1
|
Ghaderzadeh M, Rahimi-Mianji G, Nejati-Javaremi A, Shahbazian N. Transcriptomic and biometric parameters analysis in rainbow trout (Oncorhynchus mykiss) challenged with viral hemorrhagic septicemia virus (VHSV). BMC Genomics 2025; 26:204. [PMID: 40021981 PMCID: PMC11869454 DOI: 10.1186/s12864-025-11300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that poses a significant threat to the health of diverse marine species. Among these, trout species, particularly rainbow trout (Oncorhynchus mykiss), are highly susceptible. This study evaluated the effects of VHSV infection on the biometric traits of rainbow trout and investigated the molecular mechanisms associated with the disease. RESULTS Biometric traits of fish were collected and documented weekly during the fourth and fifth weeks of the experiment. A statistically significant difference in body weight was observed in the fifth week, particularly between the control group and the groups injected with either physiological saline or the virus. Additionally, body length-related attributes showed significant variation across all treatment groups within the designated timeframe. RNA was extracted from spleen tissue of the group injected with high doses of physiological saline and the group injected with high doses of the virus using the TRIzol protocol. Differential gene expression analysis revealed 1,726 genes with significant differences between the two groups. Several key immune-related genes were identified, including TLR2, TLR7, TLR8, TLR22, IRF5, IRF6, IRF7, IRF8, IRF10, IL11a, IL12B, IL1b, IL7R, ILR1 II, HSP90B1, HSP47, TNF-α, TRF3, SPRY1, CASP3, FN1, GAPDH, and IgGFc-binding proteins. Network-based analysis of differentially expressed genes was conducted using the GeneMANIA module in Cytoscape, and metabolic pathways were identified through the DAVID database. The results highlighted the involvement of key pathways, including the Toll-like receptor pathway, p53 signaling pathway, PPAR signaling pathway, and the cell cycle, in the infected group. Validation tests for selected upregulated (EPCAM, APOC2 and XDD4) and downregulated (TLR7, XDH, and TSPAN36) candidate genes, were conducted using qRT-PCR. The qPCR results showed a strong and statistically significant correlation with the RNA-seq data, confirming the reliability of the findings. CONCLUSIONS VHSV significantly impacts the growth of rainbow trout, affecting both body length and gene expression. This study underscores the substantial economic risks posed by the virus and the absence of an effective cure, highlighting the importance of preventative measures. Additionally, potential resistance genes and pathways were identified through RNA sequencing, providing valuable insights for improving trout breeding programs.
Collapse
Affiliation(s)
- Mohammad Ghaderzadeh
- Laboratory for Molecular Genetics and Animal Biotechnology, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Ghodrat Rahimi-Mianji
- Laboratory for Molecular Genetics and Animal Biotechnology, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ardeshir Nejati-Javaremi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Nastaran Shahbazian
- Aquatic Animal Health and Diseases Management Department, Iranian Veterinary Organization, Tehran, Iran
| |
Collapse
|
2
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA, Fazio F. LC-MS/MS based characterisation and differential expression of proteins in Himalayan snow trout, Schizothorax labiatus using LFQ technique. Sci Rep 2023; 13:10134. [PMID: 37349327 PMCID: PMC10287682 DOI: 10.1038/s41598-023-35646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Molecular characterization of fish muscle proteins are nowadays considered as a key component to understand the role of specific proteins involved in various physiological and metabolic processes including their up and down regulation in the organisms. Coldwater fish specimens including snow trouts hold different types of proteins which help them to survive in highly diversified temperatures fluctuating from 0 to 20 °C. So, in current study, the liquid chromatography mass spectrometry using label free quantification technique has been used to investigate the muscle proteome profile of Schizothorax labiatus. For proteomic study, two weight groups of S. labiatus were taken from river Sindh. The proteomic analysis of group 1 revealed that a total of 235 proteins in male and 238 in female fish were recorded. However, when male and female S. labiatus were compared with each other on the basis of spectral count and abundance of peptides by ProteinLynx Global Server software, a total of 14 down-regulated and 22 up-regulated proteins were noted in this group. The highly down-regulated ones included homeodomain protein HoxA2b, retinol-binding protein 4, MHC class II beta chain and proopiomelanocortin while as the highly expressed up-regulated proteins comprised of gonadotropin I beta subunit, NADH dehydrogenase subunit 4, manganese superoxide dismutase, recombinase-activating protein 2, glycosyltransferase, chymotrypsin and cytochrome b. On the other hand, the proteomic characterisation of group 2 of S. labiatus revealed that a total of 227 proteins in male and 194 in female fish were recorded. When male and female S. labiatus were compared with each other by label free quantification, a total of 20 down-regulated and 18 up-regulated proteins were recorded. The down-regulated protein expression of group 2 comprised hepatic lipase, allograft inflammatory factor-1, NADH dehydrogenase subunit 4 and myostatin 1 while the highly expressed up-regulated proteins included glycogen synthase kinase-3 beta variant 2, glycogen synthase kinase-3 beta variant 5, cholecystokinin, glycogen synthase kinase-3 beta variant 3 and cytochrome b. Significant (P < 0.05) difference in the expression of down-regulated and up-regulated proteins was also noted between the two sexes of S. labiatus in each group. According to MS analysis, the proteins primarily concerned with the growth, skeletal muscle development and metabolism were down-regulated in river Sindh, which indicates that growth of fish during the season of collection i.e., winter was slow owing to less food availability, gonad development and low metabolic activity. While, the proteins related to immune response of fish were also noted to be down-regulated thereby signifying that the ecosystem has less pollution loads, microbial, pathogenic and anthropogenic activities. It was also found that the proteins involved in glycogen metabolism, reproductive and metabolic processes, particularly lipid metabolism were up-regulated in S. labiatus. The significant expression of these proteins may be connected to pre-spawning, gonad development and use of stored food as source of energy. The information generated in this study can be applied to future research aimed at enhancing food traceability, food safety, risk management and authenticity analysis.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fatin Raza Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Francesco Fazio
