1
|
Doulidis PG, Kuropka B, Frizzo Ramos C, Rodríguez-Rojas A, Burgener IA. Characterization of the plasma proteome from healthy adult dogs. Front Vet Sci 2024; 11:1356318. [PMID: 38638644 PMCID: PMC11024428 DOI: 10.3389/fvets.2024.1356318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Bloodwork is a widely used diagnostic tool in veterinary medicine, as diagnosis and therapeutic interventions often rely on blood biomarkers. However, biomarkers available in veterinary medicine often lack sensitivity or specificity. Mass spectrometry-based proteomics technology has been extensively used in the analysis of biological fluids. It offers excellent potential for a more comprehensive characterization of the plasma proteome in veterinary medicine. Methods In this study, we aimed to identify and quantify plasma proteins in a cohort of healthy dogs and compare two techniques for depleting high-abundance plasma proteins to enable the detection of lower-abundance proteins via label-free quantification liquid chromatography-mass spectrometry. We utilized surplus lithium-heparin plasma from 30 healthy dogs, subdivided into five groups of pooled plasma from 6 randomly selected individuals each. Firstly, we used a commercial kit to deplete high-abundance plasma proteins. Secondly, we employed an in-house method to remove albumin using Blue-Sepharose. Results and discussion Among all the samples, some of the most abundant proteins identified were apolipoprotein A and B, albumin, alpha-2-macroglobulin, fibrinogen beta chain, fibronectin, complement C3, serotransferrin, and coagulation factor V. However, neither of the depletion techniques achieved significant depletion of highly abundant proteins. Despite this limitation, we could detect and quantify many clinically relevant proteins. Determining the healthy canine proteome is a crucial first step in establishing a reference proteome for canine plasma. After enrichment, this reference proteome can later be utilized to identify protein markers associated with different diseases, thereby contributing to the diagnosis and prognosis of various pathologies.
Collapse
Affiliation(s)
- Pavlos G. Doulidis
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Carolina Frizzo Ramos
- The Interuniversity Messerli Research Institute, Medical University Vienna, Vienna, Austria
- Clinical Center for Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandro Rodríguez-Rojas
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan A. Burgener
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
2
|
Ahmad P, Siqueira WL. Mass spectrometry-based proteomics profiling of dogs with and without oral diseases: a systematic review. BMC Oral Health 2024; 24:369. [PMID: 38519930 PMCID: PMC10958906 DOI: 10.1186/s12903-024-04096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Understanding the distinct proteomics profiles in dogs' oral biofluids enhances diagnostic and therapeutic insights for canine oral diseases, fostering cross-species translational research in dentistry and medicine. This study aimed to conduct a systematic review to investigate the similarities and differences between the oral biofluids' proteomics profile of dogs with and without oral diseases. METHODS PubMed, Web of Science, and Scopus were searched with no restrictions on publication language or year to address the following focused question: "What is the proteome signature of healthy versus diseased (oral) dogs' biofluids?" Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway analyses of the most abundant proteins were performed. Moreover, protein-protein interaction analysis was conducted. The risk of bias (RoB) among the included studies was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Studies Reporting Prevalence Data. RESULTS In healthy dogs, the proteomic analysis identified 5,451 proteins, with 137 being the most abundant, predominantly associated with 'innate immune response'. Dogs with oral diseases displayed 6,470 proteins, with distinct associations: 'defense response to bacterium' (periodontal diseases), 'negative regulation of transcription' (dental calculus), and 'positive regulation of transcription' (oral tumors). Clustering revealed significant protein clusters in each case, emphasizing the diverse molecular profiles in health and oral diseases. Only six studies were provided to the JBI tool, as they encompassed case-control evaluations that compared healthy dogs to dogs with oral disease(s). All included studies were found to have low RoB (high quality). CONCLUSION Significant differences in the proteomics profiles of oral biofluids between dogs with and without oral diseases were found. The synergy of animal proteomics and bioinformatics offers a promising avenue for cross-species research, despite persistent challenges in result validation.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
3
|
Ahn HS, Yeom J, Yu J, Oh Y, Hong J, Kim M, Kim K. Generating Detailed Spectral Libraries for Canine Proteomes Obtained from Serum and Urine. Sci Data 2023; 10:241. [PMID: 37105983 PMCID: PMC10140049 DOI: 10.1038/s41597-023-02139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Domestic dogs (Canis lupus familiaris) are popular companion animals. Increase in medical expenses associated with them and demand for extending their lifespan in a healthy manner has created the need to develop new diagnostic technology. Companion dogs also serve as important animal models for non-clinical research as they can provide various biological phenotypes. Proteomics have been increasingly used on dogs and humans to identify novel biomarkers of various diseases. Despite the growing applications of proteomics in liquid biopsy in veterinary medicine, no publicly available spectral assay libraries have been created for the proteome of canine serum and urine. In this study, we generated spectral assay libraries for the two-representative liquid-biopsy samples using mid-pH fractionation that allows in-depth understanding of proteome coverage. The resultant canine serum and urine spectral assay libraries include 1,132 and 4,749 protein groups and 5,483 and 25,228 peptides, respectively. We built these complimentary accessible resources for proteomic biomarker discovery studies through ProteomeXchange with the identifier PXD034770.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
- Prometabio Research Institute, Prometabio co., ltd., Gyeonggi-do, 12939, Republic of Korea
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Yumi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - JeongYeon Hong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minjung Kim
- Department of Research and Development, Mjbiogen, Seoul, 04788, Republic of Korea
| | - Kyunggon Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
4
|
Martinković F, Popović M, Smolec O, Mrljak V, Eckersall PD, Horvatić A. Data Independent Acquisition Reveals In-Depth Serum Proteome Changes in Canine Leishmaniosis. Metabolites 2023; 13:metabo13030365. [PMID: 36984805 PMCID: PMC10059658 DOI: 10.3390/metabo13030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Comprehensive profiling of serum proteome provides valuable clues of health status and pathophysiological processes, making it the main strategy in biomarker discovery. However, the high dynamic range significantly decreases the number of detectable proteins, obstructing the insights into the underlying biological processes. To circumvent various serum enrichment methods, obtain high-quality proteome wide information using the next-generation proteomic, and study host response in canine leishmaniosis, we applied data-independent acquisition mass spectrometry (DIA-MS) for deep proteomic profiling of clinical samples. The non-depleted serum samples of healthy and naturally Leishmania-infected dogs were analyzed using the label-free 60-min gradient sequential window acquisition of all theoretical mass spectra (SWATH-MS) method. As a result, we identified 554 proteins, 140 of which differed significantly in abundance. Those were included in lipid metabolism, hematological abnormalities, immune response, and oxidative stress, providing valuable information about the complex molecular basis of the clinical and pathological landscape in canine leishmaniosis. Our results show that DIA-MS is a method of choice for understanding complex pathophysiological processes in serum and serum biomarker development.
