1
|
Gobbi P, Pavone S, Orso M, Passamonti F, Righi C, Beato MS, Feliziani F, Giammarioli M. Molecular Characterization of Small Ruminant Lentiviruses in Sheep and Goats: A Systematic Review. Animals (Basel) 2024; 14:3545. [PMID: 39682510 DOI: 10.3390/ani14233545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Small ruminant lentiviruses (SRLVs) are responsible for chronic and progressive multisystemic clinical forms, which significantly reduce flocks' productivity and have a considerable economic impact on the small ruminant industry. Due to the increase in genetic analysis studies and the potential for misclassification of certain strains, owing to the high genetic variability of these viruses, a systematic review was deemed necessary. This review explores the types of matrices used for molecular detection and phylogenetic studies, the genomic regions selected as targets, and the software utilized for phylogenetic analysis, assessing the geographical distribution of identified genotypes and subgenotypes over time. A thorough comparison of the diagnostic approaches highlights the strengths and limitations of each method, identifying gaps that need to be addressed. Additionally, recombination events and compartmentalization are examined to provide an updated, detailed, and comprehensive overview of SRLV phylogenesis.
Collapse
Affiliation(s)
- Paola Gobbi
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Silvia Pavone
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Massimiliano Orso
- Office for Research Management, Special Projects, Cooperation and Twinning, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Cecilia Righi
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Maria Serena Beato
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Francesco Feliziani
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Monica Giammarioli
- National Reference Laboratory for Ruminant Retroviruses, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
2
|
Bouzalas I, Apostolidi ED, Scalas D, Davidopoulou E, Chassalevris T, Rosati S, Colitti B. A Combined Approach for the Characterization of Small Ruminant Lentivirus Strains Circulating in the Islands and Mainland of Greece. Animals (Basel) 2024; 14:1119. [PMID: 38612358 PMCID: PMC11010947 DOI: 10.3390/ani14071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Small ruminant lentiviruses are a group of viruses infecting goat and sheep worldwide. These viruses exhibit an extraordinary degree of genetic and antigenic variability that severely influence in vivo and in vitro features, as well as diagnostic test results. Small ruminant farming is the most important animal farming business in Greece, with a high impact on the Greek primary economy. Although SRLV infection and its impact on animal production are well established in the country, little is known about the circulating SRLV strains and their prevalence. The aim of this study was to characterize SRLVs circulating in Greece with a combined serological and molecular approach, using the bulk milk matrix collected from 60 farms in different municipalities. This study allowed us to estimate a seroprevalence of around 52% at the herd level. The B1, B2 and A3 subtypes and a novel A viral cluster were identified. Moreover, the amplicon sequencing method allowed us to identify more than one viral subtype in a sample. These results again confirm the high variability of these viruses and highlight the importance of the constant monitoring of viral evolution, in particular in antigens of diagnostic interest.
Collapse
Affiliation(s)
- Ilias Bouzalas
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Evangelia D. Apostolidi
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Daniela Scalas
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| | | | - Taxiarchis Chassalevris
- Hellenic Agricultural Organization—DEMETER, Veterinary Research Institute, Campus of Thermi, 57001 Thessaloniki, Greece; (I.B.); (E.D.A.); (T.C.)
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, L. Braccini 2, 10095 Torino, Italy; (D.S.); (S.R.)
