1
|
Payne CJ, Phuong VH, Phuoc NN, Dung TT, Phuoc LH, Crumlish M. Genomic diversity and evolutionary patterns of Edwardsiella ictaluri affecting farmed striped catfish ( Pangasianodon hypophthalmus) in Vietnam over 20 years. Microb Genom 2025; 11:001368. [PMID: 39969283 PMCID: PMC11840174 DOI: 10.1099/mgen.0.001368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Edwardsiella ictaluri continues to pose a significant risk to the health and production of striped catfish (Pangasianodon hypophthalmus) in Vietnam. Whilst recent advances in genomic sequencing provide an insight into the global genomic diversity of this important fish pathogen, genome-wide analysis of Vietnamese isolates recovered over time is lacking. In this study, we used a whole-genome sequencing approach to compare the genomes of 31 E. ictaluri isolates recovered over a 20-year period (2001-2021) and performed comparative genomic analysis to explore temporal changes in genome diversity, population structure and mechanisms driving pathogenesis and antimicrobial resistance. Our findings revealed an open pan-genome with 4148 genes and a core genome (3 060 genes) accounting for over two-thirds of the genome. Moreover, we found the genomes sequenced to classify into two distinct lineages and estimated the ancestral origin of these lineages within Vietnam to date back to the 1950s. Plasmids were highly prevalent in Vietnamese E. ictaluri, with isolates harbouring up to four plasmids within their genome. Further, a diverse mobilome was observed with nine different plasmid types detected across the genome collection. Exploration of putative plasmids revealed a diverse set of antimicrobial resistance genes (ARGs) against key antibiotics used in Vietnamese aquaculture and virulence genes associated with protein secretion systems. Correlation analysis revealed the total number of ARGs detected in genomes to increase with isolate recovery time. Whilst the number of virulence genes remained relatively stable, temporal variation was noted in several virulence factors related to motility and immune system modulation. Findings from this study highlight the need for continued genomic surveillance to monitor changes in antimicrobial resistance and pathogenesis, to help inform the development of disease control and management strategies.
Collapse
Affiliation(s)
- Christopher J. Payne
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Vo Hong Phuong
- Southern Monitoring Center for Aquaculture Environment and Epidemic, Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - Nguyen Ngoc Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Tu Thanh Dung
- Faculty of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Le Hong Phuoc
- Southern Monitoring Center for Aquaculture Environment and Epidemic, Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - Margaret Crumlish
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
2
|
Kalindamar S, Abdelhamed H, Kordon AO, Pinchuk LM, Karsi A. Hemolysin Co-regulated Family Proteins Hcp1 and Hcp2 Contribute to Edwardsiella ictaluri Pathogenesis. Front Vet Sci 2021; 8:681609. [PMID: 34150898 PMCID: PMC8207204 DOI: 10.3389/fvets.2021.681609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/07/2021] [Indexed: 01/22/2023] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of catfish (ESC), a devastating disease resulting in significant economic losses in the U.S. catfish industry. Bacterial secretion systems are involved in many bacteria's virulence, and Type VI Secretion System (T6SS) is a critical apparatus utilized by several pathogenic Gram-negative bacteria. E. ictaluri strain 93-146 genome has a complete T6SS operon with 16 genes, but the roles of these genes are still not explored. In this research, we aimed to understand the roles of two hemolysin co-regulated family proteins, Hcp1 (EvpC) and Hcp2. To achieve this goal, single and double E. ictaluri mutants (EiΔevpC, EiΔhcp2, and EiΔevpCΔhcp2) were generated and characterized. Catfish peritoneal macrophages were able to kill EiΔhcp2 better than EiΔevpC, EiΔevpCΔhcp2, and E. ictaluri wild-type (EiWT). The attachment of EiΔhcp2 and EiΔevpCΔhcp2 to ovary cells significantly decreased compared to EiWT whereas the cell invasion rates of these mutants were the same as that of EiWT. Mutants exposed to normal catfish serum in vitro showed serum resistance. The fish challenges demonstrated that EiΔevpC and EiΔevpCΔhcp2 were attenuated completely and provided excellent protection against EiWT infection in catfish fingerlings. Interestingly, EiΔhcp2 caused higher mortality than that of EiWT in catfish fingerlings, and severe clinical signs were observed. Although fry were more susceptible to vaccination with EiΔevpC and EiΔevpCΔhcp2, their attenuation and protection were significantly higher compared to EiWT and sham groups, respectively. Taken together, our data indicated that evpC (hcp1) is involved in E. ictaluri virulence in catfish while hcp2 is involved in adhesion to epithelial cells and survival inside catfish macrophages.