Collapse
Affiliation(s)
- Franjo Martinković
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Marin Popović
- Department of Safety and Protection, Karlovac University of Applied Sciences, Trg Josipa Juraja Strossmayera 9, HR-47000 Karlovac, Croatia
| | - Ozren Smolec
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Peter David Eckersall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, 30100 Murcia, Spain
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Nguyen TX, Agazzi A, McGill S, Weidt S, Han QH, Gelemanović A, McLaughlin M, Savoini G, Eckersall PD, Burchmore R. Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed Part II: Ileum proteomes. J Proteomics 2023; 270:104739. [PMID: 36174954 DOI: 10.1016/j.jprot.2022.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 02/01/2023]
Abstract
This study evaluates how long-term dietary low ω6:ω3 ratio in sows and offspring's seaweed (SW) intake affects piglet intestinal function and growth through modifying ileum proteome. Sows were assigned to either control diet (CR, ω6:ω3 ratio = 13:1) or treatment diet (LR, ω6:ω3 = 4:1) during gestation and lactation (n = 8 each). The male weaned offspring were received a basal diet with or without SW powder supplementation (4 g/kg) for 21 days, denoted as SW and CT groups, respectively. In total, four groups of weaned piglets were formed following maternal and offspring's diets combination, represented by CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet ileum tissue was collected on day 22 post-weaning and analysed using TMT-based quantitative proteomics. The differentially abundant proteins (n = 300) showed the influence of maternal LR diet on protein synthesis, cell proliferation, and cell cycle regulation. In contrast, the SW diet lowered the inflammation severity and promoted ileal tissue development in CRSW piglets but reduced the fat absorption capacity in LRSW piglets. These results uncovered the mechanism behind the anti-inflammation and intestinal-boosting effects of maternal LR diet in piglets supplemented with SW.
Collapse
Affiliation(s)
- Thi Xuan Nguyen
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy; University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom; Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Alessandro Agazzi
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | - Suzanne McGill
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom
| | - Stefan Weidt
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom
| | - Quang Hanh Han
- University of Glasgow, Bearsden Rd, G61 1QH, United Kingdom; Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000 Split, Croatia
| | | | - Giovanni Savoini
- Università degli Studi di Milano, Via dell'Università, 6, 26900 Lodi, Italy
| | | | | |
Collapse
|
6
|
Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed. Part I: Serum proteomes. J Proteomics 2023; 270:104740. [PMID: 36191802 DOI: 10.1016/j.jprot.2022.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
This study examines whether maternal low ω6:ω3 ratio diet and offspring SW supplementation can improve offspring immunity and performance by elucidating the effects on piglet serum proteome. A total of 16 sows were given either a standard (CR, 13:1) or low ω6:ω3 ratio diet (LR, 4:1) during pregnancy and lactation and their male weaned piglets were supplemented with SW powder (4 g/kg, SW) or not (CT) in a 21-day post-weaning (PW) diet. Four PW piglet groups were then identified based on dam and piglet treatment, namely CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet serum collected at weaning and d21 PW were analysed (n = 5 each) using TMT-based quantitative proteomics and validated by appropriate assays. The differentially abundant proteins (n = 122) displayed positive effects of maternal LR diet on anti-inflammatory properties and innate immune stimulation. Progeny SW diet activated the innate immunity and enhance the host defence during inflammation. These data demonstrate the value of decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet to boost their immunity and anti-inflammation properties. SIGNIFICANCE: This novel proteomic study in post-weaned piglets addresses the interplay between maternal and offspring nutritional interventions in a context of rapid and dynamic alterations in piglet metabolic status around weaning. Decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet can boost their immunity and anti-inflammation properties. This study also provides new insights into piglet serum proteome regulation during post-weaning, a critical development period in swine.
Collapse
|
7
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
8
|
Saliva changes in composition associated to COVID-19: a preliminary study. Sci Rep 2022; 12:10879. [PMID: 35760827 PMCID: PMC9237082 DOI: 10.1038/s41598-022-14830-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2), is usually associated with a wide variety of clinical presentations from asymptomatic to severe cases. The use of saliva as a diagnostic and monitoring fluid has gained importance since it can be used to investigate the immune response and to direct quantification of antibodies against COVID-19. Additionally, the use of proteomics in saliva has allowed to increase our understanding of the underlying pathophysiology of diseases, bringing new perspectives on diagnostics, monitoring, and treatment. In this work, we compared the salivary proteome of 10 patients with COVID-19, (five patients with mild and five patients with severe COVID-19) and ten control healthy patients. Through the application of proteomics, we have identified 30 proteins whose abundance levels differed between the COVID-19 groups and the control group. Two of these proteins (TGM3 and carbonic anhydrase-CA6) were validated by the measurement of gGT and TEA respectively, in 98 additional saliva samples separated into two groups: (1) COVID-19 group, integrated by 66 patients who tested positive for COVID-19 (2) control group, composed of 32 healthy individuals who did not show any sign of disease for at least four weeks and were negative for COVID-19 in RT-PCR. In the proteomic study there were observed upregulations in CAZA1, ACTN4, and ANXA4, which are proteins related to the protective response against the virus disturbance, and the upregulation of TGM3, that is correlated to the oxidative damage in pulmonary tissue. We also showed the downregulation in cystatins and CA6 that can be involved in the sensory response to stimulus and possibly related to the presence of anosmia and dysgeusia during the COVID-19. Additionally, the presence of FGB in patients with severe COVID-19 but not in mild COVID-19 patients could indicate a higher viral aggregation and activation in these cases. In conclusion, the salivary proteome in patients with COVID-19 showed changes in proteins related to the protective response to viral infection, and the altered sensory taste perception that occur during the disease. Moreover, gGT and TEA could be potential biomarkers of respiratory complications that can occurs during COVID 19 although further larger studies should be made to corroborate this.