| |
Collapse
|
3
|
Kalogianni AI, Bouzalas I, Marka S, Zografaki ME, Mavrikou S, Gelasakis AI. Genetic Characterization of Small Ruminant Lentiviruses Isolated from Dairy Sheep in Greece. Viruses 2024; 16:547. [PMID: 38675890 PMCID: PMC11053789 DOI: 10.3390/v16040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The high genetic heterogeneity of small ruminant lentiviruses (SRLV) renders the genetic characterization of the circulating strains crucial for the epidemiological investigation and the designation of effective diagnostic tools. In Greece, research data regarding the genetic diversity of the circulating SRLV strains is scarce, hindering the implementation of efficient surveillance and control programs. The objective of the study was to genetically characterize SRLV strains isolated from intensive dairy sheep farms in Greece and evaluate the variability of the immunodominant regions of the capsid protein. For this reason, a total of 12 SRLV-infected animals from four intensive dairy sheep farms with purebred Chios and Lacaune ewes were used for the amplification and sequencing of an 800 bp gag-pol fragment. The phylogenetic analyses revealed a breed-related circulation of strains; Chios ewes were infected with strains belonging exclusively to a separate group of genotype A, whereas strains belonging to subtype B2 were isolated from Lacaune ewes. Immunodominant epitopes of capsid protein were quite conserved among the strains of the same genotype, except for the Major Homology Region which showed some unique mutations with potential effects on viral evolution. The present study contributes to the extension of the current knowledge regarding the genetic diversity of SRLV strains circulating in sheep in Greece. However, broader genetic characterization studies are warranted for the exploration of possible recombinant events and the more comprehensive classification of the circulating strains.
Collapse
Affiliation(s)
- Aphrodite I. Kalogianni
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece;
| | - Ilias Bouzalas
- Veterinary Research Institute, Hellenic Agricultural Organization-DEMETER, Campus of Thermi, 57001 Thessaloniki, Greece;
| | - Sofia Marka
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Maria-Eleftheria Zografaki
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Sofia Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens (AUA), EU-CONEXUS European University, 11855 Athens, Greece; (S.M.); (M.-E.Z.); (S.M.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece;
| |
Collapse
|
4
|
Souza TSD, Pinheiro RR, Costa JN, Lima CCVD, Andrioli A, Azevedo DAAD, Santos VWSD, Araújo JF, Sousa ALMD, Pinheiro DNS, Fernandes FMC, Costa Neto AO. Interspecific transmission of small ruminant lentiviruses from goats to sheep. Braz J Microbiol 2015; 46:867-74. [PMID: 26413072 PMCID: PMC4568888 DOI: 10.1590/s1517-838246320140402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
This study was conducted in order to evaluate the transmission of caprine lentivirus
to sheep using different experimental groups. The first one (colostrum group) was
formed by nine lambs receiving colostrum from goats positive for small ruminant
lentiviruses (SRLV). The second group (milk group) was established by nine lambs that
received milk of these goats. Third was a control group, consisting of lambs that
suckled colostrum and milk of negative mothers. Another experimental group (contact
group) was formed by eight adult sheep, confined with two naturally infected goats.
The groups were monitored by immunoblotting (IB), enzyme-linked immunosorbent assay
(ELISA), agar gel immunodiffusion (AGID) and nested polymerase chain reaction (nPCR).
All lambs that suckled colostrum and milk of infected goats and six sheep of the
contact group had positive results in the nPCR, although seroconversion was detected
only in three of the exposed animals, with no clinical lentiviruses manifestation, in
720 days of observation. There was a close relationship between viral sequences
obtained from infected animals and the prototype CAEV-Cork. Thus, it was concluded
that SRLV can be transmitted from goats to sheep, however, the degree of adaptation
of the virus strain to the host species probably interferes with the infection
persistence and seroconversion rate.
