1
|
Jang H, Han SC, Lee J, Shin HY, Hwang JH, Ha JH. Anti-inflammatory effects of rutin in lipopolysaccharide-stimulated canine macrophage cells. Nutr Res Pract 2025; 19:143-153. [PMID: 39959750 PMCID: PMC11821770 DOI: 10.4162/nrp.2025.19.1.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory responses are key pathological factors in various canine diseases, making the control of inflammatory responses vital for canine health. This study examined the anti-inflammatory effects of rutin on DH82 cells, a type of canine macrophage, against lipopolysaccharide (LPS)-induced inflammatory responses. MATERIALS/METHODS The inflammatory in vitro experimental model was established by stimulating canine macrophage DH82 cells with LPS. To evaluate the inflammation-preventative effects of rutin, analyses were conducted using enzyme-linked immunosorbent assay, western blot, and real-time quantitative reverse transcription polymerase chain reaction. RESULTS Rutin inhibited the LPS-induced increase in the protein and gene levels of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-α), while anti-inflammatory cytokines (IL-10, transforming growth factor-β1) levels remained unchanged. Furthermore, rutin suppressed the LPS-induced activation of phosphorylated extracellular signal-regulated kinase, Jun N-terminal kinase, inhibitor of nuclear factor kappa B, and nuclear factor kappa B (NF-κB) in DH82 cells. CONCLUSION Rutin exerts anti-inflammatory effects by inhibiting the mitogen-activated protein kinase-NF-κB signaling pathway and reducing the production of pro-inflammatory cytokines in DH82 cells.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Su-Cheol Han
- Companion Animal New Drug Development Center, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Ha-Young Shin
- Center for Large Animals Convergence Research, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Jeong Ho Hwang
- Companion Animal New Drug Development Center, Korea Institute of Toxicology, Jeongeup 56212, Korea
- Center for Large Animals Convergence Research, Korea Institute of Toxicology, Jeongeup 56212, Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Korea
| |
Collapse
|
2
|
Fabros D, Charerntantanakul W. Knock down of transforming growth factor beta improves expressions of co-stimulatory molecules, type I interferon-regulated genes, and pro-inflammatory cytokine in PRRSV-inoculated monocyte-derived macrophages. BMC Vet Res 2024; 20:344. [PMID: 39097704 PMCID: PMC11297646 DOI: 10.1186/s12917-023-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/28/2023] [Indexed: 08/05/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a poor innate immune response following infection. This study evaluates the effects of transforming growth factor beta 1 (TGFβ1) up-regulated by PRRSV on gene expressions of co-stimulatory molecules, type I interferon (IFN), type I IFN-regulated genes (IRGs), pattern recognition receptors, and pro-inflammatory cytokines in PRRSV-inoculated monocyte-derived macrophages (MDMs). Phosphorothioate-modified antisense oligodeoxynucleotides (AS ODNs) specific to various regions of porcine TGFβ1 mRNA were synthesized, and those specific to the AUG region efficiently knockdown TGFβ1 mRNA expression and protein translation. Transfection of TGFβAS ODNs in MDMs inoculated with either classical PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) significantly reduced TGFβ1 mRNA expression and significantly increased mRNA expressions of CD80, CD86, IFNβ, IRGs (i.e. IFN regulatory factor 3 (IRF3), IRF7, myxovirus resistance 1, osteopontin, and stimulator of IFN genes), Toll-like receptor 3, and tumor necrosis factor-alpha. Transfection of TGFβAS ODNs in MDMs inoculated with HP-PRRSV-2 also significantly increased mRNA expressions of IFNα, IFNγ, and 2'-5'-oligoadenylate synthetase 1. The quantity of PRRSV-2 RNA copy numbers was significantly reduced in MDMs transfected with TGFβAS ODNs as compared to untransfected MDMs. Recombinant porcine TGFβ1 (rTGFβ1) and recombinant porcine IFNα (rIFNα) sustained and reduced the yields of PRRSV-2 RNA copy numbers in PRRSV-2 inoculated MDMs, respectively. These findings demonstrate a strategy of PRRSV for innate immune suppression via an induction of TGFβ expression. These findings also suggest TGFβ as a potential parameter that future PRRSV vaccine and vaccine adjuvant candidates should take into consideration.
