1
|
Osei-Owusu J, Aidoo OF, Eshun F, Gaikpa DS, Dofuor AK, Vigbedor BY, Turkson BK, Ochar K, Opata J, Opoku MJ, Ninsin KD, Borgemeister C. Buruli ulcer in Africa: Geographical distribution, ecology, risk factors, diagnosis, and indigenous plant treatment options - A comprehensive review. Heliyon 2023; 9:e22018. [PMID: 38034712 PMCID: PMC10686891 DOI: 10.1016/j.heliyon.2023.e22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Buruli ulcer (BU), a neglected tropical disease (NTD), is an infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. The disease has been documented in many South American, Asian, and Western Pacific countries and is widespread throughout much of Africa, especially in West and Central Africa. In rural areas with scarce medical care, BU is a devastating disease that can leave patients permanently disabled and socially stigmatized. Mycobacterium ulcerans is thought to produce a mycolactone toxin, which results in necrosis of the afflicted tissue and may be involved in the etiology of BU. Initially, patients may notice a painless nodule or plaque on their skin; as the disease progresses, however, it may spread to other parts of the body, including the muscles and bones. Clinical signs, microbial culture, and histological analysis of afflicted tissue all contribute to a diagnosis of BU. Though antibiotic treatment and surgical removal of infected tissue are necessary for BU management, plant-derived medicine could be an alternative in areas with limited access to conventional medicine. Herein we reviewed the geographical distribution, socioeconomic, risk factors, diagnosis, biology and ecology of the pathogen. Complex environmental, socioeconomic, and genetic factors that influence BU are discussed. Further, our review highlights future research areas needed to develop strategies to manage the disease through the use of indigenous African plants.
Collapse
Affiliation(s)
- Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Fatima Eshun
- Department of Geography and Earth Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - David Sewordor Gaikpa
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Bright Yaw Vigbedor
- Department of Basic Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Bernard Kofi Turkson
- Department of Herbal Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso, Ghana
| | - John Opata
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr. Opoku
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Kodwo Dadzie Ninsin
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Christian Borgemeister
- Centre for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany
| |
Collapse
|
2
|
Ishwarlall TZ, Okpeku M, Adeniyi AA, Adeleke MA. The search for a Buruli Ulcer vaccine and the effectiveness of the Bacillus Calmette-Guérin vaccine. Acta Trop 2022; 228:106323. [PMID: 35065013 DOI: 10.1016/j.actatropica.2022.106323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
Buruli Ulcer is a neglected tropical disease that is caused by Mycobacterium ulcerans. It is not fatal; however, it manifests a range of devastating symptoms on the hosts' bodies. Various drugs and treatments are available for the disease; however, they are often costly and have adverse effects. There is still much uncertainty regarding the mode of transmission, vectors, and reservoir. At present, there are no official vector control methods, prevention methods, or a vaccine licensed to prevent infection. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has some effectiveness against M. ulcerans. However, it is unable to induce long-lasting protection. Various types of vaccines have been developed based specifically against M. ulcerans; however, to date, none has entered clinical trials or has been released for public use. Additional awareness and funding are needed for research in this field and the development of more treatments, diagnostic tools, and vaccines.
Collapse
|
3
|
Cross CE, Stokes JV, Alugubelly N, Ross AML, Willeford BV, Walker JD, Varela-Stokes AS. Skin in the Game: An Assay to Monitor Leukocyte Infiltration in Dermal Lesions of a Guinea Pig Model for Tick-Borne Rickettsiosis. Pathogens 2022; 11:pathogens11020119. [PMID: 35215063 PMCID: PMC8878158 DOI: 10.3390/pathogens11020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Intact, the skin typically serves as an effective barrier to the external world; however, once pathogens have breached this barrier via a wound, such as a tick bite, the surrounding tissues must recruit immune cells from the blood to neutralize the pathogen. With innate and adaptive immune systems being similar between the guinea pig and human systems, the ability of guinea pigs to show clinical signs of many infectious diseases, and the large size of guinea pigs relative to a murine model, the guinea pig is a valuable model for studying tick-borne and other pathogens that invade the skin. Here, we report a novel assay for assessing guinea pig leukocyte infiltration in the skin. Briefly, we developed an optimized six-color/eight-parameter polychromatic flow cytometric panel that combines enzymatic and mechanical dissociation of skin tissue with fluorescent antibody staining to allow for the immunophenotyping of guinea pig leukocytes that have migrated into the skin, resulting in inflammation. We designed this assay using a guinea pig model for tick-borne rickettsiosis to further investigate host–pathogen interactions in the skin, with preliminary data demonstrating immunophenotyping at skin lesions from infected ticks. We anticipate that future applications will include hypothesis testing to define the primary immune cell infiltrates responding to exposure to virulent, avirulent tick-borne rickettsiae, and tick-borne rickettsiae of unknown virulence. Other relevant applications include skin lesions resulting from other vector-borne pathogens, Staphylococcus aureus infection, and Buruli ulcer caused by Mycobacterium ulcerans.
