1
|
Tuniyazi M, Tang R, Hu X, Zhang N, Shen P. Efficacy of Carbonate Buffer Mixture in Preventing Hoof Lamella Injury Associated with Subacute Ruminal Acidosis in Dairy Goats. Vet Sci 2024; 11:395. [PMID: 39330774 PMCID: PMC11435902 DOI: 10.3390/vetsci11090395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Subacute ruminal acidosis (SARA) is a prevalent metabolic disorder in highly productive dairy cows that results in serious issues, including hoof lamellar injuries. This study aimed to investigate the efficacy of a carbonate buffer mixture (CBM) in preventing hoof lamella injury in dairy goats, a species also susceptible to SARA due to similar feeding practices over a 17-week period. Twenty-four healthy dairy goats were randomly assigned to three groups: control, SARA, and CBM groups. The control group received a standardized diet, whereas the SARA and CBM groups were subjected to a high-grain feeding regimen to induce SARA. The CBM group received a daily supplement of 10 g CBM mixed with their diet. Clinical assessments, including body temperature, rumen pH, inflammatory markers, matrix metalloproteinases (MMPs), and hoof lamellar injuries, were monitored throughout the study. The results showed that the CBM group maintained a more stable rumen pH and had lower levels of inflammatory markers than the SARA group did. The incidence of hoof lamellar injury was slightly lower in the CBM group. These findings suggest that long-term CBM supplementation may mitigate SARA-associated hoof lamella injury in dairy goats by regulating the rumen environment, fostering the growth of healthy bacterial communities, and by reducing the production of harmful metabolites. The use of CBM as a dietary supplement may have significant implications in improving the health, welfare, and productivity of dairy animals.
Collapse
Affiliation(s)
- Maimaiti Tuniyazi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ruibo Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Peng Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Jayathilake WMNK, de Laat MA, Furr M, Risco C, Lacombe VA. Prolonged hyperinsulinemia increases the production of inflammatory cytokines in equine digital lamellae but not in striated muscle. Vet J 2024; 303:106053. [PMID: 38043699 DOI: 10.1016/j.tvjl.2023.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Hyperinsulinemia is the key feature of equine metabolic syndrome (EMS) which leads to debilitating sequelae. Hyperinsulinemia-associated laminitis (HAL) is one of the major sequelae of EMS, although the pathophysiological mechanisms are not well elucidated. Using an equine model, we hypothesized that expression of inflammatory markers would be increased in digital lamellae and striated muscle following prolonged hyperinsulinemia. Healthy Standardbred horses (5.4 ± 1.9 years) were alternately assigned to a prolonged euglycemic-hyperinsulinemic clamp (pEHC) or control group (n = 4 per group). Following a 48 h pEHC or a 48 h infusion of a balanced electrolyte solution (controls), biopsies were collected from digital lamellar tissue, skeletal muscle and cardiac muscle were obtained. All hyperinsulinemic horses developed laminitis regardless of previous health status at enrollment. Protein expression was quantified via Western blotting. A significant (P < 0.05) upregulation of the protein expression of heat shock protein 90 (HSP90), alpha 2 macroglobulin (A2M) and fibrinogen (α, β isoforms), as well as inflammatory cytokines including interleukin-1β were detected in digital lamellae following prolonged hyperinsulinemia. In contrast, protein expression of cytokines and acute phase proteins in heart and skeletal muscle was unchanged following hyperinsulinemia. Upregulation of inflammatory cytokines and acute phase proteins in digital lamellae during prolonged hyperinsulinemia may reveal potential biomarkers and novel therapeutic targets for equine endocrinopathic laminitis. Further, the lack of increase of inflammatory proteins and acute phase proteins in striated muscle following prolonged hyperinsulinemia may highlight potential anti-inflammatory and cardioprotective mechanisms in these insulin-sensitive tissues.
Collapse
Affiliation(s)
- W M N K Jayathilake
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - M A de Laat
- School of Biology and Environmental Science, Queensland University of Technology, Queensland, 4001, Australia
| | - M Furr
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - C Risco
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - V A Lacombe
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
3
|
Lavado RA, Lewis J, Montgomery JB. Continuous digital hypothermia for prevention and treatment of equine acute laminitis: A practical review. Vet J 2023; 300-302:106016. [PMID: 37507002 DOI: 10.1016/j.tvjl.2023.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Laminitis is a severely debilitating and life-threatening condition that occurs as a consequence of different primary triggering factors. Continuous digital hypothermia (CDH) is recommended in horses at risk of, or diagnosed with, acute laminitis due to its several physiological and biochemical alterations that may be positive for the prevention and early treatment of the condition, representing a low risk of adverse effects. Modulation of the inflammatory response, profound vasoconstriction, and prevention of tissue damage are the most notable protective effects of cryotherapy on the lamellae. This practical review aims to summarize the published literature evaluating CDH efficacy in the prevention and early treatment of acute laminitis in horses, highlighting the most important clinical findings and discussing the best methods to provide cryotherapy. Nineteen publications evaluated different CDH methods, including the use of commercially available ice boots or fluid bags filled with iced water or crushed ice, as well as alternatives to immersion in ice, e.g., frozen gel packs and a perfused cuff prototype. Although some techniques were effective for cooling and maintaining the hooves below the optimal temperature of 10 °C, relevant limitations such as labor intensiveness, reliance on an ice source and price make its use impractical in some clinical situations. Twelve experimental studies assessed the efficacy of CDH on the prevention or early treatment of laminitis, finding multiple positive effects in terms of clinical improvement, immunological and inflammatory modulation, and histological protection. After the analysis of the literature, the clinical importance of CDH in different stages of laminitis remains clear. However, it also highlights the need for a safer, more user-friendly, and more effective method of cryotherapy that can be used both in a hospital and an ambulatory setting.