Collapse
Affiliation(s)
- Dante Fabros
- Research Laboratory for Immunity Enhancement in Humans and Domestic Animals, Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Chiang Mai, Thailand
| | - Wasin Charerntantanakul
- Research Laboratory for Immunity Enhancement in Humans and Domestic Animals, Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Fabros D, Charerntantanakul W. Type I and II interferons, transcription factors and major histocompatibility complexes were enhanced by knocking down the PRRSV-induced transforming growth factor beta in monocytes co-cultured with peripheral blood lymphocytes. Front Immunol 2024; 15:1308330. [PMID: 38510257 PMCID: PMC10950996 DOI: 10.3389/fimmu.2024.1308330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The innate and adaptive immune responses elicited by porcine reproductive and respiratory syndrome virus (PRRSV) infection are known to be poor. This study investigates the impact of PRRSV-induced transforming growth factor beta 1 (TGFβ1) on the expressions of type I and II interferons (IFNs), transcription factors, major histocompatibility complexes (MHC), anti-inflammatory and pro-inflammatory cytokines in PRRSV-infected co-cultures of monocytes and peripheral blood lymphocytes (PBL). Phosphorothioate-modified antisense oligodeoxynucleotide (AS ODN) specific to the AUG region of porcine TGFβ1 mRNA was synthesized and successfully knocked down TGFβ1 mRNA expression and protein translation. Monocytes transfected with TGFβAS1 ODN, then simultaneously co-cultured with PBL and inoculated with either classical PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) showed a significant reduction in TGFβ1 mRNA expression and a significant increase in the mRNA expressions of IFNα, IFNγ, MHC-I, MHC-II, signal transducer and activator of transcription 1 (STAT1), and STAT2. Additionally, transfection of TGFβAS1 ODN in the monocyte and PBL co-culture inoculated with cPRRSV-2 significantly increased the mRNA expression of interleukin-12p40 (IL-12p40). PRRSV-2 RNA copy numbers were significantly reduced in monocytes and PBL co-culture transfected with TGFβAS1 ODN compared to the untransfected control. The yields of PRRSV-2 RNA copy numbers in PRRSV-2-inoculated monocytes and PBL co-culture were sustained and reduced by porcine TGFβ1 (rTGFβ1) and recombinant porcine IFNα (rIFNα), respectively. These findings highlight the strategy employed by PRRSV to suppress the innate immune response through the induction of TGFβ expression. The inclusion of TGFβ as a parameter for future PRRSV vaccine and vaccine adjuvant candidates is recommended.
Collapse
|
4
|
Maity J, Majumder S, Pal R, Saha B, Mukhopadhyay PK. Ascorbic acid modulates immune responses through Jumonji-C domain containing histone demethylases and Ten eleven translocation (TET) methylcytosine dioxygenase. Bioessays 2023; 45:e2300035. [PMID: 37694689 DOI: 10.1002/bies.202300035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Ascorbic acid is a redox regulator in many physiological processes. Besides its antioxidant activity, many intriguing functions of ascorbic acid in the expression of immunoregulatory genes have been suggested. Ascorbic acid acts as a co-factor for the Fe+2 -containing α-ketoglutarate-dependent Jumonji-C domain-containing histone demethylases (JHDM) and Ten eleven translocation (TET) methylcytosine dioxygenasemediated epigenetic modulation. By influencing JHDM and TET, ascorbic acid facilitates the differentiation of double negative (CD4- CD8- ) T cells to double positive (CD4+ CD8+ ) T cells and of T-helper cells to different effector subsets. Ascorbic acid modulates plasma cell differentiation and promotes early differentiation of hematopoietic stem cells (HSCs) to NK cells. These findings indicate that ascorbic acid plays a significant role in regulating both innate and adaptive immune cells, opening up new research areas in Immunonutrition. Being a water-soluble vitamin and a safe micro-nutrient, ascorbic acid can be used as an adjunct therapy for many disorders of the immune system.