Collapse
Affiliation(s)
- Thiago S de Souza
- Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brazil
| | - Raymundo R Pinheiro
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Caprinos e Ovinos, Sobral, CE, Brazil
| | - Joselito N Costa
- Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brazil
| | | | - Alice Andrioli
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Caprinos e Ovinos, Sobral, CE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses 2013; 5:1867-84. [PMID: 23881276 PMCID: PMC3738966 DOI: 10.3390/v5071867] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
Zoonotic events of simian immunodeficiency virus (SIV) from non-human primates to humans have generated the acquired immunodeficiency syndrome (AIDS), one of the most devastating infectious disease of the last century with more than 30 million people dead and about 40.3 million people currently infected worldwide. Human immunodeficiency virus (HIV-1 and HIV-2), the two major viruses that cause AIDS in humans are retroviruses of the lentivirus genus. The genus includes arthritis-encephalitis virus (CAEV) and Maedi-Visna virus (MVV), and a heterogeneous group of viruses known as small ruminant lentiviruses (SRLVs), affecting goat and sheep. Lentivirus genome integrates into the host DNA, causing persistent infection associated with a remarkable diversity during viral replication. Direct evidence of mixed infections with these two closely related SRLVs was found in both sheep and goats. The evidence of a genetic continuum with caprine and ovine field isolates demonstrates the absence of an efficient species barrier preventing cross-species transmission. In dual-infected animals, persistent infections with both CAEV and MVV have been described, and viral chimeras have been detected. This not only complicates animal trade between countries but favors the risk that highly pathogenic variants may emerge as has already been observed in the past in Iceland and, more recently, in outbreaks with virulent strains in Spain. SRLVs affecting wildlife have already been identified, demonstrating the existence of emergent viruses adapted to new hosts. Viruses adapted to wildlife ruminants may acquire novel biopathological properties which may endanger not only the new host species but also domestic ruminants and humans. SRLVs infecting sheep and goats follow a genomic evolution similar to that observed in HIV or in other lentiviruses. Lentivirus genetic diversity and host factors leading to the establishment of naturally occurring virulent versus avirulent infections, in addition to the emergence of new strains, challenge every aspect of SRLV control measures for providing efficient tools to prevent the transmission of diseases between wild ungulates and livestock.
Collapse
|
6
|
Ramírez H, Reina R, Amorena B, de Andrés D, Martínez HA. Small ruminant lentiviruses: genetic variability, tropism and diagnosis. Viruses 2013; 5:1175-1207. [PMID: 23611847 PMCID: PMC3705272 DOI: 10.3390/v5041175] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 02/05/2023] Open
Abstract
Small ruminant lentiviruses (SRLV) cause a multisystemic chronic disease affecting animal production and welfare. SRLV infections are spread across the world with the exception of Iceland. Success in controlling SRLV spread depends largely on the use of appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among these viruses, the fluctuant levels of antibody against them and the low viral loads found in infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism towards the monocyte/macrophage lineage and attempts have been made to identify the genome regions involved in tropism, with two main candidates, the LTR and env gene, since LTR contains primer binding sites for viral replication and the env-encoded protein (SU ENV), which mediates the binding of the virus to the host's cell and has hypervariable regions to escape the humoral immune response. Once inside the host cell, innate immunity may interfere with SRLV replication, but the virus develops counteraction mechanisms to escape, multiply and survive, creating a quasi-species and undergoing compartmentalization events. So far, the mechanisms of organ tropism involved in the development of different disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but different alternatives are proposed. This is an overview of the current state of knowledge on SRLV genetic variability and its implications in tropism as well as in the development of alternative diagnostic assays.
Collapse
Affiliation(s)
- Hugo Ramírez
- Laboratory of Virology, Genetics and Molecular Biology, FES-Cuautitlán, UNAM C-4 Veterinary, Cuautitlán Izcalli, State of Mexico 54714, Mexico; E-Mail:
| | - Ramsés Reina
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Beatriz Amorena
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Damián de Andrés
- Institute of Agrobiotechnology, CSIC-UPNA-Government of Navarra, Ctra. Mutilva Baja s/n, Navarra 31192, Spain; E-Mails: (R.R.); (B.A.); (D.A.)