Collapse
Affiliation(s)
- Safak Kalindamar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Adef O Kordon
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Lesya M Pinchuk
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
3
|
Akgul A, Akgul A, Lawrence ML, Karsi A. Stress-related genes promote Edwardsiella ictaluri pathogenesis. PLoS One 2018; 13:e0194669. [PMID: 29554143 PMCID: PMC5858854 DOI: 10.1371/journal.pone.0194669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/07/2018] [Indexed: 12/22/2022] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative anaerobic rod and the causative agent of enteric septicemia of channel catfish (ESC), which is one of the most prevalent diseases of catfish, causing significant economic losses in the catfish industry. E. ictaluri is resistant to complement system and macrophage killing, which results in rapid systemic septicemia. However, mechanisms of E. ictaluri stress responses under conditions of host environment are not studied well. Therefore, in this work, we report E. ictaluri stress responses during hydrogen peroxide, low pH, and catfish serum stresses as well as during catfish invasion. E. ictaluri stress responses were characterized by identifying expression of 13 universal stress protein (USP) genes (usp01-usp13) and seven USP-interacting protein genes (groEL, groES, dnaK, grpE, and clpB, grpE, relA). Data indicated that three usp genes (usp05, usp07, and usp13) were highly expressed in all stress conditions. Similarly, E. ictaluri heat shock proteins groEL, groES, dnaK, grpE, and clpB were highly expressed in oxidative stress. Also, E. ictaluri grpE and relA were highly expressed in catfish spleen and head kidney. These findings contribute to our understanding of stress response mechanisms in E. ictaluri stress response, and stress-related proteins that are essential for E. ictaluri could be potential targets for live attenuated vaccine development against ESC.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Ayfer Akgul
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
- * E-mail:
| |
Collapse
|
4
|
Genome modifications and cloning using a conjugally transferable recombineering system. ACTA ACUST UNITED AC 2015; 8:24-35. [PMID: 28352570 PMCID: PMC4980705 DOI: 10.1016/j.btre.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/21/2022]
Abstract
The genetic modification of primary bacterial disease isolates is challenging due to the lack of highly efficient genetic tools. Herein we describe the development of a modified PCR-based, λ Red-mediated recombineering system for efficient deletion of genes in Gram-negative bacteria. A series of conjugally transferrable plasmids were constructed by cloning an oriT sequence and different antibiotic resistance genes into recombinogenic plasmid pKD46. Using this system we deleted ten different genes from the genomes of Edwardsiella ictaluri and Aeromonas hydrophila. A temperature sensitive and conjugally transferable flp recombinase plasmid was developed to generate markerless gene deletion mutants. We also developed an efficient cloning system to capture larger bacterial genetic elements and clone them into a conjugally transferrable plasmid for facile transferring to Gram-negative bacteria. This system should be applicable in diverse Gram-negative bacteria to modify and complement genomic elements in bacteria that cannot be manipulated using available genetic tools.
Collapse
|
5
|
Dumpala PR, Peterson BC, Lawrence ML, Karsi A. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction. PLoS One 2015; 10:e0132504. [PMID: 26168192 PMCID: PMC4500449 DOI: 10.1371/journal.pone.0132504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE) for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS) for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05) difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.