- Department of Veterinary Sciences, Polo Universitario Annunziata, University of Messina, 98168, Messina, Italy
| |
Collapse
|
3
|
Su M, Zhong Y, Xiang J, Chen Y, Liu N, Zhang J. Reproductive endocrine disruption and gonadal intersex induction in male Japanese medaka chronically exposed to betamethasone at environmentally relevant levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131493. [PMID: 37156043 DOI: 10.1016/j.jhazmat.2023.131493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
The broad utilization of betamethasone in medical treatments may pose a significant ecotoxicological risk to aquatic organisms, yet its potential reproductive toxicity remains unclear. The present study examined the impacts of environmental exposure on male reproduction using Japanese medaka (Oryzias latipes). After 110 days of betamethasone exposure at environmentally relevant concentrations (0, 20 and 200 ng/L), LH/FSH synthesis and release in the pituitary was inhibited, and the production of sex hormones and their signaling pathways in the gonads of male medaka were greatly influenced. This synthetic glucocorticoid restrained testosterone (T) synthesis and gave rise to a significant increase in E2/T and E2/11-KT ratios. Furthermore, chronic betamethasone exposure (20 and 200 ng/L) led to the suppression of androgen receptor (AR) signaling and enhancement of estrogen receptors (ERs) signaling. An increase in hepatic vitellogenin contents was also detected, and testicular oocytes were observed in both 20 and 200 ng/L betamethasone-treated groups. It showed that 20 and 200 ng/L betamethasone could induce male feminization and even intersex, triggering abnormal spermatogenesis in medaka males. With its adverse effects on male fertility, betamethasone could potentially influence the fishery productivity and population dynamics in aquatic ecosystems.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Youling Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jiazhi Xiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Su M, Zhang R, Liu N, Zhang J. Modulation of inflammatory response by cortisol in the kidney of spotted scat (Scatophagus argus) in vitro under different osmotic stresses. FISH & SHELLFISH IMMUNOLOGY 2020; 104:46-54. [PMID: 32474084 DOI: 10.1016/j.fsi.2020.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Salinity changes on renal osmoregulation have often been investigated while the immune response of the kidney under osmotic stress is poorly understood in teleosts. Acute stress is generally associated with enhancement of circulating cortisol. The effects of osmotic stress on renal immune response and its regulation by cortisol deserve more attention. In the present study, the effects of exogenous cortisol treatment on the lipopolysaccharide (LPS)-induced immune response were analyzed in renal masses of Scatophagus argus under different osmotic stresses in vitro. mRNA expression of pro-inflammatory cytokines (TNF-α, IL1-β and IL-6) and immune-regulatory related genes (GR and SOCS1) was measured over a short course (15 h). Comprehensive analysis reveals that transcript abundances of pro-inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 induced by LPS, alone or in the combination of cortisol, are tightly associated with osmoregulation under acute osmotic stress. Our results showed that osmotic challenge could significantly enhance mRNA expression levels of pro-inflammatory cytokines in renal masses in vitro. Based on our analysis, it can be inferred that cortisol suppresses the magnitude of renal inflammatory response and attenuates LPS-induced immune response through GR signaling in the face of challenging environmental conditions.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Su M, Zhou J, Duan Z, Zhang J. Transcriptional analysis of renal dopamine-mediated Na + homeostasis response to environmental salinity stress in Scatophagus argus. BMC Genomics 2019; 20:418. [PMID: 31126236 PMCID: PMC6534869 DOI: 10.1186/s12864-019-5795-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background To control the osmotic pressure in the body, physiological adjustments to salinity fluctuations require the fish to regulate body fluid homeostasis in relation to environmental change via osmoregulation. Previous studies related to osmoregulation were focused primarily on the gill; however, little is known about another organ involved in osmoregulation, the kidney. The salinity adaptation of marine fish involves complex physiological traits, metabolic pathways and molecular and gene networks in osmoregulatory organs. To further explore of the salinity adaptation of marine fish with regard to the role of the kidney, the euryhaline fish Scatophagus argus was employed in the present study. Renal expression profiles of S. argus at different salinity levels were characterized using RNA-sequencing, and an integrated approach of combining molecular tools with physiological and biochemical techniques was utilized to reveal renal osmoregulatory mechanisms in vivo and in vitro. Results S. argus renal transcriptomes from the hyposaline stress (0‰, freshwater [FW]), hypersaline stress (50‰, hypersaline water [HW]) and control groups (25‰) were compared to elucidate potential osmoregulatory mechanisms. In total, 19,012 and 36,253 differentially expressed genes (DEGs) were obtained from the FW and HW groups, respectively. Based on the functional classification of DEGs, the renal dopamine system-induced Na+ transport was demonstrated to play a fundamental role in osmoregulation. In addition, for the first time in fish, many candidate genes associated with the dopamine system were identified. Furthermore, changes in environmental salinity affected renal dopamine release/reuptake by regulating the expression of genes related to dopamine reuptake (dat and nkaα1), vesicular traffic-mediated dopamine release (pink1, lrrk2, ace and apn), DAT phosphorylation (CaMKIIα and pkcβ) and internalization (akt1). The associated transcriptional regulation ensured appropriate extracellular dopamine abundance in the S. argus kidney, and fluctuations in extracellular dopamine produced a direct influence on Na+/K+-ATPase (NKA) expression and activity, which is associated with Na+ homeostasis. Conclusions These transcriptomic data provided insight into the molecular basis of renal osmoregulation in S. argus. Significantly, the results of this study revealed the mechanism of renal dopamine system-induced Na+ transport is essential in fish osmoregulation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5795-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianan Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhengyu Duan
