention should be paid to a further resurgence of RSV. In this narrative review, we conducted a thorough review of the current knowledge on the epidemiology of RSV during the COVID-19 era, the out-of-season outbreak of RSV, and the data on co-infection with RSV and SARS-CoV-2.
Collapse
Affiliation(s)
- Yu-Chuan Chuang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuan-Pei Lin
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-An Wang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ting-Kuang Yeh
- Division of Infectious Disease, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infectious Disease, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Impact of COVID-19 on the Changing Patterns of Respiratory Syncytial Virus Infections. Infect Dis Rep 2022; 14:558-568. [PMID: 35893478 PMCID: PMC9394296 DOI: 10.3390/idr14040059] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Seasonal epidemics of respiratory syncytial virus (RSV) is one of the leading causes of hospitalization and mortality among children. Preventive measures implemented to reduce the spread of SARS-CoV-2, including facemasks, stay-at-home orders, closure of schools and local-national borders, and hand hygiene, may have also prevented the transmission of RSV and influenza. However, with the easing of COVID-19 imposed restrictions, many regions are noticing a delayed RSV outbreak. Some of these regions have also noted an increase in severity of these delayed RSV outbreaks partly due to a lack of protective immunity in the community following a lack of exposure from the previous season. Lessons learned from the COVID-19 pandemic can be implemented for controlling RSV outbreaks, including: (1) measures to reduce the spread, (2) effective vaccine development, and (3) genomic surveillance tools and computational modeling to predict the timing and severity of RSV outbreaks. These measures can help reduce the severity and prepare the health care system to deal with future RSV outbreaks by appropriate and timely allocation of health care resources.
Collapse
|