Collapse
Affiliation(s)
- Pradeep R. Dumpala
- The Rogosin Institute, Xenia Division, Xenia, Ohio, United States of America
| | - Brian C. Peterson
- USDA ARS Warmwater Aquaculture Research Unit, Thad Cochran National Warmwater Aquaculture Center, Stoneville, Mississippi, United States of America
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
6
|
Serratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB. Infect Immun 2014; 82:3542-54. [PMID: 24914224 DOI: 10.1128/iai.01682-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Serratia marcescens is a Gram-negative bacterium that thrives in a wide variety of ambient niches and interacts with an ample range of hosts. As an opportunistic human pathogen, it has increased its clinical incidence in recent years, being responsible for life-threatening nosocomial infections. S. marcescens produces numerous exoproteins with toxic effects, including the ShlA pore-forming toxin, which has been catalogued as its most potent cytotoxin. However, the regulatory mechanisms that govern ShlA expression, as well as its action toward the host, have remained unclear. We have shown that S. marcescens elicits an autophagic response in host nonphagocytic cells. In this work, we determine that the expression of ShlA is responsible for the autophagic response that is promoted prior to bacterial internalization in epithelial cells. We show that a strain unable to express ShlA is no longer able to induce this autophagic mechanism, while heterologous expression of ShlA/ShlB suffices to confer on noninvasive Escherichia coli the capacity to trigger autophagy. We also demonstrate that shlBA harbors a binding motif for the RcsB regulator in its promoter region. RcsB-dependent control of shlBA constitutes a feed-forward regulatory mechanism that allows interplay with flagellar-biogenesis regulation. At the top of the circuit, activated RcsB downregulates expression of flagella by binding to the flhDC promoter region, preventing FliA-activated transcription of shlBA. Simultaneously, RcsB interaction within the shlBA promoter represses ShlA expression. This circuit offers multiple access points to fine-tune ShlA production. These findings also strengthen the case for an RcsB role in orchestrating the expression of Serratia virulence factors.
Collapse
|
7
|
Trung Cao T, Tsai MA, Yang CD, Wang PC, Kuo TY, Gabriel Chen HC, Chen SC. Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia. J GEN APPL MICROBIOL 2014; 60:241-50. [DOI: 10.2323/jgam.60.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Thanh Trung Cao
- Department of Tropical Agriculture and International Cooperation
| | | | - Chung-Da Yang
- Graduate Institute of Animal Vaccine, National Pingtung University of Science and Technology
| | | | - Tsun-Yung Kuo
- Institute of Biotechnology, National Ilan University
- Department of Animal Science, National Ilan University
| | | | | |
Collapse
|
8
|
Santander J, Mitra A, Curtiss R. Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants in catfish host. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1142-1153. [PMID: 22015784 DOI: 10.1016/j.fsi.2011.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/11/2011] [Accepted: 10/04/2011] [Indexed: 05/31/2023]
Abstract
Edwardsiella ictaluri is an Enterobacteriaceae that causes lethal enteric septicemia in catfish. Being a mucosal facultative intracellular pathogen, this bacterium is an excellent candidate to develop immersion-oral live attenuated vaccines for the catfish aquaculture industry. Deletion of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor protein (crp) gene in several Enterobacteriaceae has been utilized in live attenuated vaccines for mammals and birds. Here we characterize the crp gene and report the effect of a crp deletion in E. ictaluri. The E. ictaluri crp gene and encoded protein are similar to other Enterobacteriaceae family members, complementing Salmonella enterica Δcrp mutants in a cAMP-dependent fashion. The E. ictaluri Δcrp-10 in-frame deletion mutant demonstrated growth defects, loss of maltose utilization, and lack of flagella synthesis. We found that the E. ictaluri Δcrp-10 mutant was attenuated, colonized lymphoid tissues, and conferred immune protection against E. ictaluri infection to zebrafish (Danio rerio) and catfish (Ictalurus punctatus). Evaluation of the IgM titers indicated that bath immunization with the E. ictaluri Δcrp-10 mutant triggered systemic and skin immune responses in catfish. We propose that deletion of the crp gene in E. ictaluri is an effective strategy to develop immersion live attenuated antibiotic-sensitive vaccines for the catfish aquaculture industry.