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China. .,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Moreira GSA, Shoemaker CA, Zhang D, Xu DH. Expression of immune genes in skin of channel catfish immunized with live theronts of Ichthyophthirius multifiliis. Parasite Immunol 2017; 39. [PMID: 27801984 DOI: 10.1111/pim.12397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The objective of this study was to evaluate differential expression of innate and adaptive immune genes, including immunoglobulin, immune cell receptor, cytokine, inflammatory protein, toll-like receptors (TLR) and recombination-activating gene (RAG) in skin from channel catfish, Ictalurus punctatus after immunization with live theronts of Ichthyophthirius multifiliis (Ich) by intraperitoneal injection. The immunized catfish showed significantly higher survival rate (95%) than those of mock-immunized control fish (0% survival) after the theront challenge. The gene expression of innate immune system, such as cytokines (IL-1β type a, IL-1β type b, IFN-γ, TGF1-β and TNF-α) and inflammatory proteins (NF-kB and iNOS 2), showed significant upregulation at day 1 (D1) post-immunization. Expression of TLR genes exhibited a rapid increase from hour 4 (h4) to D10 post-immunization. Genes of the adaptive response, such as the cell receptor MHC I, CD8+ , CD4+ and TCR-α, showed upregulation at D1, D6 and D10. The TCR-β expression increased rapidly at h4 and remained upregulated until D10. Immunoglobulin IgM upregulation was detected from h4 until D2 while IgD expression was increased from D1 until D10. Rapid upregulation of innate and adaptive immune genes in skin of catfish following live theront vaccination was demonstrated in this study ultimately resulting in significant protection against Ich infection.
Collapse
Affiliation(s)
- G S A Moreira
- Laboratory of Parasitology, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, Brazil
| | - C A Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - D Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - D-H Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| |
Collapse
|
7
|
Xu DH, Zhang QZ, Shoemaker CA, Zhang D, Moreira GSA. Molecular immune response of channel catfish immunized with live theronts of Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2016; 54:86-92. [PMID: 27044331 DOI: 10.1016/j.fsi.2016.03.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The parasite Ichthyophthirius multifiliis (Ich) has been reported in various freshwater fishes worldwide and results in severe losses to both food and aquarium fish production. The fish surviving natural infections or immunized with live theronts develop strong specific and non-specific immune responses. Little is known about how these immune genes are induced or how they interact and lead to specific immunity against Ichthyophthirius multifiliis in channel catfish Ictalurus punctatus. This study evaluated the differential expression of immune-related genes, including immunoglobulin, immune cell receptor, cytokine, complement factor and toll-like receptors in head kidney from channel catfish at different time points after immunization with live theronts of I. multifiliis. The immunized fish showed significantly higher anti-Ich antibody expressed as immobilization titer and ELISA titer than those of control fish. The vast majority of immunized fish (95%) survived theront challenge. Expression of IgM and IgD heavy chain genes exhibited a rapid increase from 4 hour (h4) to 2 days (d2) post immunization. Expression of immune cell receptor genes (CD4, CD8-α, MHC I, MHC II β, TcR-α, and TcR-β) showed up-regulation from h4 to d6 post immunization, indicating that different immune cells were actively involved in cellular immune response. Cytokine gene expression (IL-1βa, IL-1βb, IFN-γ and TNF-α) increased rapidly at h4 post immunization and were at an up-regulated level until d2 compared to the bovine serum albumin control. Expression of complement factor and toll-like receptor genes exhibited a rapid increase from h4 to d2 post immunization. Results of this study demonstrated differential expression of genes involved in the specific or non-specific immune response post immunization and that the vaccination against Ich resulted in protection against infection by I. multifiliis.
Collapse
Affiliation(s)
- De-Hai Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832-4352, USA.
| | - Qi-Zhong Zhang
- Institute of Hydrobiology, Jinan University, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Guangzhou 510632, PR China
| | - Craig A Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832-4352, USA
| | - Dunhua Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832-4352, USA
| | - Gabriel S A Moreira
- Laboratory of Parasitology, College of Animal Science and Food Engineering, University of Sao Paulo (USP), Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| |
Collapse
|
8
|
Zhang C, Li DL, Chi C, Ling F, Wang GX. Dactylogyrus intermedius parasitism enhances Flavobacterium columnare invasion and alters immune-related gene expression in Carassius auratus. DISEASES OF AQUATIC ORGANISMS 2015; 116:11-21. [PMID: 26378404 DOI: 10.3354/dao02902] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The monogenean Dactylogyrus intermedius and the bacterium Flavobacterium columnare are 2 common pathogens in aquaculture. The objective of the present study was to examine the effect of prior parasitism by D. intermedius on the susceptibility of goldfish to F. columnare and to explore the potential immune mechanisms related to the parasite infection. A F. columnare challenge trial was conducted between D. intermedius-parasitized and non-parasitized goldfish. The F. columnare load in gill, kidney, spleen and liver were compared. The expression of immune-related genes (IL-1β2, TNF-α1, TGF-β, iNOS-a, C3 and Lyz) in gill and kidney of D. intermedius-only infected and uninfected control fish were evaluated. D. intermedius-parasitized goldfish exhibited higher mortality and significantly higher loads (3051 to 537,379 genome equivalents [GEs] mg(-1)) of F. columnare, which were 1.13 to 50.82-fold higher than non-parasitized fish (389 to 17,829 GEs mg(-1)). Furthermore, the immune genes IL-1β2, TNF-α1, iNOS-a and Lyz were up-regulated while the TGF-β and C3 were down-regulated in the gill and kidney of parasite-infected fish compared to the non-parasitized controls. The down-regulation TGF-β and C3 was especially noteworthy, as this might indicate the suppression of the host immune functions due to the parasitism by D. intermedius. Taken together, these data demonstrate that parasite infection can enhance bacterial invasion and presents a hypothesis, based on gene expression data, that modulation of host immune response could play a role.
