1
|
Martins L, Orsel K, Eshraghisamani R, Hernández-Agudelo JM, Pereira AC, Shaukat W, Koets AP, Bannantine JP, Ritter C, Kelton DF, Whittington RJ, Weber MF, Facciuolo A, Dhand NK, Donat K, Eisenberg S, Salgado MA, Kastelic JP, De Buck J, Barkema HW. Invited review: Improved control of Johne's disease in dairy cattle through advancements in diagnostics, testing, and management of young stock. J Dairy Sci 2025; 108:1162-1181. [PMID: 39369889 DOI: 10.3168/jds.2024-24643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Johne's disease (JD; paratuberculosis) control programs have been regionally implemented across the globe, but few have successfully eradicated the pathogen (Mycobacterium avium ssp. paratuberculosis; MAP) causing this disease. The limited success may partly be attributed to excluding young stock (calves and replacement heifers or bulls) from testing strategies aimed at identifying MAP-infected cattle. Young stock can shed MAP in feces and can have detectable MAP-specific antibodies in blood, as confirmed in experimentally and naturally infected cattle. Furthermore, MAP transmission causes new infections in young stock. Calves and heifers are often included in JD management strategies on dairy farms but excluded from conventional diagnostic tests due to a presumed lag between infection and detection of MAP shedding and MAP-specific serum antibodies. We summarize evidence of MAP shedding early in the course of infection and discuss promising diagnostics, testing and management strategies to support inclusion of young stock in JD control programs. Improvements in fecal PCR, interferon-gamma release assay (IGRA), and ELISA enable earlier detection of MAP and specific early immune responses. Studies on IGRA and ELISA have focused on evaluation of new antigens and optimal age of testing. New diagnostics have been developed, including phage-based tests to detect viable MAP, as well as gene expression patterns and metabolomics to detect MAP-infected young stock. In addition, refinements in testing and management of calves and heifers may enable reductions in MAP prevalence. We provide recommendations for dairy farmers, researchers, veterinarians, and other stakeholders that may improve JD control programs with an objective to control and potentially eradicate JD. Additionally, we have identified the most pressing gaps in knowledge that currently hamper inclusion of young stock in JD prevention and control programs. In summary, transmission among young stock may cause new MAP infections, and appropriate use of new diagnostic tests, testing and management strategies for young stock may improve the efficacy of JD control programs.
Collapse
Affiliation(s)
- Larissa Martins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 0Z4, Canada
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 0Z4, Canada
| | | | - Jose Miguel Hernández-Agudelo
- Instituto de Medicina Preventiva Veterinaria, Faculty of Veterinary Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Los Rios 5090000, Chile
| | - A Caroline Pereira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 0Z4, Canada
| | - Waseem Shaukat
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 0Z4, Canada
| | - Ad P Koets
- Wageningen Bioveterinary Research, 8221 RA, Lelystad, the Netherlands
| | | | - Caroline Ritter
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - David F Kelton
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Richard J Whittington
- Sydney School of Veterinary Science, University of Sydney, Camden, 2570 NSW, Australia
| | | | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Navneet K Dhand
- Sydney School of Veterinary Science, University of Sydney, Camden, 2570 NSW, Australia
| | - Karsten Donat
- Animal Health Service, Thuringian Animal Diseases Fund, 07745 Jena, Thuringia, Germany
| | - Susanne Eisenberg
- Animal Disease Fund of Lower Saxony, 30169 Hanover, Lower Saxony, Germany
| | - Miguel A Salgado
- Instituto de Medicina Preventiva Veterinaria, Faculty of Veterinary Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 0Z4, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 0Z4, Canada
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 0Z4, Canada.