Collapse
|
9
|
Fonghem P, Pisitkun T, Rattanapinyopituk K, Sirivisoot S, Rungsipipat A. Investigation of proteomic profiles in canine lymphoma using tandem mass tag-based quantitative proteomics approach. Vet World 2022; 15:1333-1340. [PMID: 35765478 PMCID: PMC9210836 DOI: 10.14202/vetworld.2022.1333-1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Specific tumor biomarkers are useful for the early diagnosis of cancer or can predict the recurrence of neoplastic disease in humans and animals. Lymphoma in dogs could be classified into B-, T-, and NK-cell origins. T-cell lymphoma has the worst prognosis with a shorter survival time and disease-free interval. This study aimed to identify the differential serum protein expressions of canine B- and T-cell lymphomas compared with healthy dogs using a tandem mass tag (TMT)-based quantitative proteomics. Materials and Methods: Serum samples were collected from 20 untreated canine lymphomas (14 B-cells and 6 T-cells) and four healthy control dogs. Sera peptides from each sample were processed for TMT 10-plex tagging and analyzed using liquid chromatography-mass spectrometry (MS). Differential proteome profiling was then compared between lymphoma and control. Results: We discovered 20 elevated and 14 decreased serum proteins in the lymphoma group relative to the healthy group. Six candidate increased proteins in canine lymphomas were beta-actin cytoplasmic 1 (ACTB, p=0.04), haptoglobin (p=0.002), beta-2 microglobulin (aaaaaaaa2M, p=0.007), beta-2 glycoprotein 1 (APOH, p=0.03), metalloproteinase inhibitor 1 (TIMP-1, p=0.03), and CD44 antigen (p=0.02). When compared between B- and T-cell lymphomas, B-cell phenotypes had upregulated immunoglobulin (Ig) heavy chain V region GOM (p=0.02), clusterin (p=0.01), apolipoprotein C1 (APOC1, p=0.05), and plasminogen (p=0.02). Conclusion: These findings were investigated quantitative serum proteomes between B- and T-cell lymphomas using TMT-based MS. ACTB, aaaaaaaa2M, APOH, TIMP-1, CD44 antigen, Ig heavy chain V region GOM, and APOC1 are novel candidate proteins and might serve as a lymphoma biomarker in dogs. However, evaluation with an increased sample size is needed to confirm their diagnostic and prognostic ability.
Collapse
Affiliation(s)
- Piyanoot Fonghem
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kasem Rattanapinyopituk
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sirintra Sirivisoot
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Abundance of plasma proteins in response to divergent ratios of dietary ω6:ω3 fatty acids in gestating and lactating sows using a quantitative proteomics approach. J Proteomics 2022; 260:104562. [DOI: 10.1016/j.jprot.2022.104562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
|
11
|
González-Arostegui LG, Rubio CP, Cerón JJ, Tvarijonaviciute A, Muñoz-Prieto A. Proteomics in dogs: a systematic review. Res Vet Sci 2021; 143:107-114. [PMID: 35007798 DOI: 10.1016/j.rvsc.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Proteomic analysis is having a rapid development as a method for the detection of biomarkers of diseases in dogs. Dogs in addition to their importance as companion animals, serve as important animal models for research. This study aims to systematically review evidence regarding the studies performed in proteomics in dogs, and specifically those made in serum, saliva, urine and/or plasma. Information searched in October 2020, January 2021 and August 2021, for English language publications of the last decade (2010-2020) were obtained from electronic databases. Screening, data extraction and risk of bias assessment were undertaken by two investigators. The risk of bias was evaluated using the Review Manager (RevMan 5) tool. Meta-analysis and case report studies were not included in this review. Through the screening process a total of 557 publications were identified after the removal of duplicates. Out of these, 65 were fully evaluated and 44 of these were included in the review. Most studies evaluated the proteome of disease and compared it with a healthy population, and most of the articles included were made on serum, followed by saliva. The overall risk of bias for all studies was high, due to an absence in the generation of random sequence. Overall proteomic analysis has allowed the discovery of new physiopathological pathways of diseases and potential biomarkers in the dog, which are addressed in this review.
Collapse
Affiliation(s)
- Luis Guillermo González-Arostegui
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain; Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain.
| | - Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Franco-Martínez L, Muñoz-Prieto A, Contreras-Aguilar MD, Želvytė R, Monkevičienė I, Horvatić A, Kuleš J, Mrljak V, Cerón JJ, Escribano D. Changes in saliva proteins in cows with mastitis: A proteomic approach. Res Vet Sci 2021; 140:91-99. [PMID: 34418789 DOI: 10.1016/j.rvsc.2021.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/05/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the possible saliva proteome changes in cows with mastitis using a Tandem Mass Tags (TMT) proteomics approach. For this purpose, the salivary proteomes from healthy cows and cows with mastitis were analysed, and their serum proteomes were also studied for comparative purposes. A total of eight saliva and serum paired samples for each group were used for the proteomic study, and eight additional samples for each group were analysed in the analytical and overlap performance studies. In saliva samples, 2192 proteins were identified, being sixty-three differentially modulated in mastitis. In serum, 1299 proteins were identified, being twenty-nine differentially modulated in mastitis. Gamma glutamyl transferase (γGT) in saliva and serum amyloid A (SAA) were validated by commercially available automated assays. In conclusion, there are changes in protein expression and metabolic pathways in saliva and serum proteomes of cows with mastitis, showing different response patterns but complementary information.