Collapse
Affiliation(s)
- Claire E. Cross
- Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (C.E.C.); (J.V.S.); (N.A.); (A.-M.L.R.)
| | - John V. Stokes
- Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (C.E.C.); (J.V.S.); (N.A.); (A.-M.L.R.)
| | - Navatha Alugubelly
- Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (C.E.C.); (J.V.S.); (N.A.); (A.-M.L.R.)
| | - Anne-Marie L. Ross
- Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (C.E.C.); (J.V.S.); (N.A.); (A.-M.L.R.)
| | - Bridget V. Willeford
- Laboratory Animal Resources, Mississippi State University, Mississippi State, MS 39762, USA; (B.V.W.); (J.D.W.)
| | - Jamie D. Walker
- Laboratory Animal Resources, Mississippi State University, Mississippi State, MS 39762, USA; (B.V.W.); (J.D.W.)
| | - Andrea S. Varela-Stokes
- Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (C.E.C.); (J.V.S.); (N.A.); (A.-M.L.R.)
- Correspondence: ; Tel.: +1-662-769-7192
| |
Collapse
|
5
|
Kwofie SK, Dankwa B, Odame EA, Agamah FE, Doe LPA, Teye J, Agyapong O, Miller WA, Mosi L, Wilson MD. In Silico Screening of Isocitrate Lyase for Novel Anti-Buruli Ulcer Natural Products Originating from Africa. Molecules 2018; 23:E1550. [PMID: 29954088 PMCID: PMC6100440 DOI: 10.3390/molecules23071550] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
Buruli ulcer (BU) is caused by Mycobacterium ulcerans and is predominant in both tropical and subtropical regions. The neglected debilitating disease is characterized by chronic necrotizing skin lesions attributed to a mycolactone, which is a macrolide toxin secreted by M. ulcerans. The preferred treatment is surgical excision of the lesions followed by a prolonged combination antibiotic therapy using existing drugs such as rifampicin and streptomycin or clarithromycin. These antibiotics appear not to be adequately potent and efficacious against persistent and late stage ulcers. In addition, emerging drug resistance to treatment poses great challenges. There is a need to identify novel natural product-derived lead compounds, which are potent and efficacious for the treatment of Buruli ulcer. Natural products present a rich diversity of chemical compounds with proven activity against various infectious diseases, and therefore, are considered in this study. This study sought to computationally predict natural product-derived lead compounds with the potential to be developed further into potent drugs with better therapeutic efficacy than the existing anti-buruli ulcer compounds. The three-dimensional (3D) structure of Isocitrate lyase (ICL) of Mycobacterium ulcerans was generated using homology modeling and was further scrutinized with molecular dynamics simulations. A library consisting of 885 compounds retrieved from the AfroDb database was virtually screened against the validated ICL model using AutoDock Vina. AfroDb is a compendium of “drug-like” and structurally diverse 3D structures of natural products originating from different geographical regions in Africa. The molecular docking with the ICL model was validated by computing a Receiver Operating Characteristic (ROC) curve with a reasonably good Area Under the Curve (AUC) value of 0.89375. Twenty hit compounds, which docked firmly within the active site pocket of the ICL receptor, were assessed via in silico bioactivity and pharmacological profiling. The three compounds, which emerged as potential novel leads, comprise ZINC38143792 (Euscaphic acid), ZINC95485880, and ZINC95486305 with reasonable binding energies (high affinity) of −8.6, −8.6, and −8.8 kcal/mol, respectively. Euscaphic acid has been reported to show minimal inhibition against a drug-sensitive strain of M. tuberculosis. The other two leads were both predicted to possess dermatological activity while one was antibacterial. The leads have shown promising results pertaining to efficacy, toxicity, pharmacokinetic, and safety. These leads can be experimentally characterized to assess their anti-mycobacterial activity and their scaffolds may serve as rich skeletons for developing anti-buruli ulcer drugs.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
- Department of Biochemistry, Cell and Molecular Biology, West African Center for Cell Biology and Infectious Pathogens, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Bismark Dankwa
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Emmanuel A Odame
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Francis E Agamah
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Lady P A Doe
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Joshua Teye
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Odame Agyapong
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Whelton A Miller
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Chemistry & Physics, College of Science and Technology, Lincoln University, Philadelphia, PA 19104, USA.
| | - Lydia Mosi
- Department of Biochemistry, Cell and Molecular Biology, West African Center for Cell Biology and Infectious Pathogens, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| |
Collapse
|