Collapse
Affiliation(s)
- Chao Zhang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, PR China
| | | | | | | | | |
Collapse
|
9
|
Mu X, Su M, Gui L, Liang X, Zhang P, Hu P, Liu Z, Zhang J. Comparative renal gene expression in response to abrupt hypoosmotic shock in spotted scat (Scatophagus argus). Gen Comp Endocrinol 2015; 215:25-35. [PMID: 25304824 DOI: 10.1016/j.ygcen.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/17/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022]
Abstract
Scatophagus argus, a euryhaline fish, is notable for its ability to tolerate a wide range of environmental salinities and especially for its tolerance to a rapid, marked reduction in salinity. Therefore, S. argus is a good model for studying the molecular mechanisms mediating abrupt hyperosmoregulation. The serum osmotic pressure decreased steeply within one hour after transferring S. argus from seawater (SW) to freshwater (FW) and remained at new balance throughout the duration of one week. To explain this phenomenon and understand the molecular responses to an abrupt hypoosmotic shock, hypoosmotic stress responsive genes were identified by constructing two suppression subtractive hybridization (SSH) cDNA libraries from the kidneys of S. argus that had been transferred from SW to FW. After trimming and blasting, 52 ESTs were picked out from the subtractive library. Among them, 11 genes were significantly up-regulated (p < 0.05). The kinetics studies of gene expression levels were conducted for 1 week after the transfer using quantitative real-time PCR. A significant variation in the expression of these genes occurred within 12h after the hypoosmotic shock, except for growth hormone (GH) and polyadenylate binding protein 1 (PBP1), which were significantly up-regulated 2 days post-transfer. Our results suggest different functional roles for these genes in response to hypoosmotic stress during the stress response phase (1 hpt-12 hpt) and stable phase (12 hpt-7 dpt). Furthermore, the plasma growth hormone level was detected to be significantly elevated at 1 hpt and 24 hpt following abrupt hypoosmotic shock. Meanwhile, several hematological parameters, hemoglobin (HGB), red blood cell (RBC) and mean cellular hemoglobin concentration (MCHC), were observed to be significantly increased at 12 hpt and 2 dpt compared with that of control group. Our results provide a solid basis from which to conduct future studies on the osmoregulatory mechanisms in the euryhaline fish.
Collapse
Affiliation(s)
- Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Maoliang Su
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemei Liang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peipei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenhao Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Junbin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Muñoz-Atienza E, Araújo C, Magadán S, Hernández PE, Herranz C, Santos Y, Cintas LM. In vitro and in vivo evaluation of lactic acid bacteria of aquatic origin as probiotics for turbot (Scophthalmus maximus L.) farming. FISH & SHELLFISH IMMUNOLOGY 2014; 41:570-580. [PMID: 25451001 DOI: 10.1016/j.fsi.2014.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Turbot (Scophthalmus maximus L.) is an important commercial marine flatfish. Its production may be affected by bacterial diseases that cause severe economical losses, mainly tenacibaculosis and vibriosis, provoked by Tenacibaculum maritimum and Vibrio splendidus, respectively. An alternative or complementary strategy to chemotherapy and vaccination for the control of these diseases is the use of probiotics. In this work, we report the in vitro and in vivo potential of eight lactic acid bacteria (LAB), previously isolated from fish, seafood and fish products intended for human consumption, as turbot probiotics. Seven out of the eight LAB exerted direct antimicrobial activity against, at least, four strains of T. maritimum and V. splendidus. All LAB survived in seawater at 18 °C for 7 days, and withstood exposure to pH 3.0 and 10% (v/v) turbot bile; however, they differed in cell surface hydrophobicity (8.2-21.7%) and in their ability to adhere to turbot skin (1.2-21.7%) and intestinal (0.7-2.1%) mucus. Most of the tested strains inhibited the binding of turbot pathogens to the mucus. Leuconostoc mesenteroides subsp. cremoris SMM69 and Weissella cibaria P71 were selected based on their strong antimicrobial activity against T. maritimum and V. splendidus, good probiotic properties, and different adhesion ability to skin mucus and capacity to inhibit the adhesion of turbot pathogens to mucus. These two LAB strains were harmless when administered by bath to turbot larvae and juveniles; moreover, real-time PCR on the transcription levels of the immunity-related genes encoding IL-1β, TNF-α, lysozyme, C3, MHC-Iα and MHC-IIα in five organs (head-kidney, spleen, liver, intestine and skin) revealed the ability of these LAB to stimulate their expression in turbot juveniles, especially the non-specific immunity associated genes in mucosal tissues. Based on our results, Lc. cremoris SMM69 and W. cibaria P71 may be considered as suitable probiotic candidates for turbot farming.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Carlos Araújo
