1
|
Li Z, Wang Y, Zhao X, Meng Q, Ma G, Xie L, Jiang X, Liu Y, Huang D. Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions. Biotechnol Adv 2025; 79:108514. [PMID: 39755221 DOI: 10.1016/j.biotechadv.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Protein glycosylation, which involves the addition of carbohydrate chains to amino acid side chains, imparts essential properties to proteins, offering immense potential in synthetic biology applications. Despite its importance, natural glycosylation pathways present several limitations, highlighting the need for new tools to better understand glycan structures, recognition, metabolism, and biosynthesis, and to facilitate the production of biologically relevant glycoproteins. The field of bacterial glycoengineering has gained significant attention due to the ongoing discovery and study of bacterial glycosylation systems. By utilizing protein glycan coupling technology, a wide range of valuable glycoproteins for clinical and diagnostic purposes have been successfully engineered. This review outlines the recent advances in bacterial protein glycosylation from the perspective of synthetic biology and metabolic engineering, focusing on the development of new glycoprotein therapeutics and vaccines. We provide an overview of the production of high-value, customized glycoproteins using prokaryotic glycosylation platforms, with particular emphasis on four key elements: (i) glycosyltransferases, (ii) carrier proteins, (iii) glycosyl donors, and (iv) host bacteria. Optimization of these elements enables precise control over glycosylation patterns, thus enhancing the potential of the resulting products. Finally, we discuss the challenges and future prospects of leveraging synthetic biology technologies to develop microbial glyco-factories and cell-free systems for efficient glycoprotein production.
Collapse
Affiliation(s)
- Ziyu Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Yujie Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Xiaojing Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Qing Meng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Guozhen Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lijie Xie
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China.
| |
Collapse
|
2
|
Kim J, Yang YL, Jeong Y, Jang YS. Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization. Immune Netw 2022; 22:e41. [DOI: 10.4110/in.2022.22.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Ye Lin Yang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
3
|
Park J, Lee HY, Khai LT, Thuy NTT, Mai LQ, Jang YS. Addition of Partial Envelope Domain II into Envelope Domain III of Dengue Virus Antigen Potentiates the Induction of Virus-Neutralizing Antibodies and Induces Protective Immunity. Vaccines (Basel) 2020; 8:vaccines8010088. [PMID: 32075300 PMCID: PMC7157711 DOI: 10.3390/vaccines8010088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) comprises four serotypes in the family Flaviviridae and is a causative agent of dengue-related diseases, including dengue fever. Dengue fever is generally a self-limited febrile illness. However, secondary infection of patients with a suboptimal antibody (Ab) response provokes life-threatening severe dengue hemorrhagic fever or dengue shock syndrome. To develop a potent candidate subunit vaccine against DENV infection, we developed the EDII-cEDIII antigen, which contains partial envelope domain II (EDII) including the fusion loop and BC loop epitopes together with consensus envelope domain III (cEDIII) of all four serotypes of DENV. We purified Ab from mice after immunization with EDII-cEDIII or cEDIII and compared their virus neutralization and Ab-dependent enhancement of DENV infection. Anti-EDII-cEDIII Ab showed stronger neutralizing activity and lower Ab-dependent peak enhancement of DENV infection compared with anti-cEDIII Ab. Following injection of Ab-treated DENV into AG129 mice, anti-EDII-cEDIII Ab ameliorated DENV infection in tissues with primary and secondary infection more effectively than anti-cEDIII Ab. In addition, anti-EDII-cEDIII Ab protected against DENV1, 2, and 4 challenge. We conclude that EDII-cEDIII induces neutralizing and protective Abs, and thus, shows promise as a candidate subunit vaccine for DENV infection.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Hyun-Young Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Ly Tuan Khai
- Department of Hematology, 108 Military Central Hospital, Hanoi 113601, Vietnam
| | | | - Le Quynh Mai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence:
| |
Collapse
|
4
|
Bao CT, Xiao JM, Liu BJ, Liu JF, Zhu RN, Jiang P, Li L, Langford PR, Lei LC. Establishment and comparison of Actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microb Pathog 2019; 128:381-389. [PMID: 30664928 DOI: 10.1016/j.micpath.2019.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia, a disease responsible for substantial losses in the worldwide pig industry. In this study, outbred Kunming (KM) and Institute of Cancer Research (ICR) mice were evaluated as alternative mice models for APP research. After intranasal infection of serotype 5 reference strain L20, there was less lung damage and a lower clinical sign score in ICR compared to KM mice. However, ICR mice showed more obvious changes in body weight loss, the amount of immune cells (such as neutrophils and lymphocytes) and cytokines (such as IL-6, IL-1β and TNF-α) in blood and bronchoalveolar lavage fluid (BALF). The immunological changes observed in ICR mice closely mimicked those found in piglets infected with L20. While both ICR and KM mice are susceptible to APP and induce pathological lesions, we suggest that ICR and KM mice are more suitable for immunological and pathogenesis studies, respectively. The research lays the theoretical basis for determine that mice could replace pigs as the APP infection model and it is of significance for the study of APP infection in the laboratory.