Collapse
Affiliation(s)
- Javier Santander
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
9
|
Santander J, Xin W, Yang Z, Curtiss R. The aspartate-semialdehyde dehydrogenase of Edwardsiella ictaluri and its use as balanced-lethal system in fish vaccinology. PLoS One 2010; 5:e15944. [PMID: 21209920 PMCID: PMC3012122 DOI: 10.1371/journal.pone.0015944] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/01/2010] [Indexed: 12/31/2022] Open
Abstract
asdA mutants of gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd(+) plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd(+) plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd(+) expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd(+) vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd(+) plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry.
Collapse
Affiliation(s)
- Javier Santander
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Wei Xin
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Zhao Yang
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Roy Curtiss
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
10
|
|
11
|
Williams ML, Waldbieser GC, Dyer DW, Gillaspy AF, Lawrence ML. Characterization of the rrn operons in the channel catfish pathogen Edwardsiella ictaluri. J Appl Microbiol 2008; 104:1790-6. [PMID: 18217940 DOI: 10.1111/j.1365-2672.2007.03704.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To advance diagnostics and phylogenetics of Edwardsiella ictaluri by sequencing and characterizing its rrn operons. METHODS AND RESULTS The Edw. ictaluri rrn operons were identified from a 5-7 kbp insert lambda library and from Edw. ictaluri fosmid clones. We present the complete sequences and analysis of all eight Edw. ictaluri rrn operons and unique regions located upstream and downstream. Two rrn operons were located in tandem with 169 bp separating them, which is apparently a conserved feature between Edw. ictaluri and Edwardsiella tarda. I-CeuI enzyme digestion of Edw. ictaluri genomic DNA and analysis by pulsed field gel electrophoresis indicated that rrn operon number and chromosomal locations are conserved within the species Edw. ictaluri. CONCLUSIONS The rrn operons of Edw. ictaluri have similar structure and flanking regions compared with other members of the family Enterobacteriaceae; however, the presence of eight copies of the rrn operon makes Edw. ictaluri unique within the family. SIGNIFICANCE AND IMPACT OF THE STUDY This research clarifies previous phylogenetic analyses of Edw. ictaluri and provides support for the Edw. ictaluri genome sequencing project. In addition, we identified a unique feature of two rrn operons that shows potential for the development of a diagnostic PCR method.
Collapse
Affiliation(s)
- M L Williams
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | |
Collapse
|
12
|
Fernández L, Prieto M, Guijarro JA. The iron- and temperature-regulated haemolysin YhlA is a virulence factor of Yersinia ruckeri. MICROBIOLOGY-SGM 2007; 153:483-489. [PMID: 17259619 DOI: 10.1099/mic.0.29284-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Yersinia ruckeri causes the enteric redmouth disease or yersiniosis, an important systemic fish infection. In an attempt to dissect the virulence mechanisms of this bacterium, a gene encoding a putative protein involved in the secretion/activation of a haemolysin (yhlB), which had been previously identified by in vivo expression technology, was further analysed. The gene yhlB precedes another ORF (yhlA) encoding a Serratia-type haemolysin. Other toxins belonging to this group have been identified in genomic analyses of human-pathogenic yersiniae, although their role and importance in pathogenicity have not been defined yet. In spite of its being an in vivo-induced gene, the expression of yhlA can be induced under certain in vitro conditions similar to those encountered in the host, as deduced from the results obtained by using a yhlB : : lacZY fusion. Thus, higher levels of expression were obtained at 18 degrees C, the temperature of occurrence of disease outbreaks, than at 28 degrees C, the optimal growth temperature. The expression of the haemolysin also increased under iron-starvation conditions. This confirmed the decisive role of iron and temperature as environmental cues that regulate and coordinate the expression of genes encoding extracellular factors involved in the virulence of Y. ruckeri. LD(50) and cell culture experiments, using yhlB and yhlA insertional mutant strains, demonstrated the participation of the haemolysin in the virulence of Y. ruckeri and also its cytolytic properties against the BF-2 fish cell line. Finally, a screening for the production of haemolytic activity and the presence of yhlB and yhlA genes in 12 Y. ruckeri strains proved once more the genetic homogeneity of this species, since all possessed both haemolytic activity and the yhlB and yhlA genes.