| |
Collapse
|
2
|
Matthews C, Walsh AM, Gordon SV, Markey B, Cotter PD, O' Mahony J. Differences in Faecal Microbiome Taxonomy, Diversity and Functional Potential in a Bovine Cohort Experimentally Challenged with Mycobacterium avium subsp. paratuberculosis (MAP). Animals (Basel) 2023; 13:ani13101652. [PMID: 37238082 DOI: 10.3390/ani13101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, a chronic enteritis which results in emaciation and eventual loss of the animal. Recent advances in metagenomics have allowed a more in-depth study of complex microbiomes, including that of gastrointestinal tracts, and have the potential to provide insights into consequences of the exposure of an animal to MAP or other pathogens. This study aimed to investigate taxonomic diversity and compositional changes of the faecal microbiome of cattle experimentally challenged with MAP compared to an unexposed control group. Faecal swab samples were collected from a total of 55 animals [exposed group (n = 35) and a control group (n = 20)], across three time points (months 3, 6 and 9 post-inoculation). The composition and functional potential of the faecal microbiota differed across time and between the groups (p < 0.05), with the primary differences, from both a taxonomic and functional perspective, occurring at 3 months post inoculation. These included significant differences in the relative abundance of the genera Methanobrevibacter and Bifidobacterium and also of 11 other species (4 at a higher relative abundance in the exposed group and 7 at a higher relative abundance in the control group). Correlations were made between microbiome data and immunopathology measurements and it was noted that changes in the microbial composition correlated with miRNA-155, miR-146b and IFN-ɣ. In summary, this study illustrates the impact of exposure to MAP on the ruminant faecal microbiome with a number of species that may have relevance in veterinary medicine for tracking exposure to MAP.
Collapse
Affiliation(s)
- Chloe Matthews
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Bryan Markey
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 R229 Cork, Ireland
| | - Jim O' Mahony
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
3
|
Ingratta GG, Stempler A, Fernández B, Colavecchia SB, Jolly A, Minatel L, Paolicchi FA, Mundo SL. Early-stage findings in an experimental calf model infected with Argentinean isolates of Mycobacterium avium subsp. paratuberculosis. Vet Immunol Immunopathol 2023; 259:110595. [PMID: 37058952 DOI: 10.1016/j.vetimm.2023.110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an important pathogen that causes granulomatous enteritis known as Johne's disease or paratuberculosis (PTB). In this study an experimental model of calves infected with Argentinean isolates of MAP for 180 days was used to provide more data of the early PTB stages. Calves were challenged by oral route with MAP strain IS900-RFLPA (MA; n = 3), MAP strain IS900-RFLPC (MC; n = 2) or mock infected (MI; n = 2), and response to infection was evaluated through peripheral cytokine expression, MAP tissue distribution and histopathological early-stage findings. Specific and varied levels of IFN-γ were only detected at 80 days post-infection in infected calves. These data indicate that specific IFN-γ is not a useful indicator for early detection of MAP infection in our calf model. At 110 days post-infection, TNF-α expression was higher than IL-10 in 4 of the 5 infected animals and a significant decrease of TNF-α expression was detected in infected vs. non-infected calves. All calves challenged were identified as infected by mesenteric lymph node tissue culture and real time IS900 PCR. In addition, for lymph nodes samples, the agreement between these techniques was almost perfect (κ = 0.86). Colonization of tissues and levels of tissue infection varied between individuals. Evidence of early MAP dissemination to extraintestinal tissues such as the liver was detected by culture in one animal (MAP strain IS900-RFLPA). In both groups microgranulomatous lesions were observed predominantly in the lymph nodes, with giant cells present only in the MA group. In summary, the findings described herein may indicate that local MAP strains induced specific immune responses with particularities that could suggest differences in their biological behavior. Further studies should be carried out in order to obtain an in-depth understanding of the influence of MAP strains in host-pathogen interactions and the outcome of disease.
