1
|
Williams E, Echeverri Tribin F, Carreño JM, Krammer F, Hoffer M, Pallikkuth S, Pahwa S. Proteomic signatures of vaccine-induced and breakthrough infection-induced host responses to SARS-CoV-2. Vaccine 2025; 43:126484. [PMID: 39520894 PMCID: PMC12044548 DOI: 10.1016/j.vaccine.2024.126484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The severity of SARS-CoV-2 illness is influenced by factors including age, sex, pre-existing health conditions, and individual immune responses. However, the mechanisms conferring immunity following antigenic challenge have not been fully elucidated. There are currently no studies evaluating longitudinal proteomic changes in individuals following vaccination and breakthrough, limiting our understanding of the underlying mechanisms driving conferred immunity. In this work, we evaluated the differential protein expression in individuals with (CoV-P) or without (CoV-N) prior SARS-CoV-2 infection following primary vaccination and after breakthrough infection (CoV-BT). Overall, we found that individuals receiving primary vaccination relied on innate immune mechanisms, including complement and coagulation cascades, and natural killer cell-mediated cytotoxicity, while conversely, breakthrough infection immune mechanisms relied on T cell-mediated immunity. These mechanistic differences may help explain heterogeneity associated with vaccine-induced and breakthrough infection-related outcomes.
Collapse
Affiliation(s)
- Erin Williams
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, Florida, 33136, USA
| | | | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, New York, 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, New York, 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Michael Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA; Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida, 33136, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, 33146, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, 33146, USA
| |
Collapse
|
2
|
Varvel S, Galdzicka M, Nystrom S, Liu H, Chen G, Ragan I, Shabahang S. An omicron-specific neutralizing antibody test predicts neutralizing activity against XBB 1.5. Front Immunol 2024; 15:1334250. [PMID: 38322270 PMCID: PMC10845052 DOI: 10.3389/fimmu.2024.1334250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Understanding the immune status of an individual using neutralizing antibody testing is complicated by the continued evolution of the SARS-CoV-2 virus. Previous work showed that assays developed against the wildtype strain of SARS-CoV-2 were insufficient predictors of neutralization of omicron variants, thus we developed an omicron-specific flow cytometry-based neutralizing antibody test and performed experiments to assess how well it compared to an omicron-specific PRNT assay (gold standard) and whether it could predict neutralizing activity to more recent omicron subvariants such as XBB.1.5. Methods Accuracy of a novel flow cytometry-based neutralizing antibody (FC-NAb) assay was determined by comparison with an omicron-specific PRNT assay. A series of samples were evaluated in both the omicron FC-NAb assay and a second test was designed to assess neutralization of XBB.1.5. Results Good concordance between the omicron FC-NAb test and the omicron PRNT was demonstrated (AUC = 0.97, p <0.001; sensitivity = 94%, specificity = 100%, PPV = 100%, and NPV = 97%). A strong linear relationship between the omicron FC-NAb and neutralization of XBB1.5 was observed (r = 0.83, p<0.001). Additionally, the omicron FC-NAb test was a very strong predictor of positive XBB1.5 NAb activity (AUC = 0.96, p<0.001; sensitivity = 94%, specificity = 90%, positive predictive value = 90%, and negative predictive values = 94%). Discussion Our data suggest that despite continued evolution of the SARS-CoV-2 spike protein, the omicron FC-NAb assay described here is a good predictor of XBB1.5 neutralizing activity, as evidenced by a strong correlation and good predictive performance characteristics.