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain; Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Susana Magadán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), 36390 Vigo, Pontevedra, Spain
| | - Pablo E Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Carmen Herranz
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - Ysabel Santos
- Department of Microbiology and Parasitology, Faculty of Biology, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Luis M Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| |
Collapse
|
11
|
Dash P, Sahoo PK, Gupta PK, Garg LC, Dixit A. Immune responses and protective efficacy of recombinant outer membrane protein R (rOmpR)-based vaccine of Aeromonas hydrophila with a modified adjuvant formulation in rohu (Labeo rohita). FISH & SHELLFISH IMMUNOLOGY 2014; 39:512-523. [PMID: 24937805 DOI: 10.1016/j.fsi.2014.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
Despite the importance and success of developing a candidate vaccine against Aeromonas hydrophila infection in fish, little is known about the molecular mechanisms of the vaccine-induced immunoprotection in Indian major carp, Labeo rohita, primarily due to lack of information on most of the immune related genes of the species. In this study, a novel candidate antigen recombinant outer membrane protein R (rOmpR) of A. hydrophila was evaluated as a vaccine candidate along with a modified adjuvant formulation. Protective efficacy of the rOmpR immunization was assessed in terms of survival against A. hydrophila challenge as well as modulation of immune response in vaccinated fish after 1, 3, 6, 12, 24, 72 h and 10 days post-injection (using immune gene expression analysis) and 10, 28, 56 and 140 days post-injection (serum immune parameter analysis). The generated immune response was compared with a formalin-killed A. hydrophila antigen preparation using mineral oil only and modified adjuvant alone. We report a variable up-regulation of the immune-related genes viz., lysozyme G, complement factor 4, immunoglobulin M, β2-microglobulin, major histocompatibility complex I and II, and interleukin-1β in anterior kidney and spleen tissues at early time points post-immunization in all the groups, when compared to the control fish. The vaccinated fish also showed an increase in serum natural hemolysin titer, lysozyme and myeloperoxidase activities, and antibody titer irrespective of vaccine formulations as compared to control fish on days 10, 28 and 56. However, the increase in the serum parameters was more pronounced on day 140 in rOmpR-modified adjuvant injected group, indicating the modulatory role of this new vaccine formulation. Upon challenge with live A. hydrophila on days 56 and 140 post-immunization, significantly reduced percent mortality was noted in the group immunized with modified adjuvant based rOmpR vaccine formulation. Taken together, our results suggest that rOmpR along with modified adjuvant could potentially be used as a vaccine formulation to handle A. hydrophila infection on a long-term basis.
Collapse
Affiliation(s)
- P Dash
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India
| | - P K Sahoo
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India.
| | - P K Gupta
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110 067, India
| | - L C Garg
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - A Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
12
|
Pietretti D, Wiegertjes GF. Ligand specificities of Toll-like receptors in fish: indications from infection studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:205-222. [PMID: 23981328 DOI: 10.1016/j.dci.2013.08.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Toll like receptors (TLRs) are present in many different fish families from several different orders, including cyprinid, salmonid, perciform, pleuronectiform and gadiform representatives, with at least some conserved properties among these species. However, low conservation of the leucine-rich repeat ectodomain hinders predictions of ligand specificities of fish TLRs based on sequence information only. We review the presence of a TLR genes, and changes in their gene expression profiles as result of infection, in the context of different fish orders and fish families. The application of RT-qPCR and availability of increasing numbers of fish genomes has led to numerous gene expression studies, including studies on TLR gene expression, providing the most complete dataset to date. Induced changes of gene expression may provide (in)direct evidence for the involvement of a particular TLR in the reaction to a pathogen. Especially when findings are consistent across different studies on the same fish species or consistent across different fish species, up-regulation of TLR gene expression could be a first indication of functional relevance. We discuss TLR1, TLR2, TLR4, TLR5 and TLR9 as presumed sensors of bacterial ligands and discuss as presumed sensors of viral ligands TLR3 and TLR22, TLR7 and TLR8. More functional studies are needed before conclusions on ligands specific to (groups of) fish TLRs can be drawn, certainly true for studies on non-mammalian TLRs. Future studies on the conservation of function of accessory molecules, in conjunction with TLR molecules, may bring new insight into the function of fish TLRs.
