1
|
Kimura S, Ong J, Kasai A, Akada S, Ebina H, Sasabe M, Morita E. Human parvovirus B19 virus-like particle formation in Nicotiana benthamiana. Protein Expr Purif 2025; 226:106616. [PMID: 39488237 DOI: 10.1016/j.pep.2024.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
There has been a surge in the interest to utilize plants as hosts for producing vaccine antigens. In this study, we demonstrated the successful expression of the human parvovirus B19 (B19V) capsid protein (VP2) in Nicotiana benthamiana cells. The B19V VP1 and VP2 genes were cloned under the control of estrogen-inducible promoters and transiently expressed in N. benthamiana leaves using the agroinfiltration method. The addition of estrogen significantly boosted the expression of VP2. Furthermore, codon optimization of the VP2 sequence resulted in over a 30-fold increase in its expression compared with that of the wild-type. Analysis of negatively stained samples by sucrose density gradient ultracentrifugation and electron microscopy revealed that the expressed VP2 proteins formed spherical particles with diameters of approximately 20 nm. Immunostaining analysis of protoplasts derived from VP2-expressing N. benthamiana leaves indicated that VP2 signals were predominantly localized in the cytoplasm. These findings strongly suggested that B19V VP2 assembles and formed virus-like particles (VLPs) within the cytoplasm of N. benthamiana cells, presenting a promising method for producing B19V VLPs in plant systems.
Collapse
Affiliation(s)
- Sakika Kimura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Jiahui Ong
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Atsushi Kasai
- Department of Applied Biology and Food Science, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Shinji Akada
- Department of Applied Biology and Food Science, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Suita, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan.
| |
Collapse
|
2
|
Kimura S, Suzuki H, Hatakeyama Y, Noguchi T, Ii K, Nakamura K, Ebina H, Morita E. Efficient Neutralizing Antibodies Induction by Human Parvovirus B19 Epitope-Presenting Protein Nanoparticles. Microbiol Immunol 2025; 69:35-42. [PMID: 39545388 DOI: 10.1111/1348-0421.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Human parvovirus B19 (B19V) causes fetal hydrops in pregnant women. Despite the significant impact of this virus, effective vaccines remain unclear. In this study, we successfully engineered B19V protein nanoparticles by fusing the N-terminal receptor-binding domain corresponding to 5-80 amino acids of VP1 with two distinct types of self-assembling protein nanoparticles. Gel filtration and electron microscopic analysis confirmed the spherical assembly of the antigen-fused nanoparticles. The purified nanoparticles are efficiently bound to the surface of UT7/Epo-S1 cells, which are semi-permissive hosts for B19V infection. Immunization of BALB/c mice with VP1u 5-80 nanoparticles elicited a robust production of B19V-specific IgG antibodies compared to single VP1u 5-80 peptides. Moreover, a neutralization assay using B19V derived from a blood donor sample revealed that antibodies from mice immunized with VP1u 5-80 nanoparticles exhibited stronger infection-neutralizing activity. These findings suggest that nanoparticle formation plays a crucial role in enhancing the immunogenicity of the B19V VP1u 5-80 amino acid peptide and that these nanoparticles could serve as promising vaccine candidates, effectively inducing immunity against B19V.
Collapse
Grants
- This work was supported by JSPS KAKENHI (grant numbers 23790503, 26460555, 16H01188, 17H06413, 20K21874, 22K18378, 22H02873, and 22H00553); JST CREST, Japan (grant number JPMJCR17H4); AMED, Japan (grant number 20339008, 20333747, 19fk0108168h0001, 20he0622012h0001, and 22fk0108527s0101). This study was supported by the Research Foundation for Microbial Diseases of Osaka University.
Collapse
Affiliation(s)
- Sakika Kimura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Hidehiko Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Yu Hatakeyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Takafumi Noguchi
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Koga Ii
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kazumasa Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research, Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
3
|
Suzuki H, Noguchi T, Matsugu N, Suzuki A, Kimura S, Onishi M, Kosaka M, Miyazato P, Morita E, Ebina H. Safety and immunogenicity of parvovirus B19 virus-like particle vaccine lacking phospholipase A2 activity. Vaccine 2022; 40:6100-6106. [PMID: 36114131 DOI: 10.1016/j.vaccine.2022.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Parvovirus B19 (B19) belongs to the Erythroparvovirus genus and is known to cause the fifth disease in children. Primary infection of pregnant women is associated with a high risk of hydrops fetalis and stillbirth due to severe fetal anemia. Virus-like particle (VLP) vaccine candidates for B19 have been developed, although none have been approved so far. The B19 phospholipase A2 domain (B19 PLA2), located in the VP1 unique region, is believed to be associated with adverse inflammatory reactions, and previous effective attempts to improve this vaccine modality inserted a mutation to impair the PLA2 activity of VLPs. In this study, we designed VLPs with a deletion mutant of PLA2 (⊿PLA2 B19 VLP), devoid of PLA2 activity, and confirmed their immunogenicity and safe use in vivo. These results were supported by the lack of histological inflammatory reactions at the site of immunization or the production of IL-6 in ⊿PLA2 B19 VLP-immunized mice, that were observed in mice immunized with B19 VLPs. CD4+ T cells from mice vaccinated with VLPs and B19-seropositive human samples were not activated by B19 PLA2 stimulation, suggesting that the B19 PLA2 domain does not constitute a major CD4+ T cell epitope. Most importantly, the ⊿PLA2 B19 VLPs induced neutralizing antibodies against B19, in levels similar to those found in B19-seropositive human samples, indicating that they could be used as a safe and effective vaccine candidate against B19.
Collapse
Affiliation(s)
- Hidehiko Suzuki
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Takafumi Noguchi
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Noriko Matsugu
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Akio Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Sakika Kimura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Misa Onishi
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Mitsuyo Kosaka
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Paola Miyazato
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Hirotaka Ebina
- Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Virus vaccine group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
4
|
Mat Rani NNI, Alzubaidi ZM, Butt AM, Mohammad Faizal NDF, Sekar M, Azhari H, Mohd Amin MCI. Outer membrane vesicles as biomimetic vaccine carriers against infections and cancers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1784. [PMID: 35194964 DOI: 10.1002/wnan.1784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
In the last decade, nanoparticle-based therapeutic modalities have emerged as promising treatment options for cancer and infectious diseases. To improve prognosis, chemotherapeutic and antimicrobial drugs must be delivered selectively to the target sites. Researchers have increasingly focused their efforts on improving drug delivery, with a particular emphasis on cancer and infectious diseases. When drugs are administered systemically, they become diluted and can diffuse to all tissues but only until the immune system intervenes and quickly removes them from circulation. To enhance and prolong the systemic circulation of drugs, nanocarriers have been explored and used; however, nanocarriers have a major drawback in that they can trigger immune responses. Numerous nanocarriers for optimal drug delivery have been developed using innovative and effective biointerface technologies. Autologous cell-derived drug carriers, such as outer membrane vesicles (OMVs), have demonstrated improved bioavailability and reduced toxicity. Thus, this study investigates the use of biomimetic OMVs as biomimetic vaccine carriers against infections and cancers to improve our understanding in the field of nanotechnology. In addition, discussion on the advantages, disadvantages, and future prospects of OMVs will also be explored. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Zahraa M Alzubaidi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Adeel Masood Butt
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nur Dini Fatini Mohammad Faizal
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|