Collapse
Affiliation(s)
- L Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - A Muñoz-Prieto
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - M D Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - R Želvytė
- Department of Anatomy and Physiology, Research Center of Digestive Physiology and Pathology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - I Monkevičienė
- Department of Anatomy and Physiology, Research Center of Digestive Physiology and Pathology, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes str. 18, LT-47181 Kaunas, Lithuania
| | - A Horvatić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia
| | - J Kuleš
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - V Mrljak
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - J J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain
| | - D Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain; Department of Animal Production, Veterinary School, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
13
|
Muñoz-Prieto A, Escribano D, Contreras-Aguilar MD, Horvatić A, Guillemin N, Jacobsen S, Cerón JJ, Mrljak V. Tandem Mass Tag (TMT) Proteomic Analysis of Saliva in Horses with Acute Abdominal Disease. Animals (Basel) 2021; 11:ani11051304. [PMID: 33946607 PMCID: PMC8147179 DOI: 10.3390/ani11051304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary This study shows for the first time the variation of the salivary proteome in horses with acute abdominal disease (AAD) compared with healthy horses through a high-throughput proteomic approach. A total of 118 proteins were identified, and 17 showed significant changes between the two groups. The changes observed in proteins were closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa, and one salivary protein (lactoferrin) was successfully verified. These results may increase the background and knowledge of saliva composition in horses with AAD and further understanding of the physiopathological changes occurring in the organism in this disease. Abstract The aim of this study was to investigate the changes in the salivary proteome in horses with acute abdominal disease (AAD) using a tandem mass tags (TMT)-based proteomic approach. The saliva samples from eight horses with AAD were compared with six healthy horses in the proteomic study. Additionally, saliva samples from eight horses with AAD and eight controls were used to validate lactoferrin (LF) in saliva. The TMT analysis quantified 118 proteins. Of these, 17 differed significantly between horses with AAD and the healthy controls, 11 being downregulated and 6 upregulated. Our results showed the downregulation of gamma-enteric smooth muscle actin (ACTA2), latherin isoform X1, and LF. These proteins could be closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa. In addition, there was an upregulation of mucin 19 (MUC19) and the serine protease inhibitor Kazal-type 5 (SPINK5) associated with a protective effect during inflammation. The proteins identified in our study could have the potential to be novel biomarkers for diagnosis or monitoring the physiopathology of the disease, especially LF, which decreased in the saliva of horses with AAD and was successfully measured using a commercially available immunoassay.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
| | - Anita Horvatić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia;
| | - Nicolas Guillemin
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Veterinary School of Medicine, Sektion Medicine and Surgery, University of Copenhagen, Hoejbakkegaard Allé 5, DK-2630 Taastrup, Denmark;
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain; (D.E.); (M.D.C.-A.)
- Correspondence:
| | - Vladimir Mrljak
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.M.-P.); (N.G.); (V.M.)
| |
Collapse
|
14
|
Muñoz-Prieto A, Escribano D, Horvatić A, Contreras-Aguilar MD, Bernal L, Rubić I, Cerón JJ, Dąbrowski R, Mrljak V. Changes in salivary proteins can reflect beneficial physiological effects of ejaculation in the dog. Theriogenology 2021; 164:51-57. [PMID: 33550091 DOI: 10.1016/j.theriogenology.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The objective of this study was to study the changes in salivary proteins that occur in the dog after the ejaculation process. Saliva samples from eight dogs before and after induced ejaculation were analyzed by proteomic using Tandem Mass Tag (TMT) labeling and LC-MS/MS analysis. A total of 33 salivary proteins showed significant changes after the ejaculation process. The up-regulated proteins that showed changes of higher magnitude were mucin-7 (MUC-7), peroxiredoxin-4 (PRDX4) and galectin-3 (LEGALS3) whereas proteins such as alpha-1-acid glycoprotein (A1G1) and alpha-1B-glycoprotein (A1BG) were the most down-regulated. MUC-7 and PRDX4 expression in saliva after ejaculation could be associated with the protective "environment" created by the organism to exert pr 3o-fertility activities and antioxidants benefits in spermatozoa. Also LEGALS3 increment could be associated with an improvement of wellbeing and could contribute to a positive global effect in the body. Down-regulations of A1G1 and A1GB proteins found in saliva after ejaculation could be associated with a reduction in systemic inflammation. Overall it can be concluded that, changes in proteins in saliva that are produced after ejaculation can reflect a state of increase immune defenses, improvement of antioxidant status and low inflammation.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Anita Horvatić
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Luis Bernal
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Ivana Rubić
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100, Murcia, Spain
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 30 Gleboka St., 20-612, Lublin, Poland.
| | - Vladimir Mrljak
- Clinc for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| |
Collapse
|
15
|
The Serum and Saliva Proteome of Dogs with Diabetes Mellitus. Animals (Basel) 2020; 10:ani10122261. [PMID: 33271797 PMCID: PMC7760505 DOI: 10.3390/ani10122261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023] Open
Abstract
This study aims to evaluate the changes in salivary and serum proteomes that occur in canine diabetes mellitus type-1 (DM) through a high-throughput quantitative proteomic analysis. The proteomes of 10 paired serum and saliva samples from healthy controls (HC group, n = 5) and dogs with untreated DM (DM group, n = 5) were analyzed using Tandem Mass Tags (TMT)-based proteomic approach. Additionally, 24 serum samples from healthy controls and untreated DM were used to validate haptoglobin in serum. The TMT analysis quantified 767 and 389 proteins in saliva and serum, respectively. Of those, 16 unique proteins in serum and 26 in saliva were differently represented between DM and HC groups. The verification of haptoglobin in serum was in concordance with the proteomic data. Our results pointed out changes in both saliva and serum proteomes that reflect different physiopathological changes in dogs with DM. Although some of the proteins identified here, such as malate dehydrogenase or glyceraldehyde-3-phosphate dehydrogenase, were previously related with DM in dogs, most of the proteins modulated in serum and saliva are described in canine DM for the first time and could be a source of potential biomarkers of the disease. Additionally, the molecular function, biological process, pathways and protein class of the differential proteins were revealed, which could improve the understanding of the disease's pathological mechanisms.