Collapse
Affiliation(s)
- Chun-Tong Bao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jia-Meng Xiao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Bai-Jun Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jian-Fang Liu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Ri-Ning Zhu
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Peng Jiang
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Lei Li
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | | | - Lian-Cheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| |
Collapse
|
5
|
Passmore IJ, Andrejeva A, Wren BW, Cuccui J. Cytoplasmic glycoengineering of Apx toxin fragments in the development of Actinobacillus pleuropneumoniae glycoconjugate vaccines. BMC Vet Res 2019; 15:6. [PMID: 30606265 PMCID: PMC6318927 DOI: 10.1186/s12917-018-1751-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and represents a major burden to the livestock industry. Virulence can largely be attributed to the secretion of a series of haemolytic toxins, which are highly immunogenic. A. pleuropneumoniae also encodes a cytoplasmic N-glycosylation system, which involves the modification of high molecular weight adhesins with glucose residues. Central to this process is the soluble N-glycosyl transferase, ngt, which is encoded in an operon with a subsequent glycosyl transferase, agt. Plasmid-borne recombinant expression of these genes in E. coli results in the production of a glucose polymer on peptides containing the appropriate acceptor sequon, NX(S/T). However to date, there is little evidence to suggest that such a glucose polymer is formed on its target peptides in A. pleuropneumoniae. Both the toxins and glycosylation system represent potential targets for the basis of a vaccine against A. pleuropneumoniae infection. RESULTS In this study, we developed cytoplasmic glycoengineering to construct glycoconjugate vaccine candidates composed of soluble toxin fragments modified by glucose. We transferred ngt and agt to the chromosome of Escherichia coli in order to generate a native-like operon for glycoengineering. A single chromosomal copy of ngt and agt resulted in the glucosylation of toxin fragments by a short glycan, rather than a polymer. CONCLUSIONS A vaccine candidate that combines toxin fragment with a conserved glycan offers a novel approach to generating epitopes important for both colonisation and disease progression.
Collapse
Affiliation(s)
- Ian J Passmore
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Anna Andrejeva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jon Cuccui
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
6
|
Kim KA, Son YO, Kim SS, Jang YS, Baek YH, Kim CC, Lee JH, Lee JC. Glycoproteins isolated from Atractylodes macrocephala Koidz improve protective immune response induction in a mouse model. Food Sci Biotechnol 2018; 27:1823-1831. [PMID: 30483447 DOI: 10.1007/s10068-018-0430-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 07/01/2018] [Indexed: 01/26/2023] Open
Abstract
This study examined the efficacy of Atractylodes macrocephala Koidz (AMK) protein and polysaccharide extracts as adjuvant or adjuvant booster when given together with porcine pleuropneumonia vaccine. Experimental mice (n = 5/group) were subcutaneously immunized with 25 μg ApxIIA #3 antigen, a target protein against A. pleuropneumoniae, together with alum and/or various concentrations (0-500 μg) of the AMK extracts, while the control group received PBS only. Immunization with ApxIIA #3 antigen increased the antigen-specific IgG titer and this increase was enhanced in the immunization together with AMK protein, but not polysaccharide extract. Supplementation of AMK protein extract exhibited dose-dependent increases in the antigen-induced protective immunity against A. pleuropneumoniae challenge and in the lymphocyte proliferation specific to the antigen. Glycoproteins present in the AMK extract were the active components responsible for immune response induction. Collectively, the present findings suggest that AMK glycoproteins are useful as immune stimulating adjuvant or adjuvant booster.