Collapse
Affiliation(s)
- Lucía Fernández
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Miguel Prieto
- Laboratorio de Sanidad Animal de Jove, Serida, 33299 Gijón, Asturias, Spain
| | - José A Guijarro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
13
|
Robertson KP, Smith CJ, Gough AM, Rocha ER. Characterization of Bacteroides fragilis hemolysins and regulation and synergistic interactions of HlyA and HlyB. Infect Immun 2006; 74:2304-16. [PMID: 16552061 PMCID: PMC1418898 DOI: 10.1128/iai.74.4.2304-2316.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study describes the presence of 10 hemolysin orthologs in the genome of the opportunistic human anaerobic pathogen Bacteroides fragilis, which is currently classified as a nonhemolytic bacterium. The hemolysins were designated HlyA through HlyI plus HlyIII. All cloned hemolysin genes were able to confer hemolytic activity to a nonhemolytic Escherichia coli strain on blood agar plates. Interestingly, HlyH was found to be present in the genome of the B. fragilis NCTC9343 strain but absent in strains 638R, YCH46, and Bacteroides thetaiotaomicron VPI-5482. The hemolysins HlyA, HlyB, and HlyIII were selected for further characterization. HlyA, HlyB, and HlyIII were cytolytic to erythrocytes on liquid hemolytic assay. When hlyA and hlyB were expressed together in a nonhemolytic E. coli strain, the strain showed enhanced hemolytic activity on blood agar plates. Further analysis revealed that HlyA and HlyB have synergistic hemolytic activity as detected by the liquid hemolytic assay. In addition, the two-component hemolysins HlyA and HlyB form a protein-protein complex in vivo as determined by bacterial two-hybrid system assay. The hlyB and hlyA genes are organized in an operon that is coordinately regulated by iron and oxygen. Northern blot hybridization analysis revealed that hlyBA were expressed as a bicistronic mRNA induced approximately 2.5-fold under low-iron conditions and repressed in iron-rich medium. The normal iron-regulated expression of hlyBA mRNA was lost in the furA mutant strain. In contrast, the hlyA gene was also expressed as a single mRNA in iron-rich medium, but its expression was reduced approximately threefold under low-iron conditions in a Fur-independent manner. This suggests that hlyA alone is regulated by an unidentified iron-dependent regulator. Moreover, the expression levels of hlyBA and hlyA were reduced about threefold following oxygen exposure and treatment with hydrogen peroxide. Taken together, these results suggest that iron and oxidative stress have an effect on the control of hlyBA and hlyA transcriptional levels. A hlyBA mutant was constructed, and its hemolytic activity was greatly diminished compared to those of the hlyIII mutant and parent strains. In addition, the hlyBA mutant had a significant modification in colony morphology and growth deficiency compared to the parent strain. The implications of these findings for the pathophysiology of B. fragilis in extraintestinal infections and competition in ecological systems for this organism are discussed.
Collapse
Affiliation(s)
- Kirstin P Robertson
- Department of Microbiology and Immunology, East Carolina University Brody School of Medicine, Biotechnology Bldg., Room 130, 600 Moye Blvd., Greenville, NC 27834, USA
| | | | | | | |
Collapse
|