Collapse
|
16
|
Franco-Martínez L, Horvatić A, Gelemanović A, Samardžija M, Mrljak V, Contreras-Aguilar MD, Martínez-Subiela S, Dąbrowski R, Tvarijonaviciute A. Changes in the Salivary Proteome Associated With Canine Pyometra. Front Vet Sci 2020; 7:277. [PMID: 32596263 PMCID: PMC7300179 DOI: 10.3389/fvets.2020.00277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
The present study evaluated for the first time changes in the saliva proteome in bitches with pyometra through a high-throughput quantitative proteomic analysis. The aims were to explore whether saliva composition could reflect the physiopathological changes occurring in canine pyometra and to identify potential biomarkers of the disease. Saliva samples from six healthy (H) and six bitches with pyometra (P) were analyzed using tandem mass tags–based approach. Additionally, 15 samples were used for the validation of changes in haptoglobin (Hp) concentration in saliva of dogs with pyometra. Proteomic analysis quantified 707 proteins in saliva. Comparison of the two groups revealed 16 unique proteins significantly modulated in saliva, with S100A calcium-binding protein 12 (S100A12), vimentin, and Hp the most up-regulated in canine pyometra. According to PANTHER (Protein Analysis Through Evolutionary Relationships) classification tool, these proteins are mainly related to proinflammatory mediators, acute-phase proteins, and sepsis. In conclusion, it can be stated that there are changes in various proteins in saliva in canine pyometra reflecting different physiopathological changes occurring in this disease. These proteins could be a source of potential non-invasive biomarkers for this disease that should be confirmed in future studies.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Anita Horvatić
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Marko Samardžija
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence ‘Campus Mare Nostrum', University of Murcia, Murcia, Spain
| |
Collapse
|
17
|
Franco-Martínez L, Gelemanović A, Horvatić A, Contreras-Aguilar MD, Dąbrowski R, Mrljak V, Cerón JJ, Martínez-Subiela S, Tvarijonaviciute A. Changes in Serum and Salivary Proteins in Canine Mammary Tumors. Animals (Basel) 2020; 10:E741. [PMID: 32344524 PMCID: PMC7222850 DOI: 10.3390/ani10040741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to evaluate changes in serum and saliva proteomes in canine mammary tumors (CMT) using a high-throughput quantitative proteomic analysis in order to potentially discover possible biomarkers of this disease. Proteomes of paired serum and saliva samples from healthy controls (HC group, n = 5) and bitches with CMT (CMT group, n = 5) were analysed using a Tandem Mass Tags-based approach. Twenty-five dogs were used to validate serum albumin as a candidate biomarker in an independent sample set. The proteomic analysis quantified 379 and 730 proteins in serum and saliva, respectively. Of those, 35 proteins in serum and 49 in saliva were differentially represented. The verification of albumin in serum was in concordance with the proteomic data, showing lower levels in CMT when compared to the HC group. Some of the modulated proteins found in the present study such as haptoglobin or S100A4 have been related to CMT or human breast cancer previously, while others such as kallikrein-1 and immunoglobulin gamma-heavy chains A and D are described here for the first time. Our results indicate that saliva and serum proteomes can reflect physiopathological changes that occur in CMT in dogs and can be a potential source of biomarkers of the disease.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia;
| | - Anita Horvatić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.H.); (V.M.)
| | - María Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 30 Gleboka St., 20-612 Lublin, Poland;
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (A.H.); (V.M.)
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (M.D.C.-A.); (J.J.C.); (A.T.)
| |
Collapse
|
18
|
Yu K, Matzapetakis M, Horvatić A, Terré M, Bach A, Kuleš J, Yeste N, Gómez N, Arroyo L, Rodríguez-Tomàs E, Peña R, Guillemin N, de Almeida AM, Eckersall PD, Bassols A. Metabolome and proteome changes in skeletal muscle and blood of pre-weaning calves fed leucine and threonine supplemented diets. J Proteomics 2020; 216:103677. [PMID: 32028040 DOI: 10.1016/j.jprot.2020.103677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 01/07/2023]
Abstract
In pre-weaning calves, both leucine and threonine play important roles in growth and muscle metabolism. In this study, metabolomics, proteomics and clinical chemistry were used to assess the effects of leucine and threonine supplementation added to milk replacer on 14 newborn Holstein male calves: 7 were fed a control diet (Ctrl) and 7 were fed the Ctrl diet supplemented with 0.3% leucine and 0.3% threonine (LT) from 5.6 days of age to 53.6 days. At this time, blood and semitendinosus muscle biopsies were collected for analysis. Integrated metabolomics and proteomics showed that branched-chain amino acids (BCAA) degradation and mitochondrial oxidative metabolism (citrate cycle and respiratory chain) were the main activated pathways in muscle because of the supplementation. BCAA derivatives and metabolites related to lipid mobilization showed the major changes. The deleterious effects of activated oxidative phosphorylation were balanced by the upregulation of antioxidant proteins. An increase in protein synthesis was indicated by elevated aminoacyl-tRNA biosynthesis and increased S6 ribosomal protein phosphorylation in skeletal muscle. In conclusion, LT group showed greater BCAA availability and mitochondrial oxidative activity; as the muscle cells undergo greater aerobic metabolism, antioxidant defenses were activated to compensate for possible cell damage. Data are available via ProteomeXchange (PXD016098). SIGNIFICANCE: Leucine and threonine are essential amino acids for the pre-weaning calf, being of high importance for growth. In this study, we found that leucine and threonine supplementation of milk replacer to feed pre-weaning calves led to differences in the proteome, metabolome and clinical chemistry analytes in skeletal muscle and plasma, albeit no differences in productive performance were recorded. This study extends our understanding on the metabolism in dairy calves and helps optimizing their nutritional status.