Collapse
Affiliation(s)
| | | | | | - Hong Liu
- Aditxt, Inc., Mountain View, CA, United States
| | - Ge Chen
- Aditxt, Inc., Mountain View, CA, United States
| | - Izabela Ragan
- Biomedical Sciences Department, Infectious Disease Research Center, Colorado State University, Fort Collins, CO, United States
| | | |
Collapse
|
3
|
Baerends EA, Hvidt AK, Reekie J, Søgaard OS, Stærke NB, Raben D, Nielsen H, Petersen KT, Juhl MR, Johansen IS, Lindvig SO, Madsen LW, Wiese L, Knudsen LS, Iversen MB, Benfield T, Iversen KK, Andersen SD, Juhl AK, Dietz LL, Andreasen SR, Fischer TK, Erikstrup C, Valentiner-Branth P, Lundgren J, Østergaard L, Tolstrup M. SARS-CoV-2 vaccine-induced antibodies protect against Omicron breakthrough infection. iScience 2023; 26:107621. [PMID: 37682631 PMCID: PMC10481355 DOI: 10.1016/j.isci.2023.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
SARS-CoV-2 Omicron quickly spread globally, also in regions with high vaccination coverage, emphasizing the importance of exploring the immunological requirements for protection against Omicron breakthrough infection. The test-negative matched case-control study (N = 964) characterized Omicron breakthrough infections in triple-vaccinated individuals from the ENFORCE cohort. Within 60 days before a PCR test spike-specific IgG levels were significantly lower in cases compared to controls (GMR [95% CI] for BA.2: 0.83 [0.73-0.95], p = 0.006). Multivariable logistic regression showed significant associations between high antibody levels and lower odds of infection (aOR [95% CI] for BA.2 spike-specific IgG: 0.65 [0.48-0.88], p = 0.006 and BA.2 ACE2-blocking antibodies: 0.46 [0.30-0.69], p = 0.0002). A sex-stratified analysis showed more pronounced associations for females than males. High levels of vaccine-induced antibodies provide partial protection against Omicron breakthrough infections. This is important knowledge to further characterize a threshold for protection against new variants and to estimate the necessity and timing of booster vaccination.
Collapse
Affiliation(s)
- Eva A.M. Baerends
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Astrid K. Hvidt
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Joanne Reekie
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nina B. Stærke
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dorthe Raben
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristine T. Petersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Maria R. Juhl
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susan O. Lindvig
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lone W. Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lothar Wiese
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Lene S. Knudsen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Mette B. Iversen
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kasper K. Iversen
- Department of Infectious Diseases, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Department of Cardiology and Emergency Medicine, Herlev Hospital, Herlev, Denmark
| | - Sidsel D. Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna K. Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa L. Dietz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe R. Andreasen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea K. Fischer
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Research, Nordsjællands University Hospital, Hillerød, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Palle Valentiner-Branth
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Jens Lundgren
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Departments of Clinical Medicine and Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Roeder AJ, Koehler MA, Jasbi P, McKechnie D, Vanderhoof J, Edwards BA, Gonzalez-Moa MJ, Seit-Nebi A, Svarovsky SA, Lake DF. Longitudinal Comparison of Neutralizing Antibody Responses to COVID-19 mRNA Vaccines after Second and Third Doses. Vaccines (Basel) 2022; 10:vaccines10091459. [PMID: 36146537 PMCID: PMC9504054 DOI: 10.3390/vaccines10091459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 mRNA vaccines protect against severe disease and hospitalization. Neutralizing antibodies (NAbs) are a first-line defense mechanism, but protective NAb responses are variable. Currently, NAb testing is not widely available. This study employed a lateral flow assay for monitoring NAb levels postvaccination and natural infection, using a finger-stick drop of blood. We report longitudinal NAb data from BNT162b2 (Pfizer) and mRNA-1273 (Moderna) recipients after second and third doses. Results demonstrate a third dose of mRNA vaccine elicits higher and more durable NAb titers than the second dose, independent of manufacturer, sex, and age. Our analyses also revealed that vaccinated individuals could be categorized as strong, moderate, and poorly neutralizing responders. After the second dose, 34% of subjects were classified as strong responders, compared to 79% after the third dose. The final months of this study coincided with the emergence of the SARS-CoV-2 Omicron variant and symptomatic breakthrough infections within our study population. Lastly, we show that NAb levels sufficient for protection from symptomatic infection with early SARS-CoV-2 variants were not protective against Omicron infection and disease. This work highlights the need for accessible vaccine response monitoring for use in healthcare, such that individuals, particularly those in vulnerable populations, can make informed vaccination decisions.
Collapse
Affiliation(s)
- Alexa J. Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Megan A. Koehler
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Davis McKechnie
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - John Vanderhoof
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Baylee A. Edwards
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | | | | | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Correspondence:
| |
Collapse
|