Collapse
Affiliation(s)
- Danilo Pietretti
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
13
|
Mu X, Pridgeon JW, Klesius PH. Comparative transcriptional analysis reveals distinct expression patterns of channel catfish genes after the first infection and re-infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1566-76. [PMID: 24036330 PMCID: PMC7111657 DOI: 10.1016/j.fsi.2013.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/12/2013] [Accepted: 08/30/2013] [Indexed: 05/04/2023]
Abstract
To determine whether transcriptional levels of channel catfish (Ictalurus punctatus) genes are differentially regulated between a first infection with Aeromonas hydrophila and a re-infection, suppression subtractive hybridization (SSH) was performed in this study using anterior kidney cDNA after the re-infection as tester. Of the 96 clones isolated from the SSH library, 28 unique expressed sequence tags (ESTs) were obtained, of which eight were confirmed to be slightly but significantly (P < 0.05) more up-regulated by the re-infection at 6 h post infection (hpi). Expression kinetics studies at 3, 6, 12, 24, and 48 hpi revealed that the eight ESTs were significantly (P = 0.016) more up-regulated by the first infection, with a major peak at 3 hpi. A total of 96 genes reported in literature to be up-regulated by bacterial infections were selected and subjected to expression analysis at 3 hpi. Of the 96 selected genes, 19 were found to be significantly (P < 0.05) induced by A. hydrophila after the first infection and the re-infection. The 19 genes belonged to the following five main categories: 1) toll-like receptor (TLR2, TLR3, TLR5, TLR21); 2) antimicrobial peptide (NK-lysin type 1, NK-lysin type 2, NK-lysin type 3, cathepsin D, transferrin, hepcidin); 3) cytokine or chemokine (interleukin-1β, interleukin-10, tumor necrosis factor α, chemokine CXCL-10); 4) signaling proteins (cadherin EGF LAG seven-pass G-type receptor 1, very large inducible GTPase 1, arginine deiminase type 2, lymphokine-activated killer T-cell originated protein kinase); 5) lysozyme (lysozyme c). Overall, the total 27 genes (8 ESTs plus the 19 selected genes) were significantly (P < 0.001) more induced by the first infection. Peaked expression of lysozyme c and serum lysozyme activity after the first infection were seen at 24 hpi, whereas that after the re-infection were seen at 12 hpi, suggesting that both innate and adaptive immunity were involved in the defense against the re-infection of A. hydrophila.
Collapse
|
14
|
Pohlenz C, Buentello A, Criscitiello MF, Mwangi W, Smith R, Gatlin DM. Synergies between vaccination and dietary arginine and glutamine supplementation improve the immune response of channel catfish against Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2012; 33:543-551. [PMID: 22728565 DOI: 10.1016/j.fsi.2012.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
Channel catfish was used to investigate the enhancement of vaccine efficacy following dietary supplementation with arginine (ARG, 4% of diet), glutamine (GLN, 2% of diet), or a combination of both. After vaccination against Edwardsiella ictaluri, humoral and cellular immune responses, along with lymphoid organ responses were evaluated. E. ictaluri-specific antibody titers in plasma were higher (P < 0.05) in fish fed the supplemented diets compared to those fed the basal diet as early as 7 d post-vaccination (dpv). B-cell proportion in head-kidney was higher (P < 0.05) at 14 dpv in vaccinated fish fed the GLN diet. The responsiveness of spleen and head-kidney lymphocytes against E. ictaluri was enhanced (P < 0.05) by dietary supplementation of ARG or GLN at 14 dpv. Additionally, at 7 dpv, vaccinated fish fed the GLN diet had higher (P < 0.05) head kidney weights relative to the other dietary treatments, and vaccinated fish fed ARG-supplemented diets had higher (P < 0.05) protein content in this tissue. Results from this study suggest that dietary supplementation of ARG and GLN may improve specific cellular and humoral mechanisms, enhancing the acquired immunity in vaccinated channel catfish.
Collapse
Affiliation(s)
- Camilo Pohlenz
- Department of Wildlife and Fisheries Sciences and Intercollegiate, Faculty of Nutrition, Texas A&M University, 216 Heep Laboratory Building, 2258 TAMUS, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pridgeon JW, Yeh HY, Shoemaker CA, Mu X, Klesius PH. Global gene expression in channel catfish after vaccination with an attenuated Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2012; 32:524-533. [PMID: 22245589 DOI: 10.1016/j.fsi.2011.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/10/2011] [Accepted: 12/28/2011] [Indexed: 05/31/2023]
Abstract
To understand the global gene expression in channel catfish after immersion vaccination with an attenuated Edwardsiella ictaluri (AquaVac-ESC™), microarray analysis of 65,182 UniGene transcripts was performed. With a filter of false-discovery rate less than 0.05 and fold change greater than 2, a total of 52 unique transcripts were found to be upregulated in vaccinated fish at 48 h post vaccination, whereas a total of 129 were downregulated. The 52 upregulated transcripts represent genes with putative functions in the following seven major categories: (1) hypothetical (25%); (2) novel (23%); (3) immune response (17%); (4) signal transduction (15%); (5) cell structure (8%); (6) metabolism (4%); and (7) others (8%). The 129 downregulated transcripts represent genes with putative functions in the following ten major categories: (1) novel (25%); (2) immune response (23%); (3) hypothetical (12%); (4) metabolism (10%); (5) signal transduction (7%); (6) protein synthesis (6.2%); (7) cell structure (5%); (8) apoptosis (3%); (9) transcription/translation (2%); and (10) others (6%). Microarray analysis revealed that apolipoprotein A-I was upregulated the most (8.5 fold, P = 0.011) at 48 h post vaccination whereas a novel protein (accession no. CV995854) was downregulated the most (342 fold, P = 0.001). Differential regulation of several randomly selected transcripts in vaccinated fish was also validated by quantitative PCR. Our results suggest that these differentially regulated genes elicited by the vaccination might play important roles in the protection of channel catfish against E. ictaluri.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | |
Collapse
|
16
|
Pridgeon JW, Yeh HY, Shoemaker CA, Klesius PH. Global transcription analysis of vaccinated channel catfish following challenge with virulent Edwardsiella ictaluri. Vet Immunol Immunopathol 2012; 146:53-61. [DOI: 10.1016/j.vetimm.2012.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/18/2012] [Accepted: 01/31/2012] [Indexed: 12/23/2022]
|
17
|
Bebak J, Wagner B. Use of vaccination against enteric septicemia of catfish and columnaris disease by the U.S. catfish industry. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:30-36. [PMID: 22779211 DOI: 10.1080/08997659.2012.667048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Vaccination is an effective strategy used for the protection of food animals against infectious diseases. A 2010 U.S. Department of Agriculture questionnaire examined U.S. catfish industry use (in 2009) of two commercial vaccines that provide protection against enteric septicemia of catfish (ESC) and columnaris disease, catfish producers' opinions regarding the percentage of vaccinated fish they expect to be protected, and producers' general expectations regarding survival of vaccinated fish compared with unvaccinated fish. During 2009, 9.7% of the total fingerling operations used one or both vaccines; 12.3% of the total industry fry production was vaccinated against ESC, and 17.0% was vaccinated against columnaris disease. Of the producers who grew food-sized catfish to harvest, 6.7% used vaccinated catfish. The farms that did not use vaccinated fish for grow out had a mean size of 63.4 water surface hectares (156.6 water surface acres). The operations that used vaccinated fish were larger (mean size = 206.6 water surface hectares, or 510.6 water surface acres). The producers that stocked ESC-vaccinated fish for grow out represented 19.0% of the total water surface area of food fish production; producers that stocked columnaris-vaccinated fish represented 16.6% of the total area. Of the producers that stocked ESC-vaccinated catfish, 41.9% thought that survival was better in vaccinated fish than in unvaccinated fish; of the producers that stocked columnaris-vaccinated catfish, 46.2% thought that vaccinated fish displayed better survival. However, 37.5% of producers that used the ESC vaccine and 39.7% of producers that used the columnaris vaccine did not know whether vaccination improved survival rates. When all producers were asked about their expectations regarding the percentage of vaccinated fish that would be protected from disease, 52.4% responded that they expected 100% of their fish to be protected. More producer information about reasonable expectations regarding vaccine efficacy, the conditions under which immunosuppression and vaccine failure can occur, and assessment of vaccine performance may result in increased use of vaccination as a tool for the catfish industry.
Collapse
Affiliation(s)
- Julie Bebak
- U.S. Department of Agriculture, Agricultural Research Service, 990 Wire Road, Auburn, Alabama 36832, USA.
| | | |
Collapse
|
18
|
Mu X, Pridgeon JW, Klesius PH. Transcriptional profiles of multiple genes in the anterior kidney of channel catfish vaccinated with an attenuated Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1162-1172. [PMID: 22019831 DOI: 10.1016/j.fsi.2011.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/27/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
A total of 22 uniquely expressed sequence tags (ESTs) were identified from channel catfish anterior kidney subtractive cDNA library at 12 h post vaccination with an attenuated Aeromonas hydrophila (AL09-71 N+R). Of the 22 ESTs, six were confirmed to be significantly (P < 0.05) induced by the vaccination. Of 88 channel catfish genes selected from literature, 14 were found to be significantly (P < 0.05) upregulated by the vaccination. The transcriptional levels of the total 20 genes induced by the vaccination were then compared to that induced by the virulent parent A. hydrophila (AL09-71) at different time points. At 3 h post vaccination (hpv) or infection (hpi), Na(+)/K(+) ATPase α subunit was upregulated the most. At 6 and 12 hpv or hpi, hepcidin and interleukin-1β were induced the highest. At 24 hpv or hpi, hepcidin was upregulated the most, followed by lysozyme c. At 48 hpi, lysozyme c and hepcidin were significantly induced. When vaccinated fish were challenged by AL09-71, relative percent of survival of vaccinated fish were 100% at 14 days post vaccination (dpv). Transcriptional levels of toll-like receptor 5 and hepcidin were significantly upregulated in vaccinated fish at 14 dpv. Taken together, our results suggest that vaccination with attenuated A. hydrophila mimics infection by live bacteria, inducing multiple immune genes in channel catfish.
Collapse
Affiliation(s)
- Xingjiang Mu
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA
| | | | | |
Collapse
|
19
|
Pridgeon JW, Aksoy M, Klesius PH, Li Y, Mu X, Srivastava K, Reddy G. Identification and expression profiles of multiple genes in Nile tilapia in response to bacterial infections. Vet Immunol Immunopathol 2011; 144:111-9. [PMID: 21840065 DOI: 10.1016/j.vetimm.2011.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/21/2011] [Accepted: 07/20/2011] [Indexed: 12/01/2022]
Abstract