Collapse
Affiliation(s)
- Kuai Yu
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Manolis Matzapetakis
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Anita Horvatić
- ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Marta Terré
- Departament of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries Caldes de Montbui, 08140 Barcelona, Spain
| | - Alex Bach
- Departament of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries Caldes de Montbui, 08140 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Josipa Kuleš
- ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Néstor Gómez
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Arroyo
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | - Raquel Peña
- Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Nicolas Guillemin
- ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - André M de Almeida
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Peter David Eckersall
- ERA Chair Team, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; Servei de Bioquímica Clínica Veterinària, Facultat de Veterinària, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
19
|
Franco-Martínez L, Villar M, Tvarijonaviciute A, Escribano D, Bernal LJ, Cerón JJ, Thomas MDC, Mateos-Hernández L, Tecles F, de la Fuente J, López MC, Martínez-Subiela S. Serum proteome of dogs at subclinical and clinical onset of canine leishmaniosis. Transbound Emerg Dis 2019; 67:318-327. [PMID: 31512804 DOI: 10.1111/tbed.13354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/08/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023]
Abstract
The objective of this study was to identify changes in serum proteome in dogs that may occur after an experimental infection at subclinical and clinical stages of canine leishmaniosis (CanL). For this purpose, canine pre- and post-infection with Leishmania infantum serum proteomes in the same dogs were analysed by a high-throughput label-based quantitative LC-MS/MS proteomic approach. A total of 169 proteins were identified, and 74 of them including complement C8 alpha chain, adiponectin, transferrin, sphingomyelin phosphodiesterase acid-like 3A and immunoglobulins showed different modulation between the different stages of CanL. These proteins could be considered as potential serum biomarkers of early diagnostic or disease progression in CanL. Additionally, biological pathways modulated during CanL such as blood coagulation or gonadotropin-releasing hormone receptor were revealed, which could help to understand the pathological mechanisms of the disease.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Luis J Bernal
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - María Del C Thomas
- Instituto de Parasitología y Biomedicina "López Neyra", Molecular Biology Department, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain.,UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Manuel C López
- Instituto de Parasitología y Biomedicina "López Neyra", Molecular Biology Department, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| |
Collapse
|
20
|
Eckersall PD. Calibration of Novel Protein Biomarkers for Veterinary Clinical Pathology: A Call for International Action. Front Vet Sci 2019; 6:210. [PMID: 31312640 PMCID: PMC6614203 DOI: 10.3389/fvets.2019.00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 12/02/2022] Open
Abstract
Research into the identification and use of protein biomarkers for use in veterinary clinical pathology has produced numerous potential analytes that could become common tests in the future. One problem that has to be overcome in the general acceptance of a novel biomarker is that differing standards for calibration may be developed by individual laboratories or the diagnostic companies that will provide kits for widespread use. This has been apparent in the development of acute phase protein biomarkers such as canine C-reactive protein. In order to overcome this problem an international initiative is required to ensure that assays developed in separate laboratories would have a consistent calibration protocol so that results produced are equivalent. International reference preparations for serum protein analysis for each relevant species should be established for use as primary standard in the calibration of biomarkers for veterinary diagnosis.
Collapse
Affiliation(s)
- Peter David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,European Research Area (ERA) Chair Laboratory, VetMedZg, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
21
|
Franco-Martínez L, Tvarijonaviciute A, Horvatić A, Guillemin N, Bernal LJ, Barić Rafaj R, Cerón JJ, Thomas MDC, López MC, Tecles F, Martínez-Subiela S, Mrljak V. Changes in saliva of dogs with canine leishmaniosis: A proteomic approach. Vet Parasitol 2019; 272:44-52. [PMID: 31395204 DOI: 10.1016/j.vetpar.2019.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
In the present study, a quantitative proteomic approach to study changes in saliva proteins associated with canine leishmaniosis (CanL) was performed. For this, canine salivary proteins were analysed and compared between dogs before (T0) and after (T1) experimental infection with Leishmania infantum by high-throughput label-based quantitative LC-MS/MS proteomic approach and bioinformatic analysis of the in silico inferred interactome protein network was created from the initial list of differential proteins. More than 2000 proteins were identified, and of the 90 differentially expressed proteins between T0 and T1, 12 were down-regulated with log2 fold change lower than -0.5849, and 19 were up-regulated with log2 fold change greater than 0.5849. This study provides evidence of changes in salivary proteome that can occur in canine leishmaniosis and revealed biological pathways in saliva modulated in canine leishmaniosis with potential for further targeted research.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Anita Horvatić
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Nicolas Guillemin
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - Luis Jesús Bernal
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Renata Barić Rafaj
- Department for Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - María Del Carmen Thomas
- Instituto de Parasitología y Biomedicina "López Neyra", Molecular Biology Department. Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Manuel C López
- Instituto de Parasitología y Biomedicina "López Neyra", Molecular Biology Department. Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia, 30100, Spain.
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000, Zagreb, Croatia
| |
Collapse
|
22
|
Escribano D, Horvatić A, Contreras-Aguilar MD, Guillemin N, Cerón JJ, Tecles F, Martinez-Miró S, Eckersall PD, Manteca X, Mrljak V. Changes in saliva proteins in two conditions of compromised welfare in pigs: An experimental induced stress by nose snaring and lameness. Res Vet Sci 2019; 125:227-234. [PMID: 31284225 DOI: 10.1016/j.rvsc.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
The aim of this study was to identify biological pathways and proteins differentially expressed in saliva of pigs in two conditions of compromised welfare: an acute stress consisting of restraint with a nose snare and in pigs with lameness which is a highly frequent problem in the swine industry. For this purpose, high-resolution quantitative proteomics based on Tandem Mass Tags labelling was used. Four proteins showed significant differences in the conditions of compromised welfare, namely cornulin, the heat shock protein 27 and lactate dehydrogenase (LDH), that showed significant increases, whereas immunoglobulin J chain showed a significant decrease. LDH, which was the protein that showed the highest differences, was selected for validation and clinical evaluation as a diagnostic biomarker. Significant changes in this protein were observed between pigs restrained with a nose snare and pigs with lameness compared with healthy pigs when measured with available commercial assays in a larger population of pigs. In conclusion, this study reports that in situations of compromised welfare on farm, such as acute stress and lameness in pigs, there are changes in proteins and metabolic pathways in saliva, and describes a series of proteins that could potentially be used as biomarkers for both short term acute stress and longer term chronic stress of lameness. These biomarkers would have the advantage of being measured in saliva by a noninvasive and not stressful collection sampling procedure.
Collapse
Affiliation(s)
- Damián Escribano
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Anita Horvatić
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Maria Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - Nicolas Guillemin
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Jose Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - Silvia Martinez-Miró
- Department of Animal Production, Veterinary school, Campus of Excellence Mare Nostrum, University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - Peter David Eckersall
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
| | - Xavier Manteca
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| |
Collapse
|
23
|
Identification of possible new salivary biomarkers of stress in sheep using a high-resolution quantitative proteomic technique. Res Vet Sci 2019; 124:338-345. [PMID: 31060013 DOI: 10.1016/j.rvsc.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/30/2019] [Accepted: 04/16/2019] [Indexed: 11/24/2022]
Abstract
The aim of this study was to identify biological pathways and proteins differentially expressed in the saliva proteome of sheep after the application of a model of stress, using high-resolution quantitative proteomics. In addition, one of the proteins differently expressed was verified and evaluated as a possible biomarker of stress in this species. Saliva paired samples from eight sheep before and after the application of a model of stress based on shearing were analysed using tandem mass tags (TMT). The TMT analysis allowed for the identification of new stress-related metabolic pathways and revealed 13 proteins, never described in saliva of sheep, that were differentially expressed between before and after the stress. Six of these proteins pertain to four major metabolic pathways affected, namely: canonical glycolysis, oxygen transport, neural nucleus development, and regulation of actin cytoskeleton reorganization. The rest of proteins were unmapped original proteins such as acyl-coenzyme-A-binding protein; complement C3; alpha-2-macroglobulin isoform-X1; type-II small proline-rich protein; lactoferrin; secretoglobin family-1D-member; and keratin, type-II cytoskeletal 6. Of these proteins, based on its biological significance and specific immunoassay availability, lactoferrin was selected for further validation. The immunoassay intra- and inter-assay coefficients of variation were lower than 13%. The method showed good linearity under dilution and recovery, and the detection limit was low enough to detect salivary lactoferrin levels. A significant decrease (P < 0.01) in salivary lactoferrin concentration in the sheep following the application of the model of stress was observed, suggesting that this protein could be a potential salivary biomarker of stress situations in sheep.