Collapse
Affiliation(s)
- Ronaldo Avella Lavado
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Medical Clinic, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Jazlynn Lewis
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Agriculture, Angelo State University, San Angelo, TX 76909, USA
| | - Julia B Montgomery
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
4
|
Burns TA, Watts MR, Belknap JK, van Eps AW. Digital lamellar inflammatory signaling in an experimental model of equine preferential weight bearing. J Vet Intern Med 2023; 37:681-688. [PMID: 36840365 DOI: 10.1111/jvim.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Supporting limb laminitis (SLL) is a complication of severe orthopedic disease in horses and is often life-limiting, yet the pathophysiology remains obscure. HYPOTHESIS/OBJECTIVES To investigate the role of digital lamellar inflammatory signaling in the pathophysiology of SLL using a model of unilateral weight bearing, hypothesizing that there would be evidence of lamellar inflammation in limbs subjected to the model. ANIMALS Thirteen healthy adult Standardbred horses were used for this study (11 geldings, 2 mares; mean age 6.5 ± 2.5 years; mean body weight 458.3 ± 32.8 kg). METHODS Randomized controlled experimental study. A steel shoe with a custom insert was applied to a randomly selected front foot of 7 horses; 6 horses were unshod and served as controls. After 92 hours, all horses were humanely euthanized, and digital lamellar samples were collected. Lamellar protein and mRNA were isolated and used to perform western blot and PCR. RESULTS Lamellar concentrations of IL-6 mRNA were higher in SL tissue than IL HIND tissue (median [25%-75%] normalized copy number 191 [111-3060] and 48 [25-74], respectively; P=.003), and lamellar concentrations of COX-2 mRNA were higher in SL tissue than CON tissue (normalized copy number 400 [168-634] and 125 [74-178], respectively; P=.007). Lamellar concentrations of IL-1B, IL-10, and COX-1 mRNA were not significantly different between groups. The concentrations of phosphorylated (activated) STAT1 and STAT3 proteins were higher in SL (0.5 [0.35-0.87] and 1.35 [1.1-1.7], respectively) compared to CON (0.24 [0.09-0.37] and 0.31 [0.16-037]) and UL HIND (0.27 [0.19-0.37] and 0.38 [0.24-0.5]); P=0.01 and P<0.001. CONCLUSIONS AND CLINICAL IMPORTANCE Lamellar inflammatory signaling was higher in tissue from horses subjected to prolonged unilateral weight-bearing, suggesting that these pathways could be relevant to the pathophysiology of SLL.
Collapse
Affiliation(s)
- Teresa A Burns
- The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Mauria R Watts
- The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - James K Belknap
- The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Andrew W van Eps
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia.,School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
5
|
Sundberg JP, Galantino-Homer H, Fairfield H, Ward-Bailey PF, Harris BS, Berry M, Pratt CH, Gott NE, Bechtold LS, Kaplan PR, Durbin-Johnson BP, Rocke DM, Rice RH. Witch Nails (Krt90whnl): A spontaneous mouse mutation affecting nail growth and development. PLoS One 2022; 17:e0277284. [PMID: 36374931 PMCID: PMC9662738 DOI: 10.1371/journal.pone.0277284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous single gene mutations identified in humans and mice result in nail deformities with many similarities between the species. A spontaneous, autosomal, recessive mutation called witch nails (whnl) is described here where the distal nail matrix and nail bed undergo degenerative changes resulting in formation of an abnormal nail plate causing mice to develop long, curved nails. This mutation arose spontaneously in a colony of MRL/MpJ-Faslpr/J at The Jackson Laboratory. Homozygous mutant mice are recognizable by 8 weeks of age by their long, curved nails. The whnl mutation, mapped on Chromosome 15, is due to a 7-bp insertion identified in the 3’ region of exon 9 in the Krt90 gene (formerly Riken cDNA 4732456N10Rik), and is predicted to result in a frameshift that changes serine 476 to arginine and subsequently introduces 36 novel amino acids into the protein before a premature stop codon (p. Ser476ArgfsTer36). By immunohistochemistry the normal KRT90 protein is expressed in the nail matrix and nail bed in control mice where lesions are located in mutant mice. Immunoreactivity toward equine KRT124, the ortholog of mouse KRT90, is restricted to the hoof lamellae (equine hoof wall and lamellae are homologous to the mouse nail plate and nail bed) and the mouse nail bed. Equine laminitis lesions are similar to those observed in this mutant mouse suggesting that the latter may be a useful model for hoof and nail diseases. This first spontaneous mouse mutation affecting the novel Krt90 gene provides new insight into the normal regulation of the molecular pathways of nail development.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Hannah Galantino-Homer
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States of America
| | - Heather Fairfield
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | | | | | - Melissa Berry
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Nicholas E. Gott
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Pauline R. Kaplan
- Department of Environmental Toxicology, University of California, Davis, CA, United States of America
| | - Blythe P. Durbin-Johnson
- Department of Applied Biosciences, University of California, Davis, CA, United States of America
| | - David M. Rocke
- Department of Applied Biosciences, University of California, Davis, CA, United States of America
| | - Robert H. Rice
- Department of Environmental Toxicology, University of California, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|