Collapse
Affiliation(s)
- Kyoung-A Kim
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea
| | - Young-Ok Son
- 2Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - So-Soon Kim
- 3Department of Bioactive Material Sciences, Research Center of Bioactive Materials and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896 South Korea
| | - Yong-Suk Jang
- 3Department of Bioactive Material Sciences, Research Center of Bioactive Materials and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896 South Korea
| | - Young-Hyun Baek
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea
| | - Chun-Chu Kim
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea
| | - Jeong-Hoon Lee
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea
| | - Jeong-Chae Lee
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea.,3Department of Bioactive Material Sciences, Research Center of Bioactive Materials and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896 South Korea
| |
Collapse
|
7
|
Yang Y, Jing Y, Wang J, Yang Q. Histological studies on the development of porcine tonsils after birth. J Morphol 2018; 279:1185-1193. [PMID: 29893062 DOI: 10.1002/jmor.20839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/11/2018] [Accepted: 04/21/2018] [Indexed: 12/28/2022]
Abstract
Tonsils form the topographically first immune barrier of an organism against the invasion of pathogens. We used histology to study the development of tonsils of pigs after birth. At birth, the tonsils consist of diffuse lymphoid tissue without any lymphoid follicle aggregations. At the age of 7 days, lymphoid follicles appeared in the soft palate tonsil. The lymphoid layer of the nasopharyngeal tonsil, soft palate tonsil, and lingual tonsil became thicker, and lymphoid follicles in the lamina propria were clearly visible at the age of 21 days. Secondary lymphoid follicles were present in the nasopharyngeal tonsil at the age of 50 days, and in the soft palate tonsil at the age of 120 days. Dendritic cells (DCs), CD3+ T cells and IgA+ B cells in the soft palate tonsil, nasopharyngeal tonsil and lingual tonsil increased continuously, especially during the first 21 days. The results suggested that tonsils have an important role in local immune defense against invading antigens after birth and will be beneficial for understanding the mechanisms of immunity in these animals after nasal and oral vaccination.
Collapse
Affiliation(s)
- Yunhan Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University. Weigang 1 Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuchao Jing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University. Weigang 1 Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jialu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University. Weigang 1 Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing Agricultural University. Weigang 1 Nanjing, Jiangsu, 210095, People's Republic of China
| |
Collapse
|
8
|
Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. PLoS One 2018; 13:e0198207. [PMID: 29856812 PMCID: PMC5983418 DOI: 10.1371/journal.pone.0198207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
GALT is an important antigen of Actinobacillus pleuropneumoniae (APP), which was shown to provide partial protection against APP infection in a previous study in our lab. The main purpose of the present study is to investigate GALT induced cross-protection between different APP serotypes and elucidate key mechanisms of the immune response to GALT antigenic stimulation. Bioinformatic analysis demonstrated that galT is a highly conserved gene in APP, widely distributed across multiple pathogenic strains. Homologies between any two strains ranges from 78.9% to 100% regarding the galT locus. Indirect enzyme-linked immunosorbent assay (ELISA) confirmed that GALT specific antibodies could not be induced by inactivated APP L20 or MS71 whole cell bacterin preparations. A recombinant fusion GALT protein derived from APP L20, however has proven to be an effective cross-protective antigen against APP sevorar 1 MS71 (50%, 4/8) and APP sevorar 5b L20 (75%, 6/8). Histopathological examinations have confirmed that recombinant GALT vaccinated animals showed less severe pathological signs in lung tissues than negative controls after APP challenge. Immunohistochemical (IHC) analysis indicated that the infiltration of neutrophils in the negative group is significantly increased compared with that in the normal control (P<0.001) and that in surviving animals is decreased compared to the negative group. Anti-GALT antibodies were shown to mediate phagocytosis of neutrophils. After interaction with anti-GALT antibodies, survival rate of APP challenged vaccinated animals was significantly reduced (P<0.001). This study demonstrated that GALT is an effective cross-protective antigen, which could be used as a potential vaccine candidate against multiple APP serotypes.