| | - Humberto A. Martínez
- Laboratory of Virology, Genetics and Molecular Biology, FES-Cuautitlán, UNAM C-4 Veterinary, Cuautitlán Izcalli, State of Mexico 54714, Mexico; E-Mail:
| |
Collapse
|
7
|
Brinkhof J, van Maanen C, Wigger R, Peterson K, Houwers D. Specific detection of small ruminant lentiviral nucleic acid sequences located in the proviral long terminal repeat and leader-gag regions using real-time polymerase chain reaction. J Virol Methods 2008; 147:338-44. [DOI: 10.1016/j.jviromet.2007.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 10/02/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
|
8
|
Kuzmak J, Rola M, Gallay K, Chebloune Y. Molecular characterization of lentiviruses from goats from Poland based on gag gene sequence analysis. Comp Immunol Microbiol Infect Dis 2007; 30:211-23. [PMID: 17337054 DOI: 10.1016/j.cimid.2007.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2007] [Indexed: 11/22/2022]
Abstract
Caprine arthritis-encephalitis virus (CAEV) infection in goats is worldwide but with higher prevalence in industrialized countries. While positive serology of CAEV in Polish goats was reported there was no genetic study of this virus. In this study, we described the molecular characterization of lentiviruses isolated from seropositive goats from Poland. We cloned and sequenced a fragment from the gag gene covering part of the coding sequences for the matrix (MA) p17 and for the capsid (CA) p25 proteins. Resulting nucleotide sequences were aligned with those from other ovine/caprine lentivirus isolates. We present data showing that the sequences of most goat lentivirus isolates are closer to the prototypic CAEV-Co isolate, nevertheless from one goat we isolated a virus that is closer to the sheep Maedi Visna virus (MVV) isolate. This might indicate a recent cross-species infection from sheep to goat.
Collapse
Affiliation(s)
- Jacek Kuzmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | | | | | | |
Collapse
|
9
|
Angelopoulou K, Poutahidis T, Brellou GD, Greenland T, Vlemmas I. A deletion in the R region of long terminal repeats in small ruminant lentiviruses is associated with decreased pathology in the lung. Vet J 2007; 175:346-55. [PMID: 17498982 DOI: 10.1016/j.tvjl.2007.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
A particular variant of the maedi visna virus (MVV) that although present in blood causes no clinical signs in infected sheep has been described. This variant carries a 13-14 nucleotide deletion in the R region of the proviral long terminal repeats. The hypothesis that this specific deletion may be associated with low pathogenicity has been investigated by comparing the distribution of proviral sequences, the histopathological lesions and the expression of viral proteins in the brain, lungs and udders of sheep naturally infected with viral strains carrying the deletion. Provirus could be demonstrated in most of the tissues examined from sheep infected with either type of virus, and the tissue-derived virus carried the typical deletion in the study flock animals. Histopathological analysis revealed that the lungs were significantly less affected in the animals infected with virus carrying the deletion. Concomitantly, viral expression was significantly reduced in the lungs of these animals. The findings suggest that the reduced pathogenicity of MVV with the specific deletion in the R region is not due to a restriction in the availability of specific tissues to infection, but is associated with a reduced capacity for viral expression in the lungs.
Collapse
Affiliation(s)
- K Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
10
|
Angelopoulou K, Brellou GD, Greenland T, Vlemmas I. A novel deletion in the LTR region of a Greek small ruminant lentivirus may be associated with low pathogenicity. Virus Res 2006; 118:178-84. [PMID: 16446005 DOI: 10.1016/j.virusres.2005.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 12/17/2005] [Accepted: 12/23/2005] [Indexed: 11/22/2022]
Abstract
Greek small ruminant lentivirus (SRLV) strains remain relatively uncharacterized at the molecular level, despite the fact that lentiviral diseases of small ruminants are known to be widespread in the country. In the present study, we investigated the sequence diversity of the LTR region in Greek SRLV strains from sheep with and without disease symptoms, since sequence differences within this genomic area have been shown to lead to SRLVs with distinct replication rates. The AP-4 and AML (vis) motifs and the TATA-box were highly conserved among Greek strains, whereas the two AP-1 sites exhibited some substitutions. Pairwise comparisons with reference strains revealed that Greek LTR sequences were closer to the ovine strains (25.7% average divergence) rather than the caprine strain CAEV (59.1% average divergence). The most striking difference observed between the two groups of animals was a 13-14 nucleotide deletion in the strains obtained from the asymptomatic sheep. The deletion was located within the R region of LTR, which was also found to be much less homologous (39.6% average divergence) than the U3 and U5. Taken together, our data suggest that the R region of LTR may be involved in virus transcriptional activation. Furthermore, a specific deletion within this region may, at least in part, be associated with low pathogenicity of some SRLV strains.
Collapse
Affiliation(s)
- K Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|