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Ranjana Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | | |
Collapse
|
5
|
Abdolmaleky HM, Zhou JR. Underlying Mechanisms of Brain Aging and Neurodegenerative Diseases as Potential Targets for Preventive or Therapeutic Strategies Using Phytochemicals. Nutrients 2023; 15:3456. [PMID: 37571393 PMCID: PMC10473240 DOI: 10.3390/nu15153456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
During aging, several tissues and biological systems undergo a progressive decline in function, leading to age-associated diseases such as neurodegenerative, inflammatory, metabolic, and cardiovascular diseases and cancer. In this review, we focus on the molecular underpinning of senescence and neurodegeneration related to age-associated brain diseases, in particular, Alzheimer's and Parkinson's diseases, along with introducing nutrients or phytochemicals that modulate age-associated molecular dysfunctions, potentially offering preventive or therapeutic benefits. Based on current knowledge, the dysregulation of microglia genes and neuroinflammation, telomere attrition, neuronal stem cell degradation, vascular system dysfunction, reactive oxygen species, loss of chromosome X inactivation in females, and gut microbiome dysbiosis have been seen to play pivotal roles in neurodegeneration in an interactive manner. There are several phytochemicals (e.g., curcumin, EGCG, fucoidan, galangin, astin C, apigenin, resveratrol, phytic acid, acacetin, daucosterol, silibinin, sulforaphane, withaferin A, and betulinic acid) that modulate the dysfunction of one or several key genes (e.g., TREM2, C3, C3aR1, TNFA, NF-kb, TGFB1&2, SIRT1&6, HMGB1, and STING) affected in the aged brain. Although phytochemicals have shown promise in slowing down the progression of age-related brain diseases, more studies to identify their efficacy, alone or in combinations, in preclinical systems can help to design novel nutritional strategies for the management of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
6
|
Zhang X, Chen S, Li X, Zhang L, Ren L. Flavonoids as Potential Antiviral Agents for Porcine Viruses. Pharmaceutics 2022; 14:pharmaceutics14091793. [PMID: 36145539 PMCID: PMC9501777 DOI: 10.3390/pharmaceutics14091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are types of natural substances with phenolic structures isolated from a variety of plants. Flavonoids have antioxidant, anti-inflammatory, anticancer, and antiviral activities. Although most of the research or applications of flavonoids are focused on human diseases, flavonoids also show potential applicability against porcine virus infection. This review focuses on the recent progress in antiviral mechanisms of potential flavonoids against the most common porcine viruses. The mechanism discussed in this paper may provide a theoretical basis for drug screening and application of natural flavonoid compounds and flavonoid-containing herbs to control porcine virus infection and guide the research and development of pig feed additives.