Collapse
|
9
|
Loera-Muro A, Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet Microbiol 2018; 217:66-75. [DOI: 10.1016/j.vetmic.2018.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
|
10
|
Li H, Liu F, Peng W, Yan K, Zhao H, Liu T, Cheng H, Chang P, Yuan F, Chen H, Bei W. The CpxA/CpxR Two-Component System Affects Biofilm Formation and Virulence in Actinobacillus pleuropneumoniae. Front Cell Infect Microbiol 2018; 8:72. [PMID: 29662838 PMCID: PMC5890194 DOI: 10.3389/fcimb.2018.00072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Gram-negative bacteria have evolved numerous two-component systems (TCSs) to cope with external environmental changes. The CpxA/CpxR TCS consisting of the kinase CpxA and the regulator CpxR, is known to be involved in the biofilm formation and virulence of Escherichia coli. However, the role of CpxA/CpxR remained unclear in Actinobacillus pleuropneumoniae, a bacterial pathogen that can cause porcine contagious pleuropneumonia (PCP). In this report, we show that CpxA/CpxR contributes to the biofilm formation ability of A. pleuropneumoniae. Furthermore, we demonstrate that CpxA/CpxR plays an important role in the expression of several biofilm-related genes in A. pleuropneumoniae, such as rpoE and pgaC. Furthermore, The results of electrophoretic mobility shift assays (EMSAs) and DNase I footprinting analysis demonstrate that CpxR-P can regulate the expression of the pgaABCD operon through rpoE. In an experimental infection of mice, the animals infected with a cpxA/cpxR mutant exhibited delayed mortality and lower bacterial loads in the lung than those infected with the wildtype bacteria. In conclusion, these results indicate that the CpxA/CpxR TCS plays a contributing role in the biofilm formation and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Haixu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Ting Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Peixi Chang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Xie F, Wang Y, Li G, Liu S, Cui N, Liu S, Langford PR, Wang C. The SapA Protein Is Involved in Resistance to Antimicrobial Peptide PR-39 and Virulence of Actinobacillus pleuropneumoniae. Front Microbiol 2017; 8:811. [PMID: 28539918 PMCID: PMC5423912 DOI: 10.3389/fmicb.2017.00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides are essential to the innate immune defense of the mammal against bacterial infection. However, pathogenic bacteria have evolved multiple strategies to resist and evade antimicrobial peptides, which is vital to bacterial survival and colonization in hosts. PR-39 is a linear porcine antimicrobial peptide containing 39 amino acid residues with a high proline content. Resistance to antimicrobial peptide PR-39 has been observed in Actinobacillus pleuropneumoniae. However, little is known about the factors required for this resistance. In the present study, PR-39 exposure increased the expression of the sapA gene in A. pleuropneumoniae. The sapA gene, which encodes a putative peptide transport periplasmic protein, was deleted from this bacterium. The ΔsapA mutant showed increased sensitivity to PR-39 compared to the wild-type MD12 and complemented PΔsapA strains. However, the ΔsapA mutant did not exhibit any alterations in outer membrane integrity. Scanning electron microscopy showed that the ΔsapA mutant displayed morphological defects, as indicated by a deformed and sunken shape after PR-39 treatment. In addition, disruption of the SapA protein led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. Collectively, these data suggest that SapA acts as one mechanism for A. pleuropneumoniae to counteract PR-39-mediated killing. To the best of our knowledge, this is the first study to show a mechanism underlying antimicrobial peptide resistance in A. pleuropneumoniae.