Collapse
Affiliation(s)
- Giselle Gabriela Ingratta
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Stempler
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Bárbara Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina.
| | - Silvia Beatriz Colavecchia
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Jolly
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Minatel
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1417DSM Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Alberto Paolicchi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Laboratorio de Bacteriología, Ruta 226, Km 73.5, Balcarce B7620BEN, Provincia de Buenos Aires, Argentina; Universidad Nacional de Mar del Plata, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Ruta 226, Km 73.5, Balcarce B7620BEN, Provincia de Buenos Aires, Argentina
| | - Silvia Leonor Mundo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Jolly A, Fernández B, Stempler A, Ingratta G, Postma G, Boviez J, Lombardo D, Hajos S, Mundo SL. Antibodies from healthy or paratuberculosis infected cows have different effects on Mycobacterium avium subspecies paratuberculosis invasion in a calf ileal loop model. Vet Immunol Immunopathol 2022; 245:110381. [PMID: 35033737 DOI: 10.1016/j.vetimm.2022.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
In this work, we used a calf ileal loop model to evaluate whether the preincubation of Mycobacterium avium subspecies paratuberculosis (MAP) with antibodies from healthy, MAP-positive or Lipoarabinomannan (LAM) immunized cows could affect the results of infection after 3.5 h. Bacterial load in tissue was assessed by Ziehl-Neelsen and by culture for each loop. MAP was detectable in all infected loops after 3.5 h.p.i.; although the presence of antibodies from MAP-positive cows significantly reduced bacterial load in loops as compared with antibodies from healthy donors (by Ziehl-Neelsen and culture, p-value < 0.003 and 0.0203, respectively). A possible direct effect of antibodies on MAP viability was shown to be not significant. Severity of histopathologic changes induced by MAP infection also varied according to the pretreatment: MAP induced less changes when inoculated in the presence of antibodies from MAP-positive cows as compared with antibodies from healthy donors. Overall, our results show that the presence of antibodies from MAP-positive cows reduced MAP invasion and consequent early histological changes in this ileal short-term loop model. These results may suggest a protective role of antibodies in the response against MAP at the portal of entry in cattle.
Collapse
Affiliation(s)
- Ana Jolly
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Bárbara Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Stempler
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Giselle Ingratta
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Gabriela Postma
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, 115287-2512, Av. San Martín 5285, C1417DSM, Buenos Aires, Argentina
| | - Juan Boviez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, (0054) 115287-2038, Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Daniel Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Cátedra de Histología y Embriología, (0054) 115287-2038, Chorroarín 280, C1427CWO, Buenos Aires, Argentina
| | - Silvia Hajos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU), (0054)114964-8260, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Silvia L Mundo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, (0054) 115287-2155, Chorroarín 280, C1427CWO, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Evaluation of a virulent strain of Mycobacterium avium subsp. Paratuberculosis used as a heat-killed vaccine. Vaccine 2021; 39:7401-7412. [PMID: 34774361 DOI: 10.1016/j.vaccine.2021.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022]
Abstract
Bovine paratuberculosis is one of the most important chronic infectious diseases in livestock. This disease is difficult to control because of its inefficient management (test and cull strategy and inadequate biosecurity). Thus, the development of an effective vaccine is essential. In this study, we evaluated a local virulent strain (6611) of Mycobacterium avium subsp. paratuberculosis as an inactivated vaccine in comparison with the Silirum vaccine in mouse model and cattle. Regarding the mice model, only the groups vaccinated with 6611 showed lower colony forming unit (CFU) counts with a lower lesion score in the liver in comparison to the control group at 6 and 12 weeks post-challenge (wpc). The immune response was predominantly humoral (IgG1), although both vaccinated groups presented a cellular response with IFNγ production as well, but the 6611 group had also significant production of IL-2, IL-6, IL-17a, TNF, and IL-10. In cattle, the 6611 vaccinated group was the only one that maintained significant antibody values at the end of the trial, with significant production of IgG2 and IFNγ. No PPDb reactor was detected in the vaccinated animals, according to the intradermal caudal fold tuberculin test. Our results indicate that the 6611 local strain protected mice from challenge with a virulent strain, by inducing a humoral and cellular immune response. In the bovine, the natural host, the evaluated vaccine also induced humoral and cellular immune responses, with higher levels of CD4 + CD25+ and CD8 + CD25+ T cells populations than the commercial vaccine. Despite the encouraging results obtained in this study, an experimental challenge trial in cattle is mandatory to evaluate the efficacy of our candidate vaccine in the main host.
Collapse
|