To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophila. A total of 31 unique expressed sequence tags (ESTs) were identified from 192 clones of the subtractive cDNA library. Quantitative PCR revealed that nine of the 31 ESTs were significantly (p<0.05) upregulated in Nile tilapia at 6h post infection with A. hydrophila at an injection dose of 10(5)CFU per fish (≈ 20% mortality). Of the nine upregulated genes, four were also significantly (p<0.05) induced in Nile tilapia at 6h post infection with A. hydrophila at an injection dose of 10(6)CFU per fish (≈ 60% mortality). Of the four genes induced by A. hydrophila at both injection doses, three were also significantly (p<0.05) upregulated in Nile tilapia at 6h post infection with Streptococcus iniae at doses of 10(6) and at 10(5)CFU per fish (≈ 70% and ≈ 30% mortality, respectively). The three genes induced by both bacteria included EST 2A05 (similar to adenylate kinase domain containing protein 1), EST 2G11 (unknown protein, shared similarity with Salmo salar IgH locus B genomic sequence with e value of 0.02), and EST 2H04 (unknown protein). Significant upregulation of these genes in Nile tilapia following bacterial infections suggested that they might play important roles in host response to infections of A. hydrophila and S. iniae.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Pridgeon JW, Klesius PH, Mu X, Yancey RJ, Kievit MS, Dominowski PJ. Efficacy of QCDCR formulated CpG ODN 2007 in Nile tilapia against Streptococcus iniae and identification of upregulated genes. Vet Immunol Immunopathol 2011; 145:179-90. [PMID: 22129787 DOI: 10.1016/j.vetimm.2011.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/15/2022]
Abstract
The potential of using a QCDCR (quilA:cholesterol:dimethyl dioctadecyl ammonium bromide:carbopol:R1005 glycolipid) formulated CpG oligodeoxynucleotide (ODN), ODN 2007, to confer protection in Nile tilapia against Streptococcus iniae infection was evaluated in this study. At two days post treatment, QCDCR formulated ODN 2007 elicited significant (P<0.05) protection to Nile tilapia, with relative percent survival of 63% compared to fish treated by QCDCR alone. To understand the molecular mechanisms involved in the protective immunity elicited by ODN 2007, suppression subtractive cDNA hybridization technique was used to identify upregulated genes induced by ODN 2007. A total of 69 expressed sequence tags (ESTs) were identified from the subtractive cDNA library. Quantitative PCR revealed that 44 ESTs were significantly (P<0.05) upregulated by ODN 2007, including 29 highly (>10-fold) and 15 moderately (<10-fold) upregulated ESTs. Of all ESTs, putative peroxisomal sarcosine oxidase was upregulated the highest. The 69 ESTs only included six genes that had putative functions related to immunity, of which only two (putative glutaredoxin-1 and carboxypeptidase N catalytic chain) were confirmed to be significantly upregulated. Our results suggest that the protection elicited by ODN 2007 is mainly through innate immune responses directly or indirectly related to immunity.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Xu DH, Pridgeon JW, Klesius PH, Shoemaker CA. Parasitism by protozoan Ichthyophthirius multifiliis enhanced invasion of Aeromonas hydrophila in tissues of channel catfish. Vet Parasitol 2011; 184:101-7. [PMID: 22033433 DOI: 10.1016/j.vetpar.2011.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022]
Abstract
Protozoan Ichthyophthirius multifiliis Fouquet (Ich) and bacterium Aeromonas hydrophila are two common pathogens of cultured fish, which cause high fish mortality. Currently there is no information available for the effect of parasitism by Ich on survival of channel catfish and invasion of A. hydrophila in fish tissues following exposure to A. hydrophila. A trial was conducted in this study to: (1) determine whether A. hydrophila increased fish mortality in Ich-parasitized channel catfish; and (2) compare the bacterial quantity in different tissues between non-parasitized and Ich-parasitized catfish by real-time polymerase chain reaction (qPCR). The results demonstrated that the Ich-parasitized catfish showed significantly (P<0.05) higher mortality (80%) when exposed to A. hydrophila by immersion than non-parasitized fish (22%). Low mortality was observed in catfish exposed to Ich alone (35%) or A. hydrophila alone (22%). A. hydrophila in fish tissues were quantified by qPCR using a pair of gene-specific primers and reported as genome equivalents per mg of tissue (GEs/mg). Skin, gill, kidney, liver and spleen in Ich-parasitized fish showed significantly higher load of A. hydrophila (9400-188,300 GEs/mg) than non-parasitized fish (4700-42,100 GEs/mg) after exposure to A. hydrophila. This study provides evidence that parasite infections enhance bacterial invasion and cause high fish mortality.
Collapse
Affiliation(s)
- De-Hai Xu
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Laboratory, 990 Wire Road, Auburn, AL 36832, USA.
| | | | | | | |
Collapse
|
22
|
Pridgeon JW, Klesius PH. Identification and expression profile of multiple genes in channel catfish fry 10 min after modified live Flavobacterium columnare vaccination. Vet Immunol Immunopathol 2010; 138:25-33. [PMID: 20630605 DOI: 10.1016/j.vetimm.2010.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/01/2010] [Accepted: 06/11/2010] [Indexed: 11/28/2022]
Abstract
Using PCR-select subtractive cDNA hybridization technique, 32 expressed sequence tags (ESTs) were isolated from 96 clones of a channel catfish (Ictalurus punctatus) fry subtractive library 10min post-vaccination with a modified live Flavobacterium columnare vaccine. The transcription levels of the 32 ESTs in response to F. columnare vaccination were then evaluated by quantitative PCR (QPCR). Of the 32 ESTs, 28 were upregulated in at least one vaccinated fish. Of the 28 upregulated ESTs, 12 were consistently induced at least 2-fold higher in vaccinated fish compared to unvaccinated control fish. Of the 12 upregulated genes, three (triglyceride lipase, PIKK family atypical protein kinase, and CCR4-NOT transcription complex subunit 1) were consistently upregulated greater than 3-fold. The 12 consistently upregulated genes also included CD59, polymerase (RNA) I polypeptide C, pyrophosphatase (inorganic) 1, mannose-P-dolichol utilization defect 1, nascent polypeptide-associated complex subunit alpha, hemoglobin-beta, fetuin-B, glyoxalase domain containing 4, and putative histone H3. The 28 upregulated ESTs represent genes with putative functions in the following five major categories: (1) immune response (46%); (2) signal transduction (21%); (3) transcriptional regulation (11%); (4) cell maintenance (11%); and (5) unknown (11%).
Collapse
Affiliation(s)
- Julia W Pridgeon
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
| | | |
Collapse
|