Collapse
Affiliation(s)
- Fang Xie
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Yalei Wang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural SciencesShanghai, China
| | - Gang Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Shuanghong Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Ning Cui
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College LondonLondon, UK
| | - Chunlai Wang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| |
Collapse
|
12
|
Xie F, Li G, Wang Y, Zhang Y, Zhou L, Wang C, Liu S, Liu S, Wang C. Pyridoxal phosphate synthases PdxS/PdxT are required for Actinobacillus pleuropneumoniae viability, stress tolerance and virulence. PLoS One 2017; 12:e0176374. [PMID: 28448619 PMCID: PMC5407770 DOI: 10.1371/journal.pone.0176374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/10/2017] [Indexed: 11/29/2022] Open
Abstract
Pyridoxal 5’-phosphate (PLP) is an essential cofactor for numerous enzymes involved in a diversity of cellular processes in living organisms. Previous analysis of the Actinobacillus pleuropneumoniae S-8 genome sequence revealed the presence of pdxS and pdxT genes, which are implicated in deoxyxylulose 5-phosphate (DXP)-independent pathway of PLP biosynthesis; however, little is known about their roles in A. pleuropneumoniae pathogenicity. Our data demonstrated that A. pleuropneumoniae could synthesize PLP by PdxS and PdxT enzymes. Disruption of the pdxS and pdxT genes rendered the pathogen auxotrophic for PLP, and the defective growth as a result of these mutants was chemically compensated by the addition of PLP, suggesting the importance of PLP production for A. pleuropneumoniae growth and viability. Additionally, the pdxS and pdxT deletion mutants displayed morphological defects as indicated by irregular and aberrant shapes in the absence of PLP. The reduced growth of the pdxS and pdxT deletion mutants under osmotic and oxidative stress conditions suggests that the PLP synthases PdxS/PdxT are associated with the stress tolerance of A. pleuropneumoniae. Furthermore, disruption of the PLP biosynthesis pathway led to reduced colonization and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model. The data presented in this study reveal the critical role of PLP synthases PdxS/PdxT in viability, stress tolerance, and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yalei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Long Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chengcheng Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Shuanghong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- * E-mail:
| |
Collapse
|
13
|
Zhang F, Cao S, Zhu Z, Yang Y, Wen X, Chang YF, Huang X, Wu R, Wen Y, Yan Q, Huang Y, Ma X, Zhao Q. Immunoprotective Efficacy of Six In vivo-Induced Antigens against Actinobacillus pleuropneumoniae as Potential Vaccine Candidates in Murine Model. Front Microbiol 2016; 7:1623. [PMID: 27818646 PMCID: PMC5073529 DOI: 10.3389/fmicb.2016.01623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/29/2016] [Indexed: 11/21/2022] Open
Abstract
Six in vivo-induced (IVI) antigens—RnhB, GalU, GalT, Apl_1061, Apl_1166, and HflX were selected for a vaccine trial in a mouse model. The results showed that the IgG levels in each immune group was significantly higher than that of the negative control (P < 0.001). Except rRnhB group, proliferation of splenocytes was observed in all immunized groups and a relatively higher proliferation activity was observed in rGalU and rGalT groups (P < 0.05). In the rGalT vaccinated group, the proportion of CD4+ T cells in spleen was significant higher than that of negative control (P < 0.05). Moreover, proportions of CD4+ T cells in other vaccinated groups were all up-regulated to varying degrees. Up-regulation of both Th1 (IFN-γ, IL-2) and Th2 (IL-4) cytokines were detected. A survival rate of 87.5, 62.5, and 62.5% were obtained among rGalT, rAPL_1166, and rHflX group, respectively while the remaining three groups was only 25%. Histopathological analyses of lungs indicated that surviving animals from the vaccinated groups showed relatively normal pulmonary structure alveoli. These findings confirm that IVI antigens used as vaccine candidates provide partial protection against Actinobacillus pleuropneumoniae infection in a mouse model, which could be used as potential vaccine candidates in piglets.
Collapse
Affiliation(s)
- Fei Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of AgricultureChengdu, China
| | - Zhuang Zhu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yusheng Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca NY, USA
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of AgricultureChengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| |
Collapse
|
14
|
Production and immunogenicity of Actinobacillus pleuropneumoniae ApxIIA protein in transgenic rice callus. Protein Expr Purif 2016; 132:116-123. [PMID: 27215671 DOI: 10.1016/j.pep.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023]
Abstract
Actinobacillus pleuropneumoniae is a major etiological agent that is responsible for swine pleuropneumonia, a highly contagious respiratory infection that causes severe economic losses in the swine production industry. ApxIIA is one of the virulence factors in A. pleuropneumoniae and has been considered as a candidate for developing a vaccine against the bacterial infection. A gene encoding an ApxIIA fragment (amino acids 439-801) was modified based on a plant-optimized codon and constructed into a plant expression vector under the control of a promoter and the 3' UTR of the rice amylase 3D gene. The plant expression vector was introduced into rice embryogenic callus (Oryza sativa L. cv. Dongjin) via particle bombardment-mediated transformation. The integration and transcription of the ApxIIA439-801 gene were confirmed by using genomic DNA PCR amplification and Northern blot analysis, respectively. The synthesis of ApxIIA439-801 antigen protein in transgenic rice callus was confirmed by western blot analysis. The concentration of antigen protein in lyophilized samples of transgenic rice callus was 250 μg/g. Immunizing mice with protein extracts from transgenic plants intranasally elicited secretory IgA. These results demonstrate the feasibility of using a transgenic plant to elicit immune responses against A. pleuropneumoniae.