Collapse
|
24
|
Horvatić A, Guillemin N, Kaab H, McKeegan D, O'Reilly E, Bain M, Kuleš J, Eckersall PD. Quantitative proteomics using tandem mass tags in relation to the acute phase protein response in chicken challenged with Escherichia coli lipopolysaccharide endotoxin. J Proteomics 2019; 192:64-77. [DOI: 10.1016/j.jprot.2018.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/31/2018] [Accepted: 08/11/2018] [Indexed: 12/12/2022]
|
25
|
Montoya A, López MC, Vélez ID, Robledo SM. Label-free quantitative proteomic analysis reveals potential biomarkers for early healing in cutaneous leishmaniasis. PeerJ 2019; 6:e6228. [PMID: 30648003 PMCID: PMC6330957 DOI: 10.7717/peerj.6228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023] Open
Abstract
Background Leishmaniasis is a parasitic disease caused by more than 20 species of the Leishmania genus. The disease is globally distributed and is endemic in 97 countries and three territories in the tropical and subtropical regions. The efficacy of the current treatments is becoming increasingly low either due to incomplete treatment or resistant parasites. Failure of treatment is frequent, and therefore, the search for early biomarkers of therapeutic response in cutaneous leishmaniasis (CL) is urgently needed. Objective The aim of this study was to compare the proteomic profiles in patients with CL before and after 7 days of treatment and identify early biomarkers of curative response. Methods Four patients with a parasitological diagnosis of leishmaniasis with confirmation of species by PCR-RFLP were recruited. All patients had a single lesion, and a protein from the middle of the ulcer was quantified by liquid chromatography and mass spectrometry. Results A total of 12 proteins showed differential expression in the comparative LC-electrospray ionization MS/MS (LC-ESI-MS/MS) triplicate analysis. Seven of them were up-regulated and five of them were down-regulated. Calcium binding proteins A2, A8, and A9 and hemoglobin subunits alpha-2 and delta showed high correlation with epidermis development and immune response. Conclusion We identified changes in the profiles of proteins that had a positive therapeutic response to the treatment. The proteins identified with differential expression are related to the reduction of inflammation and increased tissue repair. These proteins can be useful as biomarkers for early monitoring of therapeutic response in CL.
Collapse
Affiliation(s)
- Andrés Montoya
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Manuel Carlos López
- Molecular Biology Department Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina "López Neyra", Granade, Spain
| | - Ivan D Vélez
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| |
Collapse
|
26
|
Identification of changes in serum analytes and possible metabolic pathways associated with canine obesity-related metabolic dysfunction. Vet J 2018; 244:51-59. [PMID: 30825895 DOI: 10.1016/j.tvjl.2018.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/31/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022]
Abstract
The main objective of this study was to identify analytes that could change and that could help to clarify the metabolic and physiopathological changes related to canine obesity-related metabolic dysfunction (ORMD). For this, serum from 35 overweight/obese dogs, with and without ORMD, was submitted to a comprehensive panel of biochemistry analysis, a gel-free tandem mass tag isobaric label-based proteomic analysis, and, finally, selected proteins were used as a starting point for creating a protein interaction network. Dogs with ORMD showed significantly higher serum concentrations of alanine aminotransferase (ALT), alkaline phosphatase (ALP), Ca, total proteins, albumin, total cholesterol, triglycerides, glucose, and butyrylcholinesterase (BChE) activity in comparison with dogs without ORMD. Proteomic analysis revealed that 23 proteins related to lipid metabolism, the complement factor system, cellular adhesion and functionality, inflammation, and coagulation were altered in dogs with ORMD. Finally, the obtained protein interaction network highlighted that the central term of this network was the negative regulation of the immune response. These data suggest that canine ORMD is associated with changes in analytes that reflect altered lipid metabolism, and liver and immune function impairment and suggests the potential for a prothrombotic state and lung function alterations.
Collapse
|
27
|
Horvatić A, Guillemin N, Kaab H, McKeegan D, O’Reilly E, Bain M, Kuleš J, Eckersall PD. Integrated dataset on acute phase protein response in chicken challenged with Escherichia coli lipopolysaccharide endotoxin. Data Brief 2018; 21:684-699. [PMID: 30666314 PMCID: PMC6205363 DOI: 10.1016/j.dib.2018.09.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 11/18/2022] Open
Abstract
Data herein describe the quantitative changes in the plasma proteome in chickens challenged with lipopolysaccharide (LPS), a bacterial endotoxin known to stimulate the host innate immune system obtained by shotgun quantitative proteomic tandem mass tags approach using high-resolution Orbitrap technology. Statistical and bioinformatic analyses were performed to specify the effect of bacterial endotoxin. Plasma from chicken (N=6) challenged with Escherichia coli (LPS) (2 mg/kg body weight) was collected pre (0 h) and at 12, 24, 48, and 72 h post injection along with plasma from a control group (N=6) challenged with sterile saline. Protein identification and relative quantification were performed using Proteome Discoverer, and data were analysed using R. Gene Ontology terms were analysed by the Cytoscape application ClueGO based on Gallus gallus GO Biological Process database, and refined by REVIGO. Absolute quantification of several acute phase proteins, e.g. alpha-1-acid glycoprotein (AGP), serum amyloid A (SAA) and ovotrensferrin (OVT) was performed by immunoassays to validate the LC-MS results. The data contained within this article are directly related to our research article”Quantitative proteomics using tandem mass tags in relation to the acute phase protein response in chicken challenged with Escherichia coli lipopolysaccharide endotoxin” [1]. The raw mass spectrometric data generated in this study were deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD009399 (http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD009399).