Collapse
|
7
|
Ruansit W, Charerntantanakul W. Oral Supplementation of Houttuynia cordata Extract Reduces Viremia in PRRSV-1 Modified-Live Virus-Vaccinated Pigs in Response to the HP-PRRSV-2 Challenge. Front Immunol 2022; 13:929338. [PMID: 35924249 PMCID: PMC9339630 DOI: 10.3389/fimmu.2022.929338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the in vitro antiviral activities and the ex vivo immunomodulatory effects of Houttuynia cordata Thunb. (HC) ethanolic extracts in response to porcine reproductive and respiratory syndrome virus (PRRSV). In addition, this study evaluated the in vivo effects of oral supplementation of HC extract on immune responses to and cross-protective efficacy of PRRSV-1 modified-live virus (MLV) vaccine against the highly pathogenic (HP)-PRRSV-2 challenge. In vitro experiments demonstrated that HC extracted in either 50%, 70%, or 95% ethanol (referred to as HC50, HC70, and HC95, respectively) significantly interfered with PRRSV replication in MARC-145 cells. Ex vivo experiments revealed that all HC extracts significantly enhanced mRNA expressions of type I interferon-regulated genes, type I and II interferon (IFN), and pro- and anti-inflammatory cytokines in HP-PRRSV-2-inoculated monocyte-derived macrophages. An in vivo experiment included four groups of six pigs (4 weeks old; n = 24). Group 1 and group 2 were vaccinated with the PRRSV-1 MLV vaccine at 0 dpv (day post vaccination). Group 2 also received oral administration of HC50 extract at 0–49 dpv. Group 3 received the PRRSV-1 MLV vaccine solvent at 0 dpv, while group 4 served as strict control. Groups 1–3 were challenged intranasally with HP-PRRSV-2 at 28 dpv and immune-related and clinical parameters were monitored weekly until 49 dpv. Compared to group 1, group 2 demonstrated significantly increased IFN regulatory factor 3 mRNA expression of PRRSV-recalled peripheral blood mononuclear cells, and significantly reduced HP-PRRSV-2 viremia. No difference in PRRSV-specific antibody responses, rectal temperature, clinical scores, and average daily weight gain was detected. Our study reports the immunomodulatory and anti-PRRSV potentials of HC extract in PRRSV-1 MLV-vaccinated/HP-PRRSV-2 challenged pigs.
Collapse
|
8
|
Zhang H, Cao Z, Sun P, Khan A, Guo J, Sun Y, Yu X, Fan K, Yin W, Li E, Sun N, Li H. A novel strategy for optimal component formula of anti-PRRSV from natural compounds using tandem mass tag labeled proteomic analyses. BMC Vet Res 2022; 18:179. [PMID: 35568854 PMCID: PMC9106989 DOI: 10.1186/s12917-022-03184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most important porcine viral diseases which have been threatening the pig industry in China. At present, most commercial vaccines fail to provide complete protection because of highly genetic diversity of PRRSV strains. This study aimed to optimize a component formula from traditional Chinese medicine(TCM)compounds with defined chemical characteristics and clear mechanism of action against PRRSV. METHODS A total of 13 natural compounds were screened for the anti-PRRSV activity using porcine alveolar macrophages (PAMs). Three compounds with strong anti-PRRSV activity were selected to identify their potential protein targets by proteomic analysis. The optimal compound formula was determined by orthogonal design based on the results of proteomics. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each compound using PAMs. QPCR and western blot were used to investigate the PRRSV N gene and protein expression, respectively. The Tandem Mass Tag (TMT) technique of relative quantitative proteomics was used to detect the differential protein expression of PAMs treated with PRRSV, matrine (MT), glycyrrhizic acid (GA) and tea saponin (TS), respectively. The three concentrations of these compounds with anti-PRRSV activity were used for orthogonal design. Four formulas with high safety were screened by MTT assay and their anti-PRRSV effects were evaluated. RESULTS MT, GA and TS inhibited PRRSV replication in a dose-dependent manner. CCL8, IFIT3, IFIH1 and ISG15 were the top four proteins in expression level change in cells treated with MT, GA or TS. The relative expression of IFIT3, IFIH1, ISG15 and IFN-β mRNAs were consistent with the results of proteomics. The component formula (0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 μg/mL TS) showed synergistic anti-PRRSV effect. CONCLUSIONS The component formula possessed anti-PRRSV activity in vitro, in which the optimal dosage on PAMs was 0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 μg/mL TS. Compatibility of the formula was superposition of the same target with GA and TS, while different targets of MT. IFN-β may be one of the targets of the component formula possessed anti-PRRSV activity.
Collapse
Affiliation(s)
- Hua Zhang
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Zhigang Cao
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Panpan Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.,Laboratory Animal Center, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Ajab Khan
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, TX, 77843, College Station, USA
| | - Yaogui Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Xiuju Yu
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Kuohai Fan
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.,Laboratory Animal Center, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Wei Yin
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - E Li
- Haowei Biotechnology Co., Ltd, Tianjin, 300000, China
| | - Na Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Hongquan Li
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.
| |
Collapse
|