Collapse
|
15
|
Li HS, Shin MK, Singh B, Maharjan S, Park TE, Kang SK, Yoo HS, Hong ZS, Cho CS, Choi YJ. Nasal immunization with mannan-decorated mucoadhesive HPMCP microspheres containing ApxIIA toxin induces protective immunity against challenge infection with Actinobacillus pleuropneumoiae in mice. J Control Release 2016; 233:114-25. [PMID: 27189136 DOI: 10.1016/j.jconrel.2016.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/08/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Abstract
The development of subunit mucosal vaccines requires an appropriate delivery system or an immune modulator such as an adjuvant to improve antigen immunogenicity. The nasal route for vaccine delivery by microparticles has attracted considerable interest, although challenges such as the rapid mucociliary clearance in the respiratory mucosa and the low immunogenicity of subunit vaccine still remain. Here, we aimed to develop mannan-decorated mucoadhesive thiolated hydroxypropylmethyl cellulose phthalate (HPMCP) microspheres (Man-THM) that contain ApxIIA subunit vaccine - an exotoxin fragment as a candidate for a subunit nasal vaccine against Actinobacillus pleuropneumoniae. For adjuvant activity, mucoadhesive thiolated HPMCP microspheres decorated with mannan could be targeted to the PRRs (pathogen recognition receptors) and mannose receptors (MR) of antigen presenting cells (APCs) in the respiratory immune system. The potential adjuvant ability of Man-THM for intranasal immunization was confirmed by in vitro and in vivo experiments. In a mechanistic study using APCs in vitro, it was found that Man-THM enhanced receptor-mediated endocytosis by stimulating the MR of APCs. In vivo, the nasal vaccination of ApxIIA-loaded Man-THM in mice resulted in higher levels of mucosal sIgA and serum IgG than mice in the ApxIIA and ApxIIA-loaded THM groups due to the specific recognition of the mannan in the Man-THM by the MRs of the APCs. Moreover, ApxIIA-containing Man-THM protected immunized mice when challenged with strains of A. pleuropneumoniae serotype 5. These results suggest that mucoadhesive Man-THM may be a promising candidate for a nasal vaccine delivery system to elicit systemic and mucosal immunity that can protect from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Hui-Shan Li
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Min-Kyoung Shin
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul 151-921, South Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Tae-Eun Park
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang-gun, 232-916, South Korea
| | - Han-Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul 151-921, South Korea
| | - Zhong-Shan Hong
- Department of Animal Science, Tianjin Agricultural University, Tianjin 300-384, China
| | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea; Department of Animal Science, Tianjin Agricultural University, Tianjin 300-384, China.
| |
Collapse
|
16
|
Xie F, Li G, Zhang Y, Zhou L, Liu S, Liu S, Wang C. The Lon protease homologue LonA, not LonC, contributes to the stress tolerance and biofilm formation of Actinobacillus pleuropneumoniae. Microb Pathog 2016; 93:38-43. [PMID: 26796296 DOI: 10.1016/j.micpath.2016.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 01/11/2016] [Indexed: 01/09/2023]
Abstract
Lon proteases are a family of ATP-dependent proteases that are involved in the degradation of abnormal proteins in bacteria exposed to adverse environmental stress. An analysis of the genome sequence of Actinobacillus pleuropneumoniae revealed the unusual presence of two putative ATP-dependent Lon homologues, LonA and LonC. Sequence comparisons indicated that LonA has the classical domain organization of the LonA subfamily, which includes the N-terminal domain, central ATPase (AAA) domain, and C-terminal proteolytic (P) domain. LonC belongs to the recently classified LonC subfamily, which includes Lon proteases that contain neither the N-terminal domain of LonA nor the transmembrane region that is present only in LonB subfamily members. To investigate the roles of LonA and LonC in A. pleuropneumoniae, mutants with deletions in the lonA and lonC genes were constructed. The impaired growth of the △lonA mutant exposed to low and high temperatures and osmotic and oxidative stress conditions indicates that the LonA protease is required for the stress tolerance of A. pleuropneumoniae. Furthermore, the △lonA mutant exhibited significantly reduced biofilm formation compared to the wild-type strain. However, no significant differences in stress responses or biofilm formation were observed between the △lonC mutant and the wild-type strain. The △lonA mutant exhibited reduced colonization ability and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model compared to the wild-type strain. Disruption of lonC gene did not significantly influence the colonization and virulence of A. pleuropneumoniae. The data presented in this study illustrate that the LonA protease, but not the LonC protease, is required for the stress tolerance, biofilm formation and pathogenicity of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Long Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Shuanghong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 15001, People's Republic of China.
| |
Collapse
|
17
|
Hur J, Eo SK, Park SY, Choi Y, Lee JH. Immunological study of an attenuated Salmonella Typhimurium expressing ApxIA, ApxIIA, ApxIIIA and OmpA of Actinobacillus pleuropneumoniae in a mouse model. J Vet Med Sci 2015; 77:1693-6. [PMID: 26227587 PMCID: PMC4710733 DOI: 10.1292/jvms.14-0428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Salmonella Typhimurium strain expressing the Actinobacillus
pleuropneumoniae antigens, ApxIA, ApxIIA, ApxIIIA and OmpA, was previously
constructed as a vaccine candidate for porcine pleuropneumonia. This strain was a live
attenuated (∆lon∆cpxR∆asd)Salmonella as a delivery host
and contained a vector containing asd. An immunological study of
lymphocyte proliferation, T-lymphocyte subsets and cytokines in the splenocytes of a mouse
model was carried out after stimulation with the candidate Salmonella
Typhimurium by intranasal inoculation. The splenic lymphocyte proliferation and the levels
of IL-4, IL-6 and IL-12 of the inoculated mice were significantly increased, and the T-
and B-cell populations were also elevated. Collectively, the candidate may efficiently
induce the Th1- and Th2-type immune responses.
Collapse
Affiliation(s)
- Jin Hur
- Department of Bioactive Material Sciences, and Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, South Korea
| | | | | | | | | |
Collapse
|
18
|
Park J, Seo KW, Kim SH, Lee HY, Kim B, Lim CW, Kim JH, Yoo HS, Jang YS. Nasal immunization with M cell-targeting ligand-conjugated ApxIIA toxin fragment induces protective immunity against Actinobacillus pleuropneumoniae infection in a murine model. Vet Microbiol 2015; 177:142-53. [PMID: 25818577 DOI: 10.1016/j.vetmic.2015.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 01/23/2023]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and severe economic loss in the swine industry has been caused by the infection. Therefore, the development of an effective vaccine against the bacteria is necessary. ApxII toxin, among several virulence factors expressed by the bacteria, is considered to be a promising vaccine candidate because ApxII toxin not only accompanies cytotoxic and hemolytic activities, but is also expressed in all 15 serotypes of bacteria except serotypes 10 and 14. In this study, we identified the peptide ligand capable of targeting the ligand-conjugated ApxIIA #5 fragment antigen to nasopharynx-associated lymphoid tissue. It was found that nasal immunization with ligand-conjugated ApxIIA #5 induced efficient mucosal and systemic immune responses measured at the levels of antigen-specific antibodies, cytokine-secreting cells after antigen exposure, and antigen-specific lymphocyte proliferation. More importantly, the nasal immunization induced protective immunity against nasal challenge infection of the bacteria, which was confirmed by histopathological studies and bacterial clearance after challenge infection. Collectively, we confirmed that the ligand capable of targeting the ligand-conjugated antigen to nasopharynx-associated lymphoid tissue can be used as an effective nasal vaccine adjuvant to induce protective immunity against A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Jisang Park
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ki-Weon Seo
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ha-Yan Lee
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bumseok Kim
- Department of Pathology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chae Woong Lim
- Department of Pathology, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jin-Hee Kim
- Jeonbuk Provincial Office, National Agricultural Products Quality Management Service, Jeonju 561-202, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|