Collapse
Affiliation(s)
- Anita Horvatić
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Nicolas Guillemin
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Corresponding author.
| | - Haider Kaab
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dorothy McKeegan
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emily O’Reilly
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maureen Bain
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Josipa Kuleš
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Peter David Eckersall
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
28
|
Montoya A, Yepes L, Bedoya A, Henao R, Delgado G, Vélez ID, Robledo SM. Transforming Growth Factor Beta (TGFβ1) and Epidermal Growth Factor (EGF) as Biomarkers of Leishmania (V) braziliensis Infection and Early Therapeutic Response in Cutaneous Leishmaniasis: Studies in Hamsters. Front Cell Infect Microbiol 2018; 8:350. [PMID: 30333964 PMCID: PMC6176012 DOI: 10.3389/fcimb.2018.00350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: In cutaneous leishmaniasis, the host immune response is responsible for the development of skin injuries but also for resolution of the disease especially after antileishmanial therapy. The immune factors that participate in the regulation of inflammation, remodeling of the extracellular matrix, cell proliferation and differentiation may constitute biomarkers of diseases or response to treatment. In this work, we analyzed the production of the growth factors EGF, TGFβ1, PDGF, and FGF during the infection by Leishmania parasites, the development of the injuries and the early response to treatment. Methodology: Golden hamsters were infected with L. (V) braziliensis. The growth factors were detected in skin scrapings and biopsies every 2 weeks after infected and then at day 7 of treatment with different drug candidates by RT-qPCR. The parasitic load was also quantified by RT-qPCR in skin biopsies sampled at the end of the study. Results: The infection by L. (V) braziliensis induced the expression of all the growth factors at day 15 of infection. One month after infection, EGF and TGFβ1 were expressed in all hamsters with inverse ratio. While the EGF and FGF levels decreased between day 15 and 30 of infection, the TGFβ1 increased and the PGDF levels did not change. The relative expression of EGF and TGFβ1 increased notably after treatment. However, the increase of EGF was associated with clinical cure while the increase of TGFβ1 was associated with failure to treatment. The amount of parasites in the cutaneous lesion at the end of the study decreased according to the clinical outcome, being lower in the group of cured hamsters and higher in the group of hamsters that had a failure to the treatment. Conclusions: A differential profile of growth factor expression occurred during the infection and response to treatment. Higher induction of TGFβ1 was associated with active disease while the higher levels of EGF are associated with adequate response to treatment. The inversely EGF/TGFβ1 ratio may be an effective biomarker to identify establishment of Leishmania infection and early therapeutic response, respectively. However, further studies are needed to validate the utility of the proposed biomarkers in field conditions.
Collapse
Affiliation(s)
- Andrés Montoya
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Lina Yepes
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Alexander Bedoya
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Raúl Henao
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gabriela Delgado
- Grupo de Investigación en Inmunotoxicología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Iván D Vélez
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sara M Robledo
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
29
|
Franco-Martínez L, Tvarijonaviciute A, Horvatić A, Guillemin N, Cerón JJ, Escribano D, Eckersall D, Kocatürk M, Yilmaz Z, Lamy E, Martínez-Subiela S, Mrljak V. Changes in salivary analytes in canine parvovirus: A high-resolution quantitative proteomic study. Comp Immunol Microbiol Infect Dis 2018; 60:1-10. [PMID: 30396423 PMCID: PMC7124818 DOI: 10.1016/j.cimid.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/24/2023]
Abstract
The present study evaluated the changes in salivary proteome in parvoviral enteritis (PVE) in dogs through a high-throughput quantitative proteomic analysis. Saliva samples from healthy dogs and dogs with severe parvovirosis that survived or perished due to the disease were analysed and compared by Tandem Mass Tags (TMT) analysis. Proteomic analysis quantified 1516 peptides, and 287 (corresponding to 190 proteins) showed significantly different abundances between studied groups. Ten proteins were observed to change significantly between dogs that survived or perished due to PVE. Bioinformatics' analysis revealed that saliva reflects the involvement of different pathways in PVE such as catalytic activity and binding, and indicates antimicrobial humoral response as a pathway with a major role in the development of the disease. These results indicate that saliva proteins reflect physiopathological changes that occur in PVE and could be a potential source of biomarkers for this disease.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Anita Horvatić
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Nicolas Guillemin
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain; Department of Animal and Food Science, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - David Eckersall
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Meriç Kocatürk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University, 16059, Bursa, Turkey
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University, 16059, Bursa, Turkey
| | - Elsa Lamy
- ICAAM - Institute of Mediterranean Agricultural and Environmental Sciences, University of Evora, Portugal
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain.
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| |
Collapse
|
30
|
Bilić P, Kuleš J, Galan A, Gomes de Pontes L, Guillemin N, Horvatić A, Festa Sabes A, Mrljak V, Eckersall PD. Proteomics in Veterinary Medicine and Animal Science: Neglected Scientific Opportunities with Immediate Impact. Proteomics 2018; 18:e1800047. [DOI: 10.1002/pmic.201800047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Petra Bilić
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Josipa Kuleš
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Asier Galan
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Leticia Gomes de Pontes
- Botucatu Medical School; Sao Paulo State University (UNESP); Avenida José Barbosa de Barros, 1780; Botucatu 18610-307 Brazil
| | - Nicolas Guillemin
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Anita Horvatić
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Amanda Festa Sabes
- Department of Clinical and Veterinary Surgery; Faculty of Agrarian and Veterinary Sciences; Via de Acesso Paulo Donato Castellane s/n. 14884-900 Jaboticabal São Paulo Brazil
| | - Vladimir Mrljak
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
| | - Peter David Eckersall
- VetMedZg Proteomics Laboratory; Faculty of Veterinary Medicine; University of Zagreb; Heinzelova 55 10000 Zagreb Croatia
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medicine; Veterinary Medicine and Life Sciences; University of Glasgow; Glasgow G61 1QH